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ABSTRACT
Airborne light detection and ranging (LIDAR)- based
bathymetry is a highly specialized field within the widely
known and used geoscientific surveying technology based
on green spectrum lasers. Green light can penetrate
shallow water bodies such that river and lake beds can
be surveyed. The result of such observations are point
clouds, from which geometries are extracted, such as
digital elevation maps for lake, river or sea floors. The
quality of those maps is crucially dependent on the
amount of reliable information that can be extracted
from the noisy LIDAR signals. The primary LIDAR
data consists of amplitude response curves for each
emitted laser signal. A direct visualization of these
“raw”, pristine data is crucial to verify, assess and op-
timize subsequent data processing and reduction meth-
ods. In this article we present a method for scientific vi-
sualization of these amplitude response curves en mass,
i.e. for millions and tens of millions thereof simultane-
ously. As part of this direct visualization also prelimi-
nary analysis and data reduction operations can be per-
formed interactively. This primary and direct inspec-
tion allows studying and evaluating the full potential of
acquired data sets such that data processing methods
can be fine-tuned to squeeze out all needed informa-
tion of interest. Ideally such improved data processing
avoids subsequent surveying when output from already
measured data sets is improved, resulting in reduced
economical and environmental costs.
Keywords: airborne LIDAR, visual analysis, data
processing, geoscience, bathymetry, scientific visual-
ization, big data, GPU shaders

1 INTRODUCTION
The rendering of large point clouds has been a topic
of research for a long time [14] and has even been
used as an alternative faster than traditional rendering
methods based on triangular meshes. Once the data
sets become larger than RAM, out-of-core methods [8]

become mandatory and eventually a hierarchical rep-
resentation is needed. High performance in rendering
is tightly related to efficient usage of GPUs. With the
advancement and availability of WebGL even browser-
based rendering of arbitrarily large point clouds have
become possible [10]. However, rendering performance
drops significantly once the amount of data to be visual-
ized per frame no longer fits onto GPU RAM. For such
situations a purely CPU-based solution may scale bet-
ter, as presented by [13] using balanced P-k-d Trees.
Such a sorting method for points without memory over-
head is similar to the space-filling curves [9] used in
smoothed particle hydrodynamics for extremely large
data [12].

While point clouds are often considered as the pri-
mary data source to derive geometries such as triangu-
late meshes off them, rather little attention is given to
the origin of the point clouds itself. In many cases those
point clouds are based on LIDAR data acquisitions and
the provided point clouds are taken as-is. However, LI-
DAR technology does not produce point clouds per se,
but the instruments measure a time series of amplitude
signals from the reflected laser source. The point cloud
used for further processing is derived from this primary
data, see Fig. 1 and Fig. 2.

These sequences of amplitude modulations constitute
the actual “raw” data from the LIDAR sensor, out of
which the final point cloud has to be derived. This is
usually done by identifying maxima in the amplitude
modulation and outputting their geometrical location
along the laser shot direction. As these received sig-
nal curves may very well contain multiple maxima, this
identification will produce many geometrical points per
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laser shot. Finding only valid maxima within the noisy
signal is a matter of signal processing artwork such that
the quality of the results depends on the respective al-
gorithm. While extensive work has been undertaken
in this area [11], special cases still occur where an au-
tomatized algorithm may miss some relevant informa-
tion. This is particularly of interest in cases of com-
plex geometries such as vegetation, or for underwater
LIDAR penetration, Fig. 1. By inspection of the fi-
nal point cloud after data processing, it is impossible
to find such missed features in the raw data, they only
give hints of regions where more information would be
desirable. Thus, a comprehensive visualization method
that allows to investigate, study and explore the entire
raw LIDAR data is a must. Only then it is possible to
verify and optimize point extraction algorithms, such
as to fine tune them and to squeeze out the last little
bit of valid information from the already available and
recorded data, e.g. in order to complement the repre-
sentation of relevant object geometries in the resulting
point cloud.

