
The Effects of Different Triangulation Techniques for Cage
Based Image Deformation Using Generalized Barycentric

Coordinates
Ákos Tóth

University of Debrecen, Doctoral School of
Informatics; Faculty of Informatics,

University of Debrecen
4028 Debrecen, Hungary
toth.akos@inf.unideb.hu

Roland Kunkli
Faculty of Informatics, University of

Debrecen
4028 Debrecen, Hungary

kunkli.roland@inf.unideb.hu

ABSTRACT
In computer graphics, the generalized barycentric coordinates (GBC) are often used for image deforma-
tion. To manipulate an input image using a cage based image deformation method, we usually have to
consider a source polygon with a triangulation; but defining the triangulation of the source polygon is
not a trivial task in most cases. In this paper, a uniform and a non-uniform triangulation technique—
which can be the basis of the cage based image deformation—are introduced and compared. Moreover,
different texture filtering methods are tried, producing various deformation results. Experimental results
and demonstrative pictures show the behaviors of the triangulation methods.

Keywords
generalized barycentric coordinates, image deformation, triangulation

1 INTRODUCTION
Barycentric coordinates are frequently used to rep-
resent a point inside a polygon as the weighted sum
of its vertices. In the last years, many general-
izations (e.g., harmonic coordinates [Jos07], mean
value coordinates [Ju05], local coordinates [Zha14],
or blended coordinates [Ani17a]) and techniques
[Ani16] have appeared with a different set of prop-
erties. However, most of them satisfy the linear re-
production property; therefore, the barycentric co-
ordinates are often used for different interpolation
tasks, e.g., shading, mesh parameterization, and
shape [Cas18] or image deformation [Hor06].
To use the generalized barycentric coordinates
[Flo15, Hor17, Nie13] for cage based image defor-
mation, we usually have to create a triangulation
of the source polygon, which envelops the input
image to be deformed. However, this mentioned
triangulation is not always self-evident because it
can affect the quality of the deformation [Ani17b].
Nowadays, the cage based image deformation

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: Input image with source polygon using
(left) a uniform and (right) a non-uniform triangu-
lation technique. The black dots mark the source
polygon defined by the user manually.

algorithms are usually implemented on the GPU
and operate with a uniform triangulation (e.g.,
Delaunay) [Web09]. Although they can create
a smooth deformation with several thousands of
interior vertices in most cases, we can decrease the
number of the triangles to save computation time
and cost by using a non-uniform triangulation (see
Figure 1).

Therefore our goal was to examine and compare the
two different triangulation techniques in the aspect
of the applied cage based image deformation meth-
ods. In our comparison, we take into account the
input image, the source polygon—which is often
determined by the user—, and the used coordinate
method. Moreover, we investigate different texture
filtering algorithms to improve the quality of the
deformation results.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

155

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.19

In the next section, we give a short overview of the
image deformation methods based on the general-
ized barycentric coordinates. Then, in Section 3,
we discuss the different triangulation techniques.
In Section 4, we introduce our non-uniform trian-
gulation algorithm in detail. We show the way how
the quality of the deformation results can be im-
proved in Section 5, while in the last two sections,
we present our results and future work as well.

2 IMAGE DEFORMATION
BASED ON GENERALIZED
BARYCENTRIC COORDI-
NATES

As we recalled in Section 1, one of the main appli-
cation areas of GBC is image deformation.
We can deform an input image I, which is en-
veloped by a source polygon P with vertices vi.
The source polygon has a triangulation T with ver-
tices tj . After relocating the source polygon P to
P ′ with vertices v′i, the new positions t′j of the ver-
tices of the triangulation can be computed by the
following interpolation function:

t′j =
n∑
i=1

bi(tj)v′i, (1)

where bi(tj) are the barycentric coordinates of the
vertex tj of the triangulation T respect to the ver-
tex vi, while n is the number of the vertices of the
source polygon P .
The generalized barycentric coordinates bi(v) of a
point v inside a polygon can be computed by the
equations below:

v =
∑n
i=1wi(v)vi∑n
j=1wj(v)

