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Abstract
A significant portion of rendering time in ray tracing consists of the traversal of an acceleration structure. While
methods designed to reduce traversal cost often target the top of the tree, we instead propose a method that targets
the lowest levels, by offsetting ray origins just before starting traversal. Our method moves ray origins out of nodes
deep in the tree, avoiding the scattered memory access associated with these rarely visited nodes. We propose a
precomputed set of hemispheres, placed on the surfaces, which is guaranteed not to contain any geometry, thus
allowing rays starting inside a hemisphere to be moved to the hemispheres boundary. Our method is compatible
with most acceleration structures and does not require access to the actual traversal implementation.

Keywords
Ray tracing, acceleration structures

1 INTRODUCTION
Ray tracing has wide applications. It is used in colli-
sion detection algorithms, simulations of physical phe-
nomena and graphics. Recent advances in ray tracing
hardware made real-time ray tracing accessible to the
masses. In the past year, the first video games that em-
ploy ray tracing for rendering were released.

To perform efficient intersection tests between rays
and a collection of objects, acceleration structures are
used. The two most common acceleration structures in
modern high-performance renderers, the kD-tree and
bounding volume hierarchy (BVH), aim to bring the
average case time complexity of tracing a single ray
down to near logarithmic.

In this paper, we propose a method that aims to im-
prove ray tracing performance by offsetting extension
rays just before starting traversal. This is based on the
observation that many rays visit the leaf node they origi-
nate from without finding an intersection. These unnec-
essary visits are relatively expensive, due to a scattered
memory access pattern. Our aim is to prevent these vis-
its by moving the ray origins along the ray direction.
This shortening will often move the rays out of the leaf
nodes.

In our method a set of hemispheres is placed on the sur-
face of the scene geometry. The radius of each hemi-
sphere is such that it does not to contain any geometry.
For each ray origin we fetch the nearest hemispheres,
which are then used to replace the ray origin by the in-
tersection of the ray and the hemispheres. If the ori-
gin is moved far enough, the ray is moved out of the
leaf node it originated from and potentially one or more
nodes higher in the acceleration structure. Our aim is

to outweigh the overhead of offset calculation by the
reduced traversal cost.

2 RELATED WORK
Accelerating the intersection of rays and scene geome-
try is achieved using various data structures and algo-
rithms. These methods can be put into roughly three
categories:

1. Acceleration structures. The most commonly used
acceleration structures, the kD-tree and BVH, aim
to bring the cost of tracing a single ray from linear
to near logarithmic time. They do this by recursively
partitioning space and objects, respectively.

2. Amortization of traversal cost. By grouping rays to-
gether in packets, the cost of fetching the accelera-
tion structure data can be amortized over many rays.

3. Efficient traversal of the acceleration structure.
These methods often make use of high-level knowl-
edge about rays, such as the difference between
nearest-hit and any-hit (occlusion) rays, or connec-
tivity between rays, to guide traversal towards parts
of the tree that are more likely to intersect the rays.

The above categorization will not cover all methods.
Some can be put into more than one category, whereas
others will defy all categorization. The following sec-
tions provide a brief summary of the main works in each
category, providing a context for the contributions in
this paper.
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2.1 Acceleration structures
Fujimoto et al. [FTI86] use a uniform grid to store scene
geometry. As a ray traverses the grid, it intersects the
objects in each cell it passes. Glassner [Gla84] uses an
adaptive scheme, placing objects in a recursively parti-
tioned octree. Cleary and Wyvill [CW88] provide an
analysis of the uniform grid, showing that it, at that
time, outperformed hierarchical methods.

Earlier, the kD-tree (or binary tree) was introduced by
Bentley [Ben75], although not in the context of ray trac-
ing. The kD-tree has found wide application. Gold-
smith and Salmon [GS87] introduce a simple heuristic
to guide the construction of spatial subdivision trees.
MacDonald and Booth [MB90] propose the refined sur-
face area heuristic (SAH) and show that it performs
much better than using a fixed split order.