This primary data, the amplitude time series per laser
shot, is larger by two orders of magnitude than the point
cloud derived from them. Due to this huge amount of
data amplitude signals have so far only been visualized
individually. Here we present an approach for the mas-
sive visualization of all amplitude time series signals
that are acquired from a LIDAR observation, a mas-
sive amount of information up to 100× larger than just
point clouds. Furthermore, we emphasize the practi-
cal implications of improved point extraction based on
LIDAR amplitude signal analysis especially for bathy-
metric (underwater) LIDAR data acquisition.

2 DATA STRUCTURES
Our data model of choice is the Fiber Bundle HDF5
“F5” model , which casts all data into a hierarchy of
five (plus two optional) levels [3]. The premise is that
nature is best described by a differentiable manifold [4].
This data model is very suitable for I/O and is directly
compatible with GPU data structures such as vertex
and index buffer objects. In particular, it maps eas-
ily onto the underlying Hierarchical Data Format V5
(HDF5) as it allows for random data access and par-
tial file I/O. These features are usually not available via
proprietary file formats for the raw data delivered by
the LIDAR hardware manufacturers. Reading those na-
tive files may last several days, while after conversion
into the F5 layout and storing as HDF5, reading them
is reduced to mere seconds or milliseconds. The initial
step is thus to convert the data from the respective pro-
prietary, hardware-specific file formats into the open,
application-independent HDF5 file format [5].

2.1 Review: The HDF5 File Format
Common data formats used in geoscience (e.g. LAS1,
Shapefile2) are often restricted to certain data fields and
data types. The HDF5 file format provides more flex-
ibility with the data layout. It is hierarchically struc-
tured similar to a file system, where folders are equiv-
alent to HDF5 Groups and files equivalent to HDF5
Datasets. HDF5 files are not limited in size and num-
ber of objects. Datasets provided additional structures
such as dimension and type information. Each of them
may be compressed independently with various dis-
tinctly tune-able compression methods. The file format
allows to construct compound data types like higher
dimensional geometric vectors or points from simple,
hardware-independent basic types and is therefore self-
describing. Furthermore it offers important features
such as partial data loading and random access, which
is crucial for indexing operations relating data struc-
tures to each other even beyond files. Finally it is a
free and open standard providing a high-level API with
interfaces for C, C++, Java, Python and Fortran. In its
most recent version it also offers remote data access via
web services, thus enabling inspection of big data via
the internet without modifying the main application.

2.2 Review: The F5 Data Model
The F5 Data Model bundles geometric entities, their
topological properties and attributes into a combined,
complex object that decomposes into the following lay-
ers:

1. Slice Combines all data related to a certain moment
in time, or - in case of a time series - until the next
sampling moment in time.

2. Grid Combines all data related to a certain geomet-
ric entity.

3. Skeleton Combines all data of a Grid that are re-
lated to a specific topological property of this Grid,
for instance its vertices, edges, triangles, agglomer-
ations thereof or hierarchical instances. A Skeleton
defines an "index space" where each index refers to
one such element of a topological space.

4. Representation Combines all data of a Skeleton
that are relative to either other Skeletons or to charts
that define coordinate systems. Basically, a Repre-
sentation only makes sense in relation to the object
that it refers to, for instance the Representation of
triangles relative to vertices, or the Representation
of vertices relative to Cartesian coordinates.

1 https://www.loc.gov/preservation/digital/
formats/fdd/fdd000418.shtml

2 https://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

178

Vol.28, No.1-2, 2020

 https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
 https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
 https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
 https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf


5. Field Combines all numerical values that have a spe-
cific semantic meaning, for instance physical fields
such as "temperature" or "velocity".

6. (Fragment) An optional 6th level to optimize per-
formance for big data by allowing to split a contigu-
ous data set into many smaller fragments.

7. (Compound) An optional 7th level to allow storing
compound data types as distinct arrays instead of in-
terleaved elements, i.e. offering the choice of us-
ing a layout of the kind XXXYYYZZZ instead of
XYZXYZXYZ.