, (2)

bi(v) = wi(v)∑n
j=1wj(v)

, (3)

where wi(v) are the homogeneous coordinates. The
above mentioned barycentric coordinates are usu-
ally computed in a precomputation step before the
deformation.
Image deformation based on GBC is widely used in
computer graphics because of the straightforward
and real-time computation of barycentric coordi-
nates [Ska08]. However, we have to notice that
the deformed image depends on the initial and
the deformed source polygons, the used coordi-
nate method [Ani19], and the given triangulation
as well.

3 GENERATING THE 2D MESH
As we have mentioned in Section 2, defining a tri-
angulation is a crucial task of image deformation
based on GBC. After the user marks the desired
initial source polygon of the input image (see Fig-
ure 1) by defining its vertices manually using a
graphical user interface, we have to create a 2D tri-
angular mesh. To create that, we have to partition
a given region into simplices which satisfy different
criteria. In our case, the triangulation domain of
the region is marked by the initial source polygon,
and we use shape and size criteria. The shape crite-
rion is an upper bound B on the circumradius-to-
shortest edge length ratio, while the size criterion
is an upper bound S on the length of the longest
edge of triangles.
We used Shewchuk’s algorithm [She02]—which is
based on the Delaunay refinement method—to pro-
duce 2D meshes for the given domain. The algo-
rithm starts with a constrained Delaunay triangu-
lation and inserts new vertices until it satisfies the
criteria.

Definition 3.1. A triangulation T is a Delaunay
triangulation if there exists a circle C for each edge
e of T with the following properties:

• the endpoints of e are on the boundary of C,
and

• the circle C does not contain another vertex of
T in its interior.

Definition 3.2. Let G be a planar straight-line
graph (PSLG). A triangulation T of G is a con-
strained triangulation if it contains all edges of G
as a part of the triangulation. The edges are called
constrained edges.

Definition 3.3. A constrained Delaunay triangu-
lation (CDT) [Che89] of G is a constrained trian-
gulation of the vertices of G, which is as close to
the Delaunay triangulation as possible.

As we can see in the definitions above, we can con-
struct a uniform triangulated 2D mesh using the
Delaunay refinement algorithm if we define G from
the edges of the source polygon.
A non-uniform triangulated 2D mesh can be con-
structed if we define further segments or vertices
as constraints in G from the triangulation domain
and set a proper criterion.
The modification of shape and size criteria is an
excellent way to increase or decrease the number
of vertices of the mesh. By default, B =

√
2, which

guarantees that the Delaunay refinement algorithm
will terminate, but as we increase it, the resolution

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

156

Vol.28, No.1-2, 2020

of the triangulation will be changed. In the same
way, the adjustment of S will affect on the con-
structed mesh (see Figure 2).

Figure 2: Generated meshes for a given initial
source polygon with different parameters. The
shape and size criteria are (left) B = 0.125; S = 0.2,
(middle) B = 0.25; S = 0.2, and (right) B = 0.125;
S = 0.05.

4 OUR NON-UNIFORM TRIAN-
GULATION METHOD FOR
CAGE BASED IMAGE DEFOR-
MATION

In the following, we introduce our method, which
is able to define an adaptive non-uniform triangu-
lation where the triangles are placed with respect
to the input image and the effect of the used co-
ordinate method. Therefore, we can preserve the
smoothness of the contour curve of the input im-
age after the deformation, and we can decrease the
number of triangles of the triangulation, which re-
sults in less computation time. Moreover, the posi-
tion of the source polygon does not affect the qual-
ity of the deformation result.
The inputs of our algorithm are the input shape I
and the source polygon P that is often marked by
the user manually using a graphical user interface.

