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ABSTRACT
In Computer Graphics, Collision Detection is considered a key problem with important applications in related
areas. Several solutions have been proposed, but independently of the chosen strategy, different stages of the
solution are considered. It is not only relevant to apply a good static collision test, but reducing the pairs of objects
susceptible of intersecting is important in order to obtain applicable computation times. Some methods achieve this
aim computing a tessellation as preprocessing. The new approach we propose in this paper computes a partition of
the plane called Polar Diagram, in which every object in the scene is owner of a polar region as the locus of points
with some common angle properties. Polar diagrams used as preprocessing can be applied to Collision Detection
and many other geometric problems where the solution is given by angle processing.
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1. INTRODUCTION
Collision Detection has been extensively studied in fi-
elds like Computational Geometry and Computer Gra-
phics, and can be considered as one of the Robotics
fundamental pillars. In Animation or Robotics, when-
ever some objects representing a scene are provided of
movement, it is necessary to determine if these mobile
objects collides with others, sometimes to avoid possi-
ble contacts or just to know the collision response. The
results have been applied to Virtual Reality, Computer-
Aided Design and Physical Simulation, in general. The
state of the art is described in some works like [Jim01a,
Lin98a, Osu01a].

Collision detection can be classified attending to dif-
ferent approaches: spatio-temporal intersection, swept
volume interference, multiple interference detection or
trajectory parameterization. However, computation ti-
mes are usually crucial for real-time applications and
the efficiency can not be guaranteed if collision tests
are widely applied. A previous phase in these tech-
niques should be able to restrict the number of collisi-
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on tests by carrying out objects pairs selection, in or-
der to compute intersection tests only in those pairs
of objects sufficiently close to intersect. These non-
discarded pairs are the input to a second phase in which
some more concrete interaction aspects are studied.
Then, if the contact has been finally detected, static
collision tests provide information about the intersec-
tion area, possible objects deformations or changes in
the trajectory of the mobile objects.

This pruning phase mentioned above can be computed
according to different time and space bounding strate-
gies. It is well known how Voronoi diagrams [Oka92a]
can be useful for techniques based on distance compu-
tation. Collision detection takes advantage of Voronoi
regions characteristics because determining the mini-
mum Euclidean distance between two objects is con-
sidered a spatio-temporal technique. The new approach
we present in this paper uses a strategy based on tes-
sellation, similar to the Voronoi diagram. Our aim is to
provide an efficient pruning method for2D simplified
scenes, not based on the minimum Euclidean distance,
but using the smallest polar angle criterion. The result
is a new partition of the plane calledpolar diagram.

2. THE POLAR DIAGRAM
We first introduce the polar angle of the pointp =
(x,y) with respect tosi , denoted asangsi (p) < π, as
the angle formed by the positive horizontal line ofp
and the straight line joiningp andsi (see Figure 1).

Given a setS of n objects in the plane, the locus of
points with smaller positive polar angle with respect
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Figure 1: Polar angle.
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Figure 2: Example of circles polar diagram.

to si ∈ S than with respect to any othersj ∈ S is called
polar region of si , denotedP S(si). Thus, P S(si) ={

p = (x,y) ∈ E2 | angsi (p) < angsj (p), ∀ j 6= i}, being
angsi (p) the angle described in Figure 1. The plane is
divided in different regions in such a way that if the
point p ∈ E2 lies whithin P S(si), it is known thatsi

is the first object found after performing an angular
scanning starting fromp in the way that polar angle is
defined. The union of all thesen regions defines a tes-
sellation we have calledpolar diagramof S, denoted
asP (S) [Gri98a, Gri99b].

Polar diagram of circles
The polar diagram of a set of circles has similar fea-
tures to any other geometric objects. We focus our
attention on circles due to its election for the collision
problem.

For the polar diagram construction of a set of circles,
we create a set of2n−1 horizontal strips by throwing
horizontal infinite lines in all North and South poles.
The set of2n poles are sorted obtaining the sequence
of points {p0, ..., p2n−1} (observe Figure 2). Every
strip fi is the locus of points lying within the hori-
zontal band given by[pi , pi+1). A strip contains only
one pole, the North or the South pole of a circle. As
much, the number of polar edges processed in each
strip is two, a horizontal and an oblique edge. There
is always a horizontal one starting from North poles
and another one starting from the South if an obstacle
is found to the right. Oblique edges exist only in the
right portion of the right most circle in a band, fact that
reduces a lot the edges search. The strip computation
time is O(logn) time what implies that the polar dia-

Figure 3: Pointx belongs toA andB polar regions.

gram of a set ofn circles in the plane can be computed
in Θ(nlogn) time ([Gri99b]).

3. Visibility information
Visibility problems are some of the most important
topics in Computational Geometry. One of these prob-
lems consists on finding the maximum visibility angle
in an orthogonal direction that is easily computed in
linear time by performing angular sweeps using clock-
wise and counter-clockwise criteria (observe Figure
3). However when this calculation is repetitive, it should
be desirable to avoid all these exhaustive searches in
order to obtain improved computation times. In fact,
polar diagrams are known to be able to avoid these an-
gular sweeps by locating a point into a polar region.
It is easy to see that a positive angular scanning can
be avoided in order to find objectA, because pointx
lies whithin A polar region. In addition, it suffices to
change the polar diagram criterion of construction to
compute a new plane tessellation with different angle
characteristics. In the example, it is possible to find
objectB using the negative polar angle criterion.