This data model is capable to handle geometrical ob-
jects such as triangular meshes, point clouds, curvilin-
ear grids, uniformly rasterized images or time series
within one universal framework. It also allows to spec-
ify relationships between such objects and hierarchi-
cal multi-resolution instances. The complexity of the
model grows with the complexity of the data, simple
cases are modeled with just the minimally required lay-
ers filled out.

2.3 Topology of LIDAR Signals
With a LIDAR equipment on board an airplane or drone
(UAV), a laser source emits pulsed signals at a certain
frequency and a receiver measures the intensity of the
reflected light, Fig. 1. Both events are recorded with
a time stamp at sub-nanosecond time resolution which
allows geometrical reconstruction of the observation
events (in one nanosecond light travels ca. 30cm). If

Figure 1: Data acquisition from airborne LIDAR mapping.
The laser equipment emits signals at a certain frequency and
measures the time when the reflected signal arrives at the air-
plane again.

the laser beam hits a mirror orthogonal to its view di-
rection, then the received signal is an exact copy of the

emitted pulse, yet subject to distortions happening in
the detector itself. The location of such a mirror target
can then be reconstructed from the time stamps within
the precision of the clock. Eventually this location is as-
signed three-dimensional coordinates, forming one ele-
ment of a point cloud that describes the entire observed
geometry from the particular flight, as in Fig. 1.

Since actual geometries deviate significantly from an
idealized perfect mirror, the actually received signal
will be a superposition of many reflections that are de-
tected at different times according to their reflections at
different locations in space, Fig. 1 and Fig. 2.
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Figure 2: Received amplitude modulation over time for sub-
sequent laser shots.

Within the context of the fiber bundle data model,
data are identified via their base and fiber space. For
LIDAR point clouds the base space is the geometry, the
fiber space consists of all the attributes on them (such
as color, intensity, time stamp, ...). Since each point in
the final point cloud has been extracted from a specific
amplitude modulation those time series can be assigned
to each point as additional data, thereby expanding the
fiber space without changing the base space. This has
the advantage that the raw data can be investigated im-
mediately for each identified point. These points have
to reside at a maximum of the signal curve. However,
if this point has been extracted from a local maximum,
then other points will exist for the same signal curve,
requiring duplication of the same curve onto all those
points extracted from it.

Alternatively the base space can be considered as
constructed from the sequence of “laser shots”. Each
laser shot has been emitted at a certain time, forming a
one-dimensional sequence with monotonously increas-
ing timestamp. Using the flight path’s trajectory in-
formation geometrical 3D coordinates can also be as-
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signed to each individual time stamp. Here, the am-
plitude modulations are fibers over the base space that
is constituted by the flight trajectory. In this approach
there is no need for data duplication, but the relation-
ship between extracted geometries and the original raw
data is missed. While superior with respect to data ef-
ficiency, this approach is thus less suitable to study the
computational performance of the algorithm which is
the ultimate objective of the visualization approach.

2.4 Massive Variable-Length Multiplicity
Multiplicity is a property of a field that tells its number
of components. For instance, a scalar field has mul-
tiplicity 1, a coordinate field and a velocity field both
have multiplicity 3, even though they have algebraically
distinct properties. Within the classical fiber bundle
data model as illustrated in Fig. 3, the multiplicity of a
field must be constant for each point. This invariance of
the multiplicity is essential for performance on I/O, par-
allelization and GPU processing as it directly fits with
the requirements of vertex buffer objects. A field on a
Grid’s vertex Skeleton is just a vertex array in OpenGL.
While this concept applies well to vertices and vertex-
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Figure 3: Fiber Bundle data layout for amplitude time series
signals on point clouds: The amplitude signal is modeled as a
2D field given over a 1D base space.

related data as well as to homogeneous topologies such
as triangular meshes, it fails to cover inhomogeneous
cases such as mixed meshes constructed intermittently
from quads, triangles, or arbitrary polygons (only af-
ter explicit triangulation they become homogeneous).
They can be covered by extending the element type by a
variable-length data type per point. Such data structures
are possible both in C++ and in HDF5, but inefficient,
both in terms of I/O and handling on the GPU, so they
should be avoided. Staying at the classical fiber bundle
model as defined above as close as possible guarantees
better performance.