4.1 Extracting the contour
After the user defined the source polygon, the input
image has to be converted to a binary one, on which
a threshold or canny edge detection has to be ap-
plied in order to use a contour detection technique,
e.g., the method of Suzuki et al. [Suz85]. The input
image has to be separable from the background, or
it needs to have a coherent black contour, so the
contour detection method can work successfully.
In the following part of the paper, we refer to the
mentioned contour as C = {(xt,yt)}Nt=1, where N
is the number of points on the boundary.

4.2 Calculation of curvature
Our algorithm calculates the curvature κt of the
contour curve of the input shape. The curvature
defines the rate of change of the unit tangent vector
at a given point, and it can be computed as

κ(t) = ||r
′(t)×r′′(t)||
||r′(t)3||

. (4)

However, in the discrete world, the contour curve
is represented as a chain of segments that are built
from a set of points; therefore, we have to associate
curvature with vertices. The discrete curvature κ̂t
of the contour curve in vertex ct ∈ C is the change
between segments (meeting at ct) in tangent direc-
tion:

κ̂t = ∠((ct− (ct−1−ct)) ,ct,ct+1) = θt, (5)

where t is a position in the contour (see Figure 3).
The curvature values are higher where the change
between segments are high, and it is constant if
the chain of segments is almost flat (see Figure 4).
Using the curvature values, we can decide in which
parts of the curve we have to use a high density of
sampled points to follow the shape of the contour
curve properly.

Figure 3: Notations for calculating the discrete cur-
vature.

We notice that our algorithm allows us to use dif-
ferent step sizes for discrete curvature calculation;
thus, the noise of the contour curve can be reduced.

Figure 4: Visualized contour curve curvature.
Those parts of the curve where the curvature is
high are marked by red.

4.3 Calculation of the effect of the
deformation

As we mentioned previously, the deformation re-
sults depend on the position of the initial source
polygon and the used coordinate method as well
(see Figure 5). Therefore, our algorithm calculates
the effect F (ct) of the nearest vertex of the source
polygon P in vertex ct ∈ C by

F (ct) = w(ct)∑n
k=1wk(ct)

. (6)

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

157

Vol.28, No.1-2, 2020

With these values, we can decide which parts of
the input image will be deformed better. The ef-
fect of deformation is higher in those parts of the
input, where the initial source polygon—marked by
the user—is close to the image, or the normalized
barycentric coordinates values are close to 1.

Figure 5: The effect of deformation with different
initial source polygons using (top) mean value and
(bottom) maximum entropy coordinate methods.
The higher the effect of the deformation, the red-
der the contour. We made deformations with both
source polygons, we translated vertices vi and vj
to v′i and v′j with the same distance d. The com-
parisons of the deformation results can be seen in
the third column. They show us that the deforma-
tion depends on the position of the source polygon
as well.

4.4 Sampling of the contour curve
An essential step of our algorithm is to define those
points of the contour curve, which will be the basis
of the non-uniform triangulation. Therefore, we
have to sample the contour C with respect to the
previously computed κ̂t and F (ct) by

r =
{
r1 if κ̂t >∆κ̂ and F (ct)>∆F
r2 otherwise

(7)

C′ = {(xt,yt) ∈ C | t (mod r) = 0}, (8)

where r is the sampling ratio, and ∆κ̂ and ∆F are
lower bounds.
Sampling methods for freeform curves [Pag18] are
usually used to select sample points from the curve
according to some criterion (e.g., curvature, arc
length, parameterization, or complexity). Uniform
sampling methods for curves are the most popular,
but, unfortunately, they are not precise enough in
some cases. Other techniques are the adaptive ap-
proaches (also called non-uniform sampling), which
lead to increased sampled density on those parts of

