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ABSTRACT
The purpose of this paper is to in detail describe and analyse a Fourier based handcrafted descriptor for word
recognition. Especially, it is discussed how the Variability in the results can be analysed and visualised. This
efficiency of the descriptor is evaluated for the use with embedded prototype subspace classifiers for handwritten
word recognition. Nonetheless, it can be used with any classifier for any purpose. An hierarchical composition of
discrete semicircles in the Fourier-space is proposed and it will will be show how this compares to Gabor filters,
which can be used to extract edges in an image. In comparison to Histogram of Oriented Gradients, the proposed
feature descriptor performs better in this scenario. Compression using PCA turns out to be able to increase both
the F1-score as well as decreasing the Variability.
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1 INTRODUCTION

In recent times, Embedded Prototype Subspace Clas-
sification (EPSC) [HV21, HLV19, HL20, HV21] has
proven to be able to classify datasets of various kinds,
containing everything from single digits, characters
to whole words, and even objects. Datasets used
have been the MNIST dataset of handwritten digits
[LCB10], E-MNIST containing letters [CATvS17],
the Kuzushiji-MNIST dataset containing Japanese
handwritten characters [CBK∗18], the Fashion MNIST
(F-MNIST) [XRV17] containing small images of
clothes and accessories and a recently published
dataset [HV21] based on the Esposalles dataset
[RFS∗13], where 30 different words were extracted to
create an imbalanced dataset with a total of 16354 word
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images. This latter one will be used for the subsequent
analysis in this paper.

The main contributions of this paper are as fol-
lows. First of all the Fourier based handcrafted
feature descriptor (previously called mFFT) used
in [HLV19, HL20, HV21] will for the first time be
described and analysed in detail. Furthermore, an
hierarchical composition of discrete semicircles in the
Fourier-space is proposed and it will be shown how this
compares to Gabor filters, which can be used to extract
edges of different orientations and sizes in an image
[MNR92]. This more elaborate feature descriptor will
subsequently be called: Magnitude of Semicircle Tiles
in Fourier-space, or MoSTiF for short.

Moreover, it will be shown how the EPSC can be op-
timised to use the proposed feature descriptor for fast
matching. And last but not least, it will be shown that
the when performing bootstrapping on a dataset, vary-
ing the size of the split between learning and validation
partitions, the standard deviation (SD) of F1 score can
be a useful for understanding the behaviour of the clas-
sifier. The word Variability is often used as a synonym
to SD, but here it will subsequently be used to denote
the SD of the F1 score in particular.
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2 BACKGROUND
The main advantage of EPSC compared to many deep
learning based methods [Sha18] for handwritten text
recognition [KDJ18, DKMJ18, SF16] is that EPSC is
shallow to its nature, with no hidden layers, and there-
fore does not require powerful GPU resources in the
training process. In general, EPSC learns from the em-
bedding of feature vectors, using dimensionality reduc-
tion techniques like t-SNE, UMAP or SOM [HV21]
and then creates so-called subspaces from each clus-
ter [KLR∗77], which are a set of neurons specialised
on identifying the class variation captured in that clus-
ter. Obviously, EPSC does not always outperform the
state-of-the-art deep learning approaches when it comes
to accuracy. However, both learning and inference will
generally be much faster due to its simplicity and com-
pactness. Moreover, both the learning and classifica-
tion processes are inherently easy to interpret [Kri19,
CPC19], explain [ADRS∗19, GSC∗19, CPC19], and vi-
sualise.

The EPSC uses handcrafted features as input, while
deep learning approaches such as Convolutional Neu-
ral Networks (CNN) have been efficiently used to ex-
tract learned features from images [SSTF∗15, ZK15].
One drawback with learned features is the time con-
suming learning process. Since it has been noticed
that CNN’s produce Gabor-like features some efforts
have been done to replace the CNN with Gabor filters
[LCZ∗18, JJL07]. It will be shown that this idea can be
utilised by creating a hierarchical composition of dis-
crete semicircles in the Fourier-space.