The LIDAR raw signal as received by the instrumen-
tal detector is a time series of the light amplitude over
time which is different for each laser shot (Fig. 2). The
number of sampling points ("bin") for this physically

continuous signal varies from a few dozen to a few hun-
dreds. The sampling interval in time was 0.57 nanosec-
onds for our hardware equipment, which corresponds to
about 8.5cm in space considering the light travel time
during that period, including double traversal time due
to the reflection on the observed point (Fig. 1). Thus,
when taking each single laser shot as the elements of
a topological space within the framework of the fiber
bundle model, then the field of the corresponding am-
plitude signal will have varying multiplicity (Fig. 2).
In order to maintain high performance while not los-
ing any potentially important information each signal
is expanded to the maximally found length. While this
approach blows up the raw data by adding zero values,
it is still preferable over dealing with variable-length
data. When storing data to disk, high-speed compres-
sion methods such as LZ4 are able to reduce disk stor-
age requirements without performance penalties, and
even performance gain [1].

2.5 Data Processing Pipeline
Prior to visualization, the raw data delivered from the
scanner has to be processed. In this case the source
data consists of the flight trajectory, the point cloud and
the amplitude response. To speed up the subsequent
processes all source data is imported to the F5 fiber-
bundle format first. The second step is to transform the
point cloud position from the scanner’s internal coordi-
nate system to a geographic one, in this case UTM coor-
dinates. This also includes the direction vector tracing
a point to the scanner’s position at the time of echo sig-
nal detection. To visualize the amplitude response as
described in the next section 3 a spacial point is needed
to mount the amplitude response onto. One possibil-
ity would be to calculate the coordinate location of the
start of the amplitude response: ~o+ ~d(ca ∗ (tr− te)/2) ,
where~o is the origin of the laser pulse, ~d is the direction
vector, ca is the speed of light in air, te the time of laser
pulse emission, tr the starting time of received signal
record, and division by two because the laser pulse trav-
els back and forth). The advantage is that amplitude re-
sponses can be visualized and processed independently
from the point cloud. Some scanners are storing the
amplitude response apart from the point cloud. In this
case the relation "points belonging to an amplitude re-
sponse" is not available but must be recomputed if it is
relevant for data analysis. This is done by calculating
the instant of time where the laser pulse is reflected by
a detected point ( te +d ∗ 2/ca, where d is the distance
between scanner and point) and search for the ampli-
tude response with an overlapping time interval. This is
a significantly time consuming process for millions of
points. For better performance these correlations and
intermediate values must be precomputed.
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3 VISUALIZATION METHODOLOGY
3.1 Basic Functionality
It is natural to display a time series as a curve such as
in the technical display of Fig. 2. For LIDAR signals,
each amplitude of the time series has a spatial corre-
spondence - namely a point with 3D coordinates - that
allows for assigning the amplitude value to locations
in space along the line of the respective laser shot. A

𝑃 + 𝛼 Ԧ𝑑

𝑃 + (1 − 𝛼) Ԧ𝑑

𝑃 + (1 − 𝛼 Ԧ𝑑) + Ԧ𝑣

𝑃 + 𝛼 Ԧ𝑑 + Ԧ𝑣

𝑃

Ԧ𝑑

Figure 4: “Mounting”
an amplitude signal to a
point P, given the laser
shot direction ~d, at posi-
tional location α ∈ [0,1]
and a billboard view di-
rection vector ~v = ~d ×~c
with ~c the view direction
from the camera.

billboard-like display does the job, where one orienta-
tion if the billboard is determined by the direction of
the laser shot in 3D and the other one by the plane or-
thogonal to the view direction, Fig. 4. The coordinates
of this laser-shot oriented billboard are easily computed
by an OpenGL geometry shader, based on a vertex co-
ordinate P with a vector vertex attribute specifying the
direction ~d, a scalar vertex attribute α (can be omitted
if P refers to always the same position within the ampli-
tude signal) and a uniform variable specifying the view
direction (which is, for instance, available via the mod-
elview matrix), as illustrated in Fig. 4.