the curve where, e.g., the curvature is high. These
techniques give us more efficient approximations.
We use the adaptive technique to determine points
to be sampled from the contour curve C with re-
spect to the previously computed curvature and the
effect of deformation values (see Figure 6). Our
goal is to increase the density of the sampling on
those parts of the curve where the curvature and
the effect are higher while we want to set the sam-
pling ratio to minimal in other areas. Naturally,
other properties can be examined as well.
In our algorithm, we set r1 to 4, r2 to 20, ∆F
to 0.7, and ∆κ̂ is exactly the average curvature of
the contour curve. In that way, we sample every
fourth point of the curve if the curvature is greater
than the average and the effect of the deformation
is greater than 0.7. Otherwise, we sample every
twentieth point. We notice that these values highly
depend on the resolution of the input image. We
worked with full HD images, but if we want to use
larger images, we have to increase the values r1 and
r2.
In addition to all of this, the r1, r2, ∆κ̂, and ∆F
values in Equation 7 are modifiable freely; thus, the
resolution of the approximation can be increased
and decreased.

Figure 6: The sampling of the contour curve with
the same initial source polygon using (top) mean
value and (bottom) metric coordinates. The con-
tour is colored with respect to the curvature and
the effect of deformation. We increased the sam-
pled density near to vertex vi (bottom) because the
metric coordinates has a higher effect on the input
image than the mean value.

After the sampling, we have to consider the sam-
pled points as the constraints of a constrained De-
launay triangulation; thus, a non-uniform triangu-
lated 2D mesh can be constructed as we discussed
in Section 3. The edges of the generated triangu-
lation follow the contour curve of the input shape.
Moreover, in those parts of the triangulation where

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

158

Vol.28, No.1-2, 2020

the curvature and the effect of the source polygon
are higher, there are more triangles, while in other
areas, our method minimizes the number of trian-
gles.

4.4.1 Holes in the mesh
Another advantage of the non-uniform triangula-
tion over the uniform that it can handle holes in the
generated mesh. The user has the opportunity to
define holes—which are simple polygonsHi—in the
interior of the initial source polygon. In that case,
the algorithm uses the edges of Hi as constraint
edges in the constrained Delaunay triangulation.

Figure 7: Generated mesh with a hole for an input
image and its deformation result.

This solution can be very useful if we want to
deform images with logos, texts, or parts which
should not be damaged (see Figure 7).

4.5 The step by step process of our
non-uniform triangulation algo-
rithm

We can summarize our method in the following
steps:

1. Consider the input shape I, the source polygon
P , and the hole polygons Hi.

2. Extract the contour C = {(xt,yt)}Nt=1 of the in-
put.

3. Calculate the curvature κ̂t of the contour curve.

4. Calculate the effect F (ct) of the nearest vertex
of the source polygon P in vertex ct ∈ C.

5. Sample the contour curve C respect to κ̂t and
F (ct).

6. Generate a 2D mesh obtained from a constraint
Delaunay triangulation using C′ and Hi.

5 IMPROVING THE QUALITY
OF THE DEFORMATION

The image deformation applications based on the
barycentric coordinates usually use the OpenGL li-
brary to render the deformation. Therefore, as we

discussed in Section 2, we have to triangulate the
initial source polygon, then we have to apply the
input image to it as a texture. In order to draw
the texture, OpenGL executes a sampling opera-
tion, when the texture coordinates of the vertices
are mapped to the texture image. The result of
the sampling are texels, which are pixels in the tex-
ture image. These texels often contain color infor-
mation; thus, the final color of the corresponding
pixel can be defined. However, it can happen that
a computed texture coordinate will not match a
texel exactly. In these cases, OpenGL has to figure
out which texel corresponds to the texture coor-
dinate. The method, when OpenGL decides the
final texel value, is called texture filtering. During
the deformation, we usually do many transforma-
tions with the vertices of the initial source poly-
gon; therefore, we have to choose well the texture
filtering algorithm. The most used filtering meth-
ods are the GL_NEAREST and GL_LINEAR, but these
cannot produce good image quality in most cases,
e.g., if we stretch the image to be deformed. The
GL_NEAREST interpolation selects the closest pixel
to the texture coordinates; therefore, the result-
ing images will be blocky. The GL_LINEAR method
interpolates the closest four pixels, and it creates
smoother images than the previous interpolation
technique, but staircase effect may appear at the
edges of the image.