Several handcrafted features have been proposed in
the literature, and some popular methods include
Scale Invariant Feature Transform (SIFT) [Low04],
Speeded Up Robust Features (SURF) [BETVG08]
and Histograms of Oriented Gradients (HOG) [DT05],
where some have been used in recognition systems
[GDDM14]. Fourier based detectors can be constructed
by taking the magnitude of the lowest frequency el-
ements of signals [HV18, HSSK18]. Matuszewski
et al. compute the magnitude from a few elements
close the the centre of the shifted Fourier transform
[MHWS17] while Buchholz and Jug [BJ21], create
what they call a Fourier Domain Encoding (FDE) by
computing normalised amplitude and phase of half the
concentric Fourier rings. Herein, a mix of these two
methods is proposed, by computing the magnitude of
neighbouring Fourier semicircles. This is basically
what was used previously for mFFT in [HLV19, HV21]
together with HOG. However, here is proposed the
extension of a hierarchy of image partitions making
the feature vector more effective, which can be used
without HOG. Since HOG has proven to be both simple
and effective, the proposed descriptor will be compared
to HOG as a reference.

Figure 1: The Gabor filter banks in Fourier-space. The
symmetric Gabor filter bank is distributed in four orien-
tations and three frequency bands in this example.

3 THE MAGNITUDE OF SEMICIRCLE
TILES IN FOURIER-SPACE

In this section the Magnitude of Semicircle Tiles in
Fourier-space (MoSTiF) feature descriptor is intro-
duced. The idea comes from the fact that CNN’s create
something similar to what Gabor filters does, which
can be used to detect lines in different directions and
frequencies. These are then combined in subsequent
levels to more complicated features. In the EPSC this
is done using the subspaces. Subspace classification is
done by computing the norm of the projected feature
vector to be classified into each subspace. The sub-
space of a certain class yielding the largest norm will
tell what class the feature vector most likely belongs
to. Subspace classification will be explained more in
detail later.
As shown in Figure 1, a Gabor filter bank can be created
by using Gaussians in a symmetric fashion. Each pair-
wise filter (placed diametrically with respect to the cen-
tre) corresponds to an orientation of the features. The
further away from the centre the pairs are placed, the
higher the frequency. Hence, only the innermost filters
are of interest since they detect shape, while higher fre-
quencies corresponds to very fine details or noise. Since
subspaces are used to determine the more complicated
features, elements are simply picked in a space filling
[BHB16] semicircle and the magnitude of the complex
Fourier value of the Discrete Fourier Transform (DFT)
is computed as:

|F [ f (n)]|=
√

ℜ(F [ f (n)])2 +ℑ(F [ f (n)])2. (1)

where f (n) is the image f at point n.
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Figure 2: The different space filling semi-circles are
shown in different colours.

Remember that the elements are diametrically dis-
tributed and therefore only half of the space filling
circle is needed to construct a feature vector. Hence, a
semicircle can be regarded as sampling the filter banks
for a thin band of frequencies in all possible directions.
Figure 2 shows the possible space filling semi-circles
for a 24×24 image patch. Note that the central pixel is
not used since it corresponds to the DC content of the
image, i.e. the overall brightness.
Computing one set of semi-circles on the whole im-
age would not be efficient enough. Therefore the semi-
circles are also computed on different partitionings of
the image in a hierarchical manner and then combined
into a longer feature vector. Figure 3 shows three differ-
ent combinations of partitions. The number above each
sub-partition shows the number of semicircles used.
The number to the right shows the total feature vector
length.
By choosing the size 120×120 the image width and/or
height can be evenly divided by 2,3,4,5 and 6. This
gives 36 different possible block partitions of the in-
put image. Each semicircle is concatenated in order to
construct each part of the feature vector, which is sub-
sequently normalised for each block in the partition.
When all blocks and partitions are computed the final
feature vector is also normalised.