Figure 5: Visualization of a time series along the downwards
direction of a laser shot with different color-coding of the am-
plitude value. The single point is located at the amplitude
maximum, which is usually the only source of information
constituting final point clouds.

The geometry shader thus “blows up” a single ver-
tex into a screen-orthogonal quad and provides two-
dimensional texture coordinates for its four corners.
The first component of the texture coordinates corre-
lates to the time index of the amplitude signal, normal-
ized to [0,1] (along ~d in Fig. 4). The second compo-
nent corresponds to the geometrical distance from the

precise line of the laser shot, also normalized to [0,1]
(along ~v in Fig. 4). It is then the duty of the OpenGL
fragment shader to display the values of the time se-
ries based on those texture coordinates, interpolated by
the hardware for each pixel, in a visually pleasing and
insightful way similar to Fig. 2; but an opaque area -
Fig. 5 - is preferable to a mere contour line.

3.2 Base Space Chopping
In order to access the - huge amount - of amplitude
signal data per vertex, all these amplitude data need
to be provided as a texture buffer to the GPU which
extends the capabilities of the commonly used vertex
attributes by orders of magnitude: An amplitude sig-
nal may encompass hundreds of entries, whereas ver-
tex attributes are limited to the types supported by
OpenGL, the largest one being a 4×4 matrix that could
store at most 16 values. This one contiguous buffer3

(OpenGL’s glTextureBuffer(), accompanied by
GLSL’s usamplerBuffer ) needs to be accessed as
a two-dimensional array then, with one index given by
the number of the vertex for which the fragment shader
is called, the second index given by the texture coordi-
nate along the direction of the laser shot.

However, while the size of a buffer is merely lim-
ited by the amount of total RAM available, the size
of a texture buffer constrained to the extent given by
GL_MAX_TEXTURE_BUFFER_SIZE. This maximally
allowed texture buffer size is easily exceeding by the
vast amount of amplitude signal information. To han-
dle this constraint, the base space (Fig. 3) needs to be
chopped into smaller pieces with the texture referenc-
ing a subset of the entire buffer for each such piece via
glTextureBufferRange() with increasing off-
set, as illustrated in Fig. 6. This offset is required to be
an integer multiple of the hardware-dependent value of
GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT4.

Consequently, the base space cannot be chopped at
arbitrary vertex indices, but only at index locations that
are an integral multiple of both the hardware-dependent
texture buffer offset alignment and the multiplicities of
the fiber space. The “minimal chop size” is then de-
termined by the least common multiplier of the align-
ment and the multiplicities. For instance, for a com-
mon alignment of 16, an amplitude signal length of 300
results in a minimal chop length of 1200, whereas a
signal length of 320 results in a minimal chop length
of 320 (which already is an integer multiple of 16).
Of course, minimizing the number of rendering in-
stances is mandatory, thus the largest integral multi-
ple of this minimal chop length that still fits into the

3 https://www.khronos.org/registry/
OpenGL-Refpages/gl4/html/glTexBuffer.xhtml

4 https://www.khronos.org/registry/
OpenGL-Refpages/gl4/html/glTexBufferRange.
xhtml
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GL_MAX_TEXTURE_BUFFER_SIZE will be the one
to be used such that all but the last chop will be of the
same - maximally possible - size for the rendering in-
stances. This is the effectively used chop length as il-
lustrated in Fig. 6.
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Figure 6: Chopping of the base space (per fragment) such
to allow multiple rendering passes to operate on texture sizes
that fit into the GPU hardware limits. The last render pass
receives a partial texture.

The maximal number of chops per rendering instance
is given by the GL_MAX_TEXTURE_BUFFER_SIZE
divided by the minimal chop length, meaning that many
chops can be rendered at once in a single rendering
call. Thus, the number of rendering instances actually
needed for the entire data set is given by this maximal
number of chops divided by the total number of ver-
tices. This will be a fractional number: Its integer part
gives the number of “full-length” passes, the remainder
part gives the last chop’s length. Table 1 gives some ex-
emplary numerical values for a typical data set totaling
more than 2GB of raw, uncompressed data correspond-
ing to a single fragment in the F5 data model.