Using the OpenGL Shading Language (GLSL), we
have the opportunity to write shaders on the GPU,
where we can use our own filtering methods. In
order to increase the quality of the deformation re-
sults, we implemented a generalized bicubic inter-
polation method [Pra13] by the following equation:

F (p′, q′) =
2∑

m=−1

2∑
n=−1

F (p+m,q+n)

·RC{(m−a)}RC{−(n− b)},

(9)

where the pixel F (p,q) is the nearest to the pixel
to be interpolated, a and b are distances between
the previously mentioned pixels, while RC(x) is a
bicubic interpolation function such as triangle, cu-
bic B-spline, or Catmull-Rom interpolation.

While the GL_LINEAR method uses the nearest four
pixels to define the color of the intermediate pixel,
the bicubic interpolation uses the nearest sixteen
pixels (see Figure 8). Using a texture filtering
method based on a bicubic interpolation function,
the quality of the deformation can be further im-
proved, as we can see in Figure 9.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

159

Vol.28, No.1-2, 2020

Figure 8: Notations for the bicubic interpolation.

Figure 9: From left to right, top to bottom:
deformation result is rendered by GL_NEAREST,
GL_LINEAR, triangle, B-spline, bell, and Catmull-
Rom texture filtering methods.

6 RESULTS
6.1 Implementation
We implemented the prototype of the uniform and
our non-uniform triangulation algorithms in C++
on an Intel i7 6700K CPU at 4.0 GHz with 16 GB
memory. In the case of non-uniform triangulation,
to extract the contour of the input, we used the
method of Suzuki et al. [Suz85], which is imple-
mented in the OpenCV library [Bra00]. In order
to produce a 2D mesh for a source polygon using
the extracted contour points, we have to build a
constrained Delaunay triangulation then we have
to use the Delaunay refinement algorithm on it. In
the case of uniform triangulation, the mentioned al-
gorithms can be useful as well. These methods can
be found in the CGAL library [The19]. The imple-
mentation of the coordinate methods was based on
the CGAL library and the Ph.D. thesis of Anisimov
[Ani17b].

6.2 Validation and comparison
We tried the methods on many input images, and
we compared the deformation results using uniform
and non-uniform triangulations (see Figure 10).
We used different coordinate methods for the de-
formations: mean value, maximum entropy, met-
ric, Poisson, and blended coordinates. We can say
that the uniform and the non-uniform triangula-
tions works well with every coordinate method.

The introduced non-uniform triangulation method
only takes care of the outer contour of the input im-
ages. However, in those situations when we want
to deform, e.g., cartoon figures—which interiors are
not so detailed—, images with big homogeneous re-
gions, it produces smooth deformation results. Fur-
thermore, it can preserve the boundary of the im-
age after the deformation. Moreover, if the graph-
ical resources of the used platform or device are
limited, or we want to save computation cost by
reducing the number of triangles, the non-uniform
method is usable as well.
Although, if we can use a GPU implementation of
the cage based image deformation methods, and
can increase the number of the triangles up to sev-
eral thousands, the uniform triangulation can pro-
duce smooth enough deformation results as well.
To validate the algorithms, we also created a pixel-
based deformation (see the middle column of Fig-
ure 10) for the inputs. It can be used as a reference
resulting image because we computed the barycen-
tric coordinates of all the pixels of the input im-
age in the precomputation step, then we computed
new positions of them in the deformation phase. In
the case of large deformations, it can produce holes
because there are regions which are not covered by
deformed pixels, but using a filtering algorithm, the
result will be fully contiguous without holes.
We used the same deformation polygon P ′ to get
three resulting images based on the uniform tri-
angulation, the non-uniform triangulation, and the
pixel-based one. For the comparison, we measured
the computation times of the triangulations and
SSIM (Structural Similarity Index) [Wan04] values.
The SSIM value is frequently used to define the
similarity of two images X and Y with the follow-
ing formula:
SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (10)