3.1 Subspace Classification
Since it was first proposed by Watanabe et al. [WP73]
in 1967, Subspaces have been used for classification in
pattern recognition. This approach was later further de-
veloped by Kohonen and others [WLK∗67, KLR∗77,
KO76, KRMV76, OK88]. In general, subspace clas-
sification can be regarded as a two layer neural net-
work [HLV19, OK88, Laa07], where the weights are

not learned using time consuming backpropagation. In-
stead weights are mathematically defined through Prin-
cipal Component Analysis (PCA) [Laa07]. (Note that
PCANet [CWW15] also set weights using PCA. How-
ever, this is done for features in a sliding window man-
ner and is therefore fundamentally different from Sub-
space classification.) Last but not least, one important
advantage is that the whole learning process can eas-
ily be visualised, since it is based on visualisation tech-
niques (e.g. t-SNE), which makes it easy to both un-
derstand, interpret and explain, as compared to most of
the state-of-the-art deep learning approaches, which are
often regarded as black boxes.

Every image to be classified is represented by
a feature vector x with m real-valued elements
x j = {x1,z2...xm},∈ R, such that the operations take
place in a m-dimensional vector space Rm. Any set
of n linearly independent basis vectors {u1,u2, ...un},
where ui = {w1, j,w2, j...wm, j},wi, j ∈ R, which can
be combined into an m× n matrix U ∈ Rm×n, span a
subspace LU

LU = {x|x =
n

∑
i=1

ρiui,ρi ∈ R} (2)

where,

ρi = xT ui =
m

∑
j=1

x jwi, j (3)

Classification of a feature vector can be performed by
projecting x onto each and every subspace LUk . The
vector x̂ will in this way be a reconstruction of x, using
n vectors in the subspace through

x̂ =
n

∑
i=1

(xT ui)ui (4)

=
n

∑
i=1

ρiui (5)

=UT UxT (6)

By normalising all the vectors in U, the norm of the
projected vector can be simplified as

||x̂||2 =(UxT ) · (UxT ) (7)

=(UxT )2 (8)

=
n

∑
i=1

ρi
2 (9)

Therefore, the feature vector x, which is most similar to
the feature vectors that were used to construct the sub-
space in question LUk , will therefore have the largest
norm ||x̂||2.

3.2 Parameters to learn
As mentioned earlier, subspaces do not require learn-
ing through backpropagation, since the learning itself is
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Figure 3: Three different feature vectors and their different partitionings are shown, one per row. The number of
semicircles are denoted above each partition and the feature length is reported to the right.

done by the embedding obtained from some dimension-
ality reduction method such as t-SNE [MH08], UMAP
[MH18] or SOM [Koh82]. Moreover, all the weights in
the resulting neural network are set mathematically by
PCA.

Nevertheless, bootstrapping can be used to evaluate and
set parameters that are required for the overall perfor-
mance. Such parameters are the feature detector itself,
i.e. how many semicircles are to be used for different
partitions. So far we have not devised a technique for
doing that. Instead a Monte Carlo sampling approach
was used to find the best parameters. The draw back is
of course that this can be time consuming. Nonetheless,
we think that the proposed partitionings shown in Fig-
ure 3 can be used for any dataset of handwritten words.

The subspace projection itself is done using only 6 di-
mensions, and it has been noted that this can be varied
to improve performance when the size of the dataset
to learn from is changed. Moreover, the effectiveness
of PCA compression of the feature vector can also be
evaluated as will be shown later herein.

3.3 Improved Embedding and Clustering
The idea of EPSC [HV21, HLV19] is to use some em-
bedding technique to obtain prototypes for the con-
struction of each subspace. In this work t-SNE [MH08],
was used to reduce the number of dimensions of high
dimensional data down to 2 dimensions. In this pro-
cess, clusters are formed since t-SNE strives to move
similar features (represented by their projected points)
closer to each other and dissimilar points are kept fur-
ther away from each other.