Vertices . . . . . . . . . . . . . . . . 3 420 772
Amplitude signal length . . 320
Amplitude signal type . . . 16-bit integer
Storage size . . . . . . . . . . . . . 2GB ≈ 2 189 294 080
compressed disk space . . . 200MB ≈ 201 920 475
OpenGL max. texture size 128M = 134217728
OpenGL offset alignment 16
Min. chop length (lcm) . . 320
Max. number of chops . . . 419430 = 134217728 / 320
Total number of instances 8.1 = 3420772/419430

Table 1: Exemplary data for base space chopping us-
ing an NVidia GTX 1650 graphics card for an ampli-
tude signal stored as 16-bit integers on about 3.5 million
points.

3.3 Performance
It is evident that with data sizes of 2GB per fragment the
available memory of smaller graphics cards are quickly
reached even with medium-sized point clouds encom-
passing a few tens of million vertices. As the GPU
drivers are able to trade CPU RAM for performance, the
rendering rate quickly drops by a factor of 20 or more
from 14 frames per second to less than 1 frames per
second (data measured for an NVidia GTX 1650 GPU,
utilized for laptops). Still, this makes rendering huge
data at least possible even on less powerful hardware,
while navigation within singular fragments - ideally the
“most visible” one [2] - remains interactive. A more
powerful graphics card such as a GTX 1080 GPU with
8GB of on-board graphics RAM utilizes 6.3GB for a
larger dataset of 14 Mio points and can maintain ren-
dering rates faster than 15fps throughout all navigation
events.
IO and GPU transfer The main bottlenecks oc-
cur during data transfer at two stages, firstly from the
disk to CPU RAM, secondly from CPU RAM to GPU
RAM. HDF5 offers a wide choice of compression fil-
ters. The high-speed lossless LZ45 filter easily achieves
data reading rates of more than 500MB/s. For mas-
sive data such as the 2GB required per dataset fragment
for amplitude signals, this still results in noticeable 4
seconds. Even though this is a one-time effort only,
such initial I/O operations significantly stall an interac-
tive application and strongly justify asynchronous data
loading in some subthread.

But also the second part of CPU-GPU data transfer
done via OpenGL’s glBufferData() call lasts 1-2
seconds for realistic rates of 1.5GB/s. Such behavior
also results in noticeable “stutter” of a rendering appli-
cation each time a new fragment is loaded. As of now
we have not yet implemented asynchronous GPU data
transfer [6] but such would be a next step for enhanced
user experience.

4 HANDS-ON DATA ANALYSIS
4.1 Visual Enhancement Techniques
The fragment shader provides various opportunities of
enhancements for the most insightful visualization of
LIDAR amplitude series among millions of combined
renderings each of them containing complex informa-
tion on their own. Some of these opportunities are envi-
sioned first in (Fig. 7(a)) for a single LIDAR amplitude
series before pointing out their meaning for the visu-
alization of multiple LIDAR amplitude series as pre-
sented in Fig. 8.

Beyond the mere factual plain data display as in
Fig. 7(a), contours (Fig. 7(b)) are easily added by over-
laying the amplitude signal value of the pixel from the

5 https://lz4.github.io/lz4/
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(a) plain (b)
contours

(c) bins (d)
symmetry

Figure 7: Visualization options for LIDAR amplitude series.

laser shot axis with the color value. Once this tech-
nique is applied to massive data Fig. 8(a), the singular
amplitude signals are exposed with much better con-
trast Fig. 8(b). The interpolation of the signal bins, i.e.
the texel access, is a potential tuning parameter as well
such to change linear interpolation to nearest neighbor
Fig. 7(c) as means to more accurately display the ex-
act data values instead of a smooth visualization. In
some situations displaying the amplitude signal sym-
metrically as in Fig. 7(d) is more appropriate since the
choice to limit the visualization to the “left side” is en-
tirely arbitrary.