Clark [Cla76] introduced the BVH, which partitions ob-
jects rather than space. Construction of the BVH is sim-
ilar to the kD-tree, and allows the use of e.g. the surface
area heuristic.

Havran [Hav00] provides an in-depth analysis of a
wide range of acceleration structures, including the
kD-tree and BVH, and concludes that the kD-tree
gives the best ray tracing performance. Wald [Wal07]
greatly improves the speed of BVH construction and
Stich [SFD09] solves the problem of scenes with
non-uniformly sized triangles. Together, this closes the
performance gap between the kD-tree and BVH. Today
the BVH is the most widely used acceleration structure
in renderers.

2.2 Amortization
Wald et al. [WSBW01] group several rays together in
a single packet. The size of this packet is generally
chosen to be the width of the vector registers on the
CPU. For SSE capable CPUs, packet traversal yields a
2-3x performance improvement when compared to sin-
gle ray traversal.

Reshetov et al. [RSH05] search for the first node in an
acceleration structure for which both subtrees contain a
leaf node that intersects a group of rays. Once the entry
point has been found, individual rays start traversal at
this point. The process is further optimized by Fowler et
al. [FCM09], who find deeper entry points, with fewer
traversal steps.

Overbeck et al. [ORM08] use large packets of up to
1024 rays and propose a traversal algorithm specifically
aimed at reflection and refraction rays. These rays suf-
fer from quickly degrading coherence as the number of
bounces for each path increases.

2.3 Improved traversal
Boulos and Haines [BH10] show that occlusion rays
often dominate the total rendering time. It is there-

Figure 1: Part of a BVH built on a circle. In shades
of green internal nodes. In orange leaf nodes. Note
that the distance required to move a ray starting on the
surface out of a leaf node is small.

fore worthwhile to devise specialised traversal strate-
gies for occlusion rays and nearest-hit rays. MacDon-
ald and Booth [MB90] were the first to propose an al-
ternative traversal algorithm. They add neighbor links
between the leaves of a kD-tree. Once a ray has been
traced, any extension ray originating at the intersec-
tion point can then be traced by following these links.
This traversal method prevents visiting many internal
nodes, at the cost of additional memory usage. Havran
et al. [HBZ98] show that ropes result in a 10-20% re-
duction of total rendering time, compared to standard
kD-tree traversal. The gains are later improved to up
to 35% by Havran and Bittner [HB07]. Hendrich et
al. [HPMB19] use convex frustum shafts to cull parts of
a BVH. Djeu et al. [Djeu09] reduce the traversal time of
occlusion rays, by marking leaf nodes contained by ge-
ometry as volumetric occluders and terminating traver-
sal in these nodes. Ize and Hansen [IH11] introduce
the Ray Termination Surface Area Heuristic (RTSAH),
which significantly reduces the number of visited nodes
for occlusion rays.

The work presented in this paper falls under the third
category. We build a set of hemispheres on top of the
acceleration structure that are guaranteed not to contain
any geometry. We use the hemispheres to calculate off-
sets for extension rays, skipping deep parts of the hier-
archy.

3 OFFSETTING RAYS
Testing a ray against a leaf node is more expensive than
testing against an internal node. This has two main
reasons. First, leaf nodes are visited less frequently
than the shallower internal nodes, and are therefore less
likely to be in the cache. The same holds for the prim-
itive data in the leaf node. Second, intersecting a leaf
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node involves intersecting the primitives it stores. Most
methods that aim to accelerate traversal focus on skip-
ping internal nodes or amortizing traversal costs over
multiple rays and quickly reaching the leaf nodes. We
argue that it could be beneficial to focus on skipping
leaf nodes, avoiding scattered memory access and prim-
itive intersection tests.

Consider rendering an opaque, tessellated sphere (Fig-
ure 1). After the primary rays have been traced, exten-
sion rays starting on the sphere’s surface will not hit any
geometry, as the sphere is a convex object and all rays
will travel away from its surface. Still, traversal will
first traverse down into the leaf node where the previ-
ous ray ended, since the new ray’s origin is contained
in the leaf’s bounds. Offsetting the ray origin along a
short distance could be enough to move it out of the leaf
node. A larger offset would then cull additional nodes
above and adjacent to the leaf node. While a sphere is
the best-case scenario due to its convexity, the idea of
offsetting ray origins extends to more complex scenes.