In Figure 3 it has been superimposed the two East po-
lar diagrams according to the positive and negative an-
gle criteria. The visibility problem solution is given by
a simple result:

• when a point lies whithin regions associated to
different objects, it always implies that there is
an open visibility angle in the chosen polar dia-
gram direction.

• when a point lies whithin regions belonging to
the same object, the visibility angle is null.

Thus, as pointx lies whithin polar regions belonging
to objectsA andB, it is known that there is an open
visibility angle to the right. Nevertheless, pointp only
belongs to polar regions of the objectA, what implies
that the visibility angle is null. Anyway, this informa-
tion can be enormously important because we do know



Figure 4: Orthogonal vector decomposition.

Figure 5: Example of trajectory.

the only object obstructing a trajectory in the specified
direction.

The question now is whether polar diagrams are able
to provide information about non-orthogonal directions.
In real problems, a mobile object uses to move accord-
ing to natural trajectories, what implies a generalized
visibility problem resolution. In Figure 4 it is repre-
sented a

−→
od vector showing a possible trajectory from

a start pointo towards a goal positiond. The decom-
position of this vector gives two orthogonal vectors in
East and South directions. As we study next, there is
visibility information enough using these pairs of po-
lar diagrams about any southeasterly direction.

4. COLLISION DETECTION
Visibility problems resolution can be considered the
key to solve some other classical problems in Com-
puter Graphics. Once we are able to check for the
presence of obstacles using the visibility information,
we can avoid any intersection with them as Motion or
Path Planning techniques do, or just analysing the col-
lision response if the contact is produced. In Collision
Detection, polar diagrams are going to be able to rec-
ognize obstacle-free regions. This capability becomes
useful to anticipate the object where the collision is
going to take place with. Polar diagrams can help in
the pruning phase, providing exactly the pair of object
that are going to come into contact.

We consider a2D scene consisting of a set ofn cir-
cular objects as static obstacles,C = {c0,c2 . . . ,cn−1},
where the mobile objectO is considered a circular ob-
ject as well. Circles have been chosen as dynamic

Figure 6: East polar diagrams.

Figure 7: South polar diagrams.

and static objects due to the simplicity of the colli-
sion response. Furthermore in3D scenes, complex ob-
jects are replaced with boxes or spheres in a pruning
phase. The goal is always to speed up this previous
phase of collision detection, therefore many simplifi-
cation methods consist in doing projections to a2D
scene where we finally find circles and polygonal ob-
jects [Ben79a].

We observe now Figure 5, where an example of col-
lided trajectory is illustrated. We suppose that the mo-
bile objectO is moving in a2D scene inside a bound-
ing box whereO can rebound. All these suppositions
are not crucial for the pruning strategy proposed in this
work. The straight lines in the figure ends in circular
obstacles or in the boundary of the scene, representing
the trajectory vectors. Each of these lines symbolizes a
visibility problem that is solved using polar diagrams.

Figures 6 and 7 illustrate the polar diagrams in East
and South directions for this example. Once polar di-
agrams are calculated in optimal timeO(nlogn), the
start pointO is located into the East or the South pairs
of diagrams in optimal logarithmic time. Any of them
can be used, the election depends on a heuristic crite-
rion.

The first solution is going to be given by using the
East pairs of polar diagrams, although the same result



Figure 8: North polar diagrams.

is obtained with the South ones. PointO is located
into C1 polar regions in optimal time (see Figure 6).
The described method proposed in Section 3 for Visi-
bility problems resolution, shows that whether pointO
lies whithin polar regions of the same object, it implies
that objectC1 is the first obstacle found if we move to-
wards the East. As a consequence, it is known that the
rectangle formed by the mobile object, the circleC1

and the boundary line wherex1 lies, is obstacle-free.
Consequently, pointx1 is known to be reached with no
collision found.

One strength of polar diagrams is that polar edges can
maintain information about adjacent regions with no
additional computation time. Thus, new location op-
erations are not necessary to be processed when the
mobile point reaches a polar region boundary. Every
time the trajectory vector crosses a frontier, one of the
two polar regions changes, providing the mobile object
with new visibility information. The process iterates
from region to region until an obstacle or the bound-
ing box is reached. In the example, pointO belongs to
C1 andC2 polar regions after crossing pointx1, what
implies that no object can be found into the horizontal
[x1,x2] horizontal band.

The following portion of trajectory goes fromx3 to-
wardsx4, beingC2 the only obstacle that could block
the objectO, however it is easily discarded because
of the distance between them. In the new piece of
trajectory, obstacleC4 is not reached until pointx4 is
crossed. Once there, it is known thatO lies whithin
polar regions ofC4, and according to how close they
are, an intersection is known to be occurred.

The trajectory described above has been calculated us-
ing only the pair of East polar diagrams. The same re-
sult is obtained using the South pairs as it is illustrated
in Figure 7. The start position where objectO lies is a
special case, differing of any other studied at the mo-
ment because it belongs to only one polar region. This
circumstance automatically involves that objectO is
outside the minimum bounding box of the set of ob-

stacles. Any movement towards pointy1 or any other
point on this boundary line, is collision free. The rest
of trajectory portions are obtained in a similar way to
those using the East pairs of polar diagrams. In fact,
no other possible circumstances can be found, mak-
ing this method to gain in simplicity. The efficiency of
this approach depends on the number of polar regions
crossed in every straight trajectory. Consequently, the
heuristic method to decide whether the horizontal or
vertical polar diagrams is more efficient, can become
crucial.

The location of an object into a region needs a logarith-
mic time, however when successive trajectory vectors
have the same orthogonal component, new locations
can be avoided (see Figure 8). This helps to avoid lo-
cation operations and increase the collision detection
method.
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