(a) Massive Plain Rendering (b) Massive Contour Rendering

Figure 8: Visualization of a series of amplitude signals rep-
resenting terrain surface and vegetation (trees) in the back-
ground using differing shading enhancements as described in
the text. Colorization by amplitude replicates the geometric
shape. 8(a) plain rendering, 8(b) contour rendering.

4.2 Feature Detection
The ultimately outcome of analysing a cloud of am-
plitude signals is the production of a cloud of points
that correspond to physical objects. Such data reduc-
tion functionalities can be built into the fragment shader
to provide immediate, real-time interactive assessment
capabilities to the raw data as shown fully in Fig. 8.
Since the fragment shader has full access to the tex-
ture describing the amplitude at each point, it can also
compute the gradient of the signal. Thus, a color value
can be limited to pixels where the sign changes for the
texel left and right, i.e. indicating a local maximum at
each of the pixels in Fig. 9 (same data as Fig. 8). In
practice, the recorded amplitude series come with noise

Figure 9: Visualization of same series of amplitude signals
as in Fig. 8, but display of pixels restrained to bins containing
a local maxima.

such that displaying any local maxima as shown in
Fig. 9 results in undesirable visual clutter (Fig. 10(a)).
A simple thresholding by user-specified noise level al-
ready improves the situation significantly, as shown in
Fig. 10(c) and Fig. 10(d), where the river bed becomes
distinguishable from the waterbody in the left and right
part of the cross-section. Of course, more complex data

(a) 130 (b) 150

(c) 180 (d) 200

Figure 10: Cross-sectional view of a series of amplitude sig-
nals through a waterbody demonstrating the effect of realtime
noise reduction on bins containing local maxima only, using
increasing threshold values for data cutoff.

analysis and feature extraction methods can be incor-
porated into the fragment shading step, but come at the
cost of reduced rendering speed. Simple but fast analy-
sis parameters may already prove useful for subsequent
data analysis routines that are performed on the GPU.
For instance, Fig. 9 depicts the global maxima (band
of broad stripes) followed by local maxima (band of
thinner stripes). Such local maxima are not necessar-
ily physical targets, but may be the result of the sig-
nal detector’s response curve exhibiting overshooting
and ringing behaviors. The mathematically correct ap-
proach to remove these artifacts is via deconvolution [7]
with the perfect signal response of a delta function.
However, they drastically increase the noise level nu-
merically . Performing a full deconvolution at each
frame rendering is unreasonable, but can be done as a
one-time preprocessing step with the presented visual-
ization method as verification and data assessment tool.
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The immediate visualization of raw amplitude signal
series from LIDAR datasets alone already allows for a
direct and detailed exploitation of their potential. This
is specifically emphasized in Fig. 11, where different
amplitude visualization and point extraction methods
are combined and compared in order to improve fea-
ture detection results in vegetation and terrain mapping
(Fig. 11(a) compared to Fig. 11(c)).

(a) Maxima Points, colored by altitude

(b) Points + Full Amplitude

(c) Points + Noise cutoff at 150

Figure 11: Improvements of feature detection for vegeta-
tion and terrain mapping shown for a cross-section through
a densely vegetated river foreland area. The combined visu-
alization of originally digitized 3D points at data acquisition
Fig. 11(a) and signal amplitude maxima Fig. 11(c) indicates
that feature recognition can be substantially improved by fur-
ther amplitude signal processing.

4.3 Water Clarity
Beyond point cloud extraction and identification of phys-
ical objects, the full amplitude signal provides more in-
formation that is not even of geometrical nature. Par-
ticularly, when observing lakes or rivers with a green
laser source capable of penetrating the water body, the
attenuation coefficient becomes measurable. The at-
tenuation coefficient can be viewed as a proxy for de-
termining the water clarity respectively water turbidity
as an areal measurement. Such measures are impor-
tant specifically for quantifying active fluvial sediment
transport processes, or for habitat modeling in rivers
and lakes and assessing their ecologic state.