where x and y are square windows of X and Y
(located at the same spatial position). The l(x,y),
c(x,y), and s(x,y) are luminance, contrast, and
structure comparison functions, respectively. α >
0, β > 0, and γ > 0 are parameters which define the
relative importance of the three comparison func-
tions. The SSIM value can be between 0 and 1.
The value 1 means that the two images are similar,
while the value 0 means that they are very differ-
ent. Table 1 summarizes the computation times
of the triangulation on CPU and the SSIM val-
ues between the two triangulations on different in-
put images and the number of triangles. In the
case of the Snake input image, the two triangu-
lations have almost the same number of triangles,
and the same computation times, while the non-
uniform solution increases the SSIM value. In the

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

160

Vol.28, No.1-2, 2020

Figure 10: Input images with uniform triangulation on the left column and with non-uniform triangulation
on the right column, and their deformation results using mean value coordinates, while the reference
resulting images are in the middle.

Snake Swordfish Shark Cherry
u nu u nu u nu u nu

Triangles 340 335 638 360 29926 1342 16185 715
SSIM 0.956 0.959 0.978 0.979 0.939 0.938 0.984 0.984
Computation time (s)
of the triangulation 0.001 0.001 0.003 0.001 1.898 0.008 0.563 0.003

Table 1: The comparison of the uniform (u) and the non-uniform (nu) triangulations.

case of the Swordfish, the non-uniform method uses
much fewer triangles than the uniform triangula-
tion, so it decreases the computation time and in-
creases the SSIM value. In the case of the Shark
and the Cherry, the uniform method uses ≈30k and
≈16k triangles; thus, the computation times are in-
creased, while the two types of triangulations have
almost the same SSIM value. More comparison fig-
ures and values can be seen in our supplementary
material.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we have shown how the different tri-
angulation techniques can be used for cage based

image deformation using the generalized barycen-
tric coordinates. Our non-uniform triangulation
method was introduced in detail as well. The algo-
rithm takes into consideration the position of the
source polygon and the used coordinate method;
moreover, it can handle holes in the interior of the
polygon. The main difference from the earlier sys-
tems that the edges of the non-uniform triangula-
tion follow the contour of the input shape, there-
fore it can preserve the smoothness of the curves of
the input. We compared the uniform and the non-
uniform triangulation methods as well. The non-
uniform one can decrease the computation time by
minimizing the number of triangles of the triangu-
lation on those parts where the effect of the defor-

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

161

Vol.28, No.1-2, 2020

mation is lower. The uniform triangulation method
can produce smooth deformation results by an in-
creased number of triangles. The quality of the de-
formation can be increased by using different tex-
ture filtering methods. Based on our results, we
can say that the non-uniform triangulation is more
efficient in cases when we work with fewer triangles,
and it can produce more accurate deformation re-
sults than the methods using the uniform one. Fur-
thermore, we have to notice that the deformation
depends on the deformed source polygon as well
because the barycentric coordinates are computed
with respect to the vertices of the source polygon,
which are not changed after the precomputation.
In our non-uniform triangulation, the vertices on
the boundary of the hole polygon do not change po-
sitions in the deformation phase, and it can lead to
deformation errors around the hole in some cases.
In order to solve this problem, further investigation
is required in the future.

8 ACKNOWLEDGEMENT
This work was supported by the construction
EFOP-3.6.3-VEKOP-16-2017-00002. The project
was supported by the European Union, co-financed
by the European Social Fund.

9 REFERENCES
[Ani16] Anisimov, D., Deng, C., and Hormann, K.

Subdividing Barycentric Coordinates, Com-
put. Aided Geom. Des. 43 pp.172–185, 2016.

[Ani17a] Anisimov, D., Panozzo, D., and Hor-
mann, K. Blended barycentric coordinates,
Comput. Aided Geom. Des. 52–53 pp.205–
216, 2017.

[Ani17b] Anisimov, D. Analysis and New Con-
structions of Generalized Barycentric Coor-
dinates in 2D, Ph.D. thesis, Universitá della
Svizzera italiana, 2017.