Previously, Hast et al. [HLV19] used kernel density es-
timation (KDE) [CHTT96] and watershed transform on
the inverse image to find clusters in a two-dimensional
image space, which is basically the same as performing

Figure 4: The placement of each word in the 90× 160
rectangular bounding box. The background is removed
but the word is not binarised. And the red rectangle
shows how the word is cut out and then resampled to
120×120.

the Mean-Shift [CM02, FH75]. However, it was shown
that other algorithms that requires specifying the ex-
act number of clusters, such as K-means [HW79] could
also be used [HV21]. Moreover, it was shown that in-
stead of using a certain bandwidth for clustering, bet-
ter performance was achieved by computing k clusters,
striving for these clusters to contain a certain predefined
number of features n f . Herein it was chosen to use a
fixed k instead. In fact k = 2 was chosen as it gave
the best overall classification for this dataset (these ini-
tial experiments are not reported herein, since there are
reasons to believe that k depends on the data at hand
and possibly also the amount of data). Furthermore,
the process was simplified by replacing the inverse wa-
tershed with a gradient ascend method working on each
data point instead of each pixel in the KDE image. Both
these changes speeded up the learning process notice-
ably.

Another improvement, which gave an overall higher F1
score, is shown in Figure 4, where each word image
is cut out (red bounding box) and extracted from the
image and resampled to the size 120×120..
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4 EVALUATION AND METHOD
Opitz and Burst [OB21] show that the best choice to
compute the F1 scores for imbalanced datasets, is the
arithmetic mean over harmonic means. I.e. F1 scores
are computed for each class and then averaged via arith-
metic mean, such that

F=
1
n

n

∑
i=1

F1 =
1
n

n

∑
i=1

2PiRi

Pi +Ri
(10)

where Pi and Ri are precision and recall respectively for
each class i.

It was chosen to compute the F1 scores using the Boot-
strapping method [Koh95, KW96], with stratification
because the data is imbalanced. This means that the
bootstrap sample is taken from the original set by using
sampling with replacement, and that both the learning,
test and validation sets are forced, as much as possi-
ble, to contain a certain percentage of each class. The
validation set was kept the same throughout the experi-
ments, using 50% of the available data. The remaining
50% was split into a set for training and a set for test-
ing. The experiments where conducted 200 times for
each data split, varying the permutations randomly, in
order to be able to analyse the impact of what data are
in each split, i.e the training and test set. By varying the
percentage used for training, the change in F1 scores
could be analysed and parameters could be learned and
set accordingly, as previously discussed. Moreover the
SD of the F1 score for each run was computed and is be-
ing called Variability in the subsequent presentation of
the results. In any case, varying the split gives a chance
to analyse the impact on the overall performance of the
feature vectors in combination with EPSC.

5 RESULTS
Figure 5 shows the F1 score 5a and Variability 5b, re-
spectively for the training set. It can be noted that HOG
performs much better when the training set becomes
larger. The U-shape of the Variability can be explained
by the fact that when few data is used for training the
classification will heavily depend on how well those
data represents the test set as a whole. Similarly, when
the test set is small, the classification will heavily de-
pend on whether if it is difficult or not. In any case, the
MoSTiF outperforms HOG and generally have lesser
Variability.

Finally the Figure 6 and shows the F1-score 6a and
Variability 6b, respectively for the validation set. This
time MoSTiF generally outperforms HOG and the U-
shape is not visible in the Variability graph since the
validation set is kept fixed. Using all learning data
gives a validation F1 score of 0.995 and a Variability
of 9.116 ·10−4.

(a) F1-score

(b) Variability

Figure 5: F1-score and Variability (y-axis) for the test
set, for 200 random runs by varying the split of data
into a training and test set with varying sizes.

5.1 PCA Compression
In this section we analyse how to make faster train-
ing and classification by training on a fixed number of
principal components obtained from the features in the
training dataset, instead of using the full length of the
training features [HM18]. This lossy compression is
achieved by applying PCA on the matrix of features
in order to reduce the dimensionality into a smaller
number of principal components. The first Principal
Component will capture the maximum variance in the
features. The second will find variance that is incre-
mental to the first, while still being orthogonal to the
first. This process is repeated to find all the principal
components. In fact, PCA can only produce as many
principal components as there are features in the train-
ing dataset. Since each successive principal component
captures the variance that is left after its preceding com-
ponent, the components will be less discriminative and
at some point they can be discarded without lowering
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(a) F1-score

(b) Variability

Figure 6: F1-score and Variability for the validation set,
for 200 random runs by varying the split of data into a
training and test set with varying sizes.

the F1-score. In fact it might even make it higher since
this procedure will denoise the data, by capturing the
main signal in the data and hereby omitting the noise.