The Beer-Lambert law is valid in the linear regime
where the material is not highly scattering and states
that the optical attenuation I(s)/I0 is an exponential
function of the path length s through the medium: I(s)=
I0e−κs with κ as the attenuation coefficient. This atten-
uation coefficient is constant for a fluid with homoge-
neous scattering properties. This exponential decay of
the reflected light intensity along the path of the ray is
immediately suitable for analysis from the amplitude
signal.
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Figure 12: e-Fitting

A point cloud with reflectivity information contains
this information as well, but provides only non-equidistant,
lower spatial resolution along the ray of penetration
(Fig. 13(a)). The information of subsequent connected
data values is instead available from an extracted point
cloud, whereas it is primarily available in the full sig-
nal (Fig. 13(b)). Actual amplitude signals are noisy,
so fitting an exponential curve to each individual curve
is needed to determine the attenuation coefficient for
each laser shot (Fig. 12). Such analysis is too time-
consuming to be performed at the rendering stage -
which is aiming toward running at multiple frames per
second, but it makes sense as a pre computation step. In
future these pre-computed attenuation coefficients may
be used at the visualization stage to subtract an expo-
nential bias curve in order to enhance peaks above the
exponential decay, instead of simple noise thresholding
as in Fig. 10.
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(a) Point Cloud of a water body

(b) Myriads of Amplitude Signals

Figure 13: Cross-section through a waterbody. (a) originally
digitized 3D points at data acquisition colored by reflectivity
decreasing from water surface (light blue indicating higher
reflectivity) to depth (dark blue equaly lower reflectivity). (b)
Associated amplitude signal series showing signal fade out
with water depth with largest maxima at water surface and
water ground (green to red color).

5 RESULTS
The presented visualization enhancement approaches
of raw LIDAR amplitude signals are of great advantage
when analyzing complex topobathymetric datasets, be-
cause they allow for direct and fast data access with-
out time-consuming data post-processing efforts. Es-
pecially, the full amplitude visualization exposes river
bed areas where the point cloud shows no coverage
Fig. 15(a). Displaying local maxima also shows those
signals on the water surface that triggered the original
point cloud (compare Fig. 15(c) with Fig. 15(a)). More-
over, full amplitude visualization can also reveal ter-
rain coverage below dense vegetation where the orig-
inal point cloud indicates no coverage (Fig. 11). In
practice, these two findings are of particular relevance
to improve terrain extraction from LiDAR point clouds
above and below water, and thus to significantly im-
prove the quality level of survey data, which are already
of high quality when considering only the original point
clouds Fig. 14.

Further insights on water conditions in terms of clar-
ity respectively turbidity derived from signal analysis
can be of relevance for determining sediment trans-
port processes in rivers related to floods or during snow
melt. We are currently evaluating the potential of signal
analysis for automated substrate mapping in water areas
in terms of grain-size distribution along the river bed
and surface roughness, which are verified by ground
truth data.

(a) Enhanced Coverage

(b) Original Coverage

Figure 14: Comparison of a river bed based on amplitude
signal analysis versus immediate LIDAR point cloud data.

6 CONCLUSION
In this article we presented a rendering method for the
direct, immediate visualization of massive raw ampli-
tude response curves from LIDAR data acquisitions.
The method provides intuitive insight into the potential
of the data sets to allow for optimizing further data pro-
cessing steps and potentially reducing the actual num-
ber of observation flights needed for airborne LIDAR
bathymetry. Simple data processing steps can be per-
formed interactively in realtime. As per our knowledge
this is the first time that a direct, simultaneous visual-
ization of dozens of millions of LIDAR amplitude re-
sponse curves has been done. Its formulation within
the fiber bundle model ensures a rigid mathematical ba-
sis yielding high performance independent of the appli-
cation domain.

Our visualization technique has potential beyond LI-
DAR and can be applied to e.g. multispectral imaging
with hundreds of spectral channels as well. Further-
more, the technique straightforwardly extends to other
topological properties than vertices, e.g. edges or trian-
gles, and can thus be applied also to high dimensional
data given on more complex geometries.
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