[Ani19] Anisimov, D., Hormann, K., and Schnei-
der, T. Behaviour of exponential three-point
coordinates at the vertices of convex polygons,
J. Comput. Appl. Math. 350 pp.114–129, 2019.

[Bra00] Bradski, G. The OpenCV Library, Dr.
Dobb’s Journal of Software Tools 2000.

[Cas18] Casti, S., et al. CageLab: an Interactive
Tool for Cage-Based Deformations. In Smart
Tools and Apps for Graphics - Eurographics
Italian Chapter Conference 2018, pp.65–74.
Eurographics, 2018.

[Che89] Chew, L. P. Constrained Delaunay Trian-
gulations, Algorithmica 4 pp.97–108, 1989.

[Flo15] Floater, M. S. Generalized barycentric co-
ordinates and applications, Acta Numer. 24
pp.161–214, 2015.

[Hor06] Hormann, K., and Floater, M. S. Mean
Value Coordinates for Arbitrary Planar Poly-
gons, ACM Trans. Graph. 25 No.4 pp.1424–
1441, 2006.

[Hor17] Hormann, K., and Sukumar, N. (eds.).
Generalized Barycentric Coordinates in Com-
puter Graphics and Computational Mechan-
ics. CRC Press, 2017.

[Jos07] Joshi, P., et al. Harmonic Coordinates for
Character Articulation, ACM Trans. Graph.
26 No.3 pp.71:1–71:9, 2007.

[Ju05] Ju, T., Schaefer, S., and Warren, J. Mean
Value Coordinates for Closed Triangular
Meshes, ACM Trans. Graph. 24 No.3 pp.561–
566, 2005.

[Nie13] Nieto, J. R., and Susín, A. Cage Based De-
formations: A Survey. In González Hidalgo,
M., Mir Torres, A., and Varona Gómez, J.
(eds.) Deformation Models: Tracking, Ani-
mation and Applications, pp.75–99. Springer,
Dordrecht, 2013.

[Pag18] Pagani, L., and Scott, P. J. Curvature
based sampling of curves and surfaces, Com-
put. Aided Geom. Des. 59 pp.32–48, 2018.

[Pra13] Pratt, W. K. Introduction to Digital Im-
age Processing, CRC Press, 2013.

[She02] Shewchuk, J. R. Delaunay refinement algo-
rithms for triangular mesh generation, Com-
put. Geom. 22 No.1-3 pp.21–74, 2002.

[Ska08] Skala, V. Barycentric coordinates compu-
tation in homogeneous coordinates, Comput.
& Graph. 32 No.1 pp.120–127, 2008.

[Suz85] Suzuki, S., and Abe, K. Topological Struc-
tural Analysis of Digitized Binary Images by
Border Following, Comput. Vis. Graph. Image
Process. 30 No.1 pp.32–46 1985.

[The19] The CGAL Project. CGAL User and Ref-
erence Manual. CGAL Editorial Board, 4.14
edition, 2019.

[Wan04] Wang, Z., et al. Image Quality Assess-
ment: From Error Visibility to Structural
Similarity, IEEE Trans. Image Process. 13
No.4 pp.600–612, 2004.

[Web09] Weber, O., Ben-Chen, M., and Gotsman,
C. Complex Barycentric Coordinates with Ap-
plications to Planar Shape Deformation. Com-
put. Graph. Forum 28 No.2 pp.587–597, 2009.

[Zha14] Zhang, J., et al. Local Barycentric Coor-
dinates, ACM Trans. Graph. 33 No.6 Article
188. 2014.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu

162

Vol.28, No.1-2, 2020

	2020-Journal-temp-5 155
	2020-Journal-temp-5 156
	2020-Journal-temp-5 157
	2020-Journal-temp-5 158
	2020-Journal-temp-5 159
	2020-Journal-temp-5 160
	2020-Journal-temp-5 161
	2020-Journal-temp-5 162