In practice, a number of the first components from the
matrix obtained by PCA are kept and the rest are dis-
carded. This matrix is subsequently multiplied to all
data (training, validation and test) in order to reduce the
dimensionality. This can actually be seen as a neural net
applied to the feature vectors, which extracts the most
important features in the data, since matrix multiplica-
tion is exactly what neurons do. The resulting features
are then normalised before being used for training and
inference.

Figure 7 shows both the F1-score 7a and the Variability
7b for different amounts of compression for 200 ran-
dom 50-50 splits of the data, i.e. while keeping the
same validation set as before, all the remaining data is
used for the learning. Interestingly all MoSTiF features
perform slightly better when compressed down to 50%

(a) F1-score (y-axis) for different amounts of compression (x-axis).

(b) variability (y-axis) for different amounts of compression (x-axis).

Figure 7: F1-score and Variability for different amounts
of compression for 200 random 50-50 splits of the data.

of its original size than using the full length. The MoS-
TiF 1816 even performs about just as well (99.99%) for
only 20% of its original length, i.e. 334 elements long,
and the Variability is even becoming lower.

6 DISCUSSION
Figure 8 shows the confusion matrix in 8a, which is not
so informative when the accuracy is rather high over-
all. Here the learning set is varied (50% of all avail-
able data) while the test set is kept fixed (the remaining
50%). A better view of where the classification do go
wrong can be achieved by showing the errors instead,
which can be done by computing a new diagonal, tak-
ing 1 minus the old diagonal, as shown in 8b.

Another way to show where the classification goes
wrong is to look at the Variability. This can be done by
computing the SD of the F1-score from the confusion
matrices for all runs as shown in 8c. Note, that if there
are outliers that always are misclassified, then they will
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(a) Confusion matrix for HOG with 50% learning data. Mean over 200
runs.

(b) Error matrix for HOG with 50% learning data. Mean over 200 runs.

(c) Variability matrix for HOG with 50% learning data. Standard devi-
ation over 200 runs.

Figure 8: Confusion, Error and Variability matrices.
When confusion is low, both the Error and variabil-
ity matrices tells more about when classifications goes
wrong, as the fluctuations become apparent.

(a) Variability matrix for MoSTiF 1512 with 50% learning data. Stan-
dard deviation over 200 runs.

(b) Variability matrix for MoSTiF 1670 with 50% learning data. Stan-
dard deviation over 200 runs.

(c) Variability matrix for MoSTiF 1816 with 50% learning data. Stan-
dard deviation over 200 runs.

Figure 9: Comparison of Variability Matrices for the
three different MoSTiF features. Words with high vari-
ability are more dependent on the set for learning.
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appear in the error matrix but not in the variability ma-
trix, since they do not vary. Hence, the Variability ma-
trix will only show which classes that depends on the
actual set for learning, and therefore it will point out
which classes that would need more learning data to
become more stable.

Figure 9 shows the variability matrices for the three dif-
ferent MoSTiF feature vectors proposed. While com-
paring the three, one can note that some words are vary-
ing regardless of feature vector being used, which in-
dicates that more learning data is necessary for those
words. Some vary for only one of the vectors at a time,
which indicates that an ensamble of classifiers, using
different feature vectors, could be used to more cor-
rectly classify those words.

7 CONCLUSION
The MoSTiF feature descriptor turns out to be a better
choice than HOG for EPSC and word recognition. Of
the three different partitionings examined, the MoSTIF
1816 generally gives better F1-score, lower Variability
and performs better than the others when being com-
pressed. However, since only one dataset was tested,
it is not said that the results generalise to any kind of
data. Nevertheless, it works very well for the task of
word recognition together with EPSC. Furthermore, by
using only about 2 subspaces per class, performing only
6 projections per subspace, and being able to compress
the features down to only 20% of its original size, the
computational cost for inference is indeed very low.
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