To calculate offsets we use an auxiliary data structure,
in the form of a set of hemispheres. In a preprocess-
ing step we place one or more hemispheres on each tri-
angle. At each hemisphere location, we determine the
nearest intersection on the positive side of the plane.
The distance to this intersection is then stored as the ra-
dius of the hemisphere. The volume of this hemisphere
is thus guaranteed to be empty. During rendering, for
each ray, we retrieve the hemispheres attached to the
triangle it originates from. The origin offset is then cal-
culated using a ray-sphere intersection test. If the ray
intersects multiple hemispheres, the greatest intersec-
tion distance is used. After offsetting the ray origin,
traversal is started. Note that our method is oblivious to
the chosen acceleration structure and the actual traver-
sal, and thus orthogonal to other optimizations.

We limit our discussion to polygonal scenes and re-
flected rays, although the concepts are potentially ap-
plicable to other scenes and transmitted rays.

In the next two subsections we will describe various
potential hemisphere placement strategies. Section 3.1
covers how the hemisphere locations can be chosen
such that they best achieve our goal: moving the rays
out of as many leaf nodes as possible. While the most
optimal solution is of course placing an infinite number
of hemispheres, to optimize execution time a balance
between traversal savings and overhead must be found.
Section 3.2 describes low-level optimizations to reduce
overhead, such as a carefully chosen memory layout,
caching behaviour and vectorization.

3.1 Hemisphere sets
The set of hemispheres must be chosen in such a way
that the average ray origin offset is maximal. At the
same time, we wish to limit the number of hemispheres,

Figure 2: A hemisphere (blue) placed in the center of
a triangle (green). The radius is limited by the triangle
(red) above it.

Figure 3: Visualization of the placement strategies. Top
row: center sphere set and vertex sphere set. Bottom
row: median sphere set and polygon sphere set.

to reduce query overhead. We investigate four place-
ment strategies that balance these factors. The strate-
gies are visualized in Figure 3.

Center Sphere Set. The simplest method is to store a
single hemisphere located at the center of each triangle
(Figure 2). At this location the hemisphere will in gen-
eral have the most potential for moving a ray out of the
triangle’s bounding box.

Vertex Sphere Set. Alternatively, we can place a hemi-
sphere on each triangle vertex. This method is more re-
sistant to occluding geometry at the center: if only one
area of the triangle is occluded there is still potential for
a large enough hemisphere being placed on one or more
of the vertices to offset nearby rays far enough to leave
the triangle bounds. There is an important downside: if
a vertex is part of a concave corner of the surface ge-
ometry the radius of the hemisphere will be 0.

Median Sphere Set. To solve the problem of concave
geometry we can move the hemispheres closer to the
triangle center. One option is to place the hemispheres
halfway between each vertex and the triangle center, the
medians, i.e. the line segments from the vertices to the
midpoint of the opposite edges. Together, these hemi-
spheres can cover a large area of the triangle.

Polygon Sphere Set. In some situations the center
sphere set could perform better with only a slight mod-
ification. Consider a scene with many groups of adja-
cent triangles lying in the same plane, essentially form-
ing (non-convex) polygons. A triangle in such a group
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could make use of the hemisphere of one of its neigh-
bours. This neighbouring hemisphere might be much
larger if the triangle itself lies closer to an occluding
part of the scene than the neighbour. If the neighbour-
ing hemisphere covers a large part of the triangle, it can
offset many rays for much larger distances than the tri-
angle’s own hemisphere. Selecting the optimal hemi-
sphere from all neighbours is a hard optimization prob-
lem. A potentially good approximation would be to se-
lect the largest of all hemispheres and assigning this to
each triangle of the polygon.

3.2 Optimization
By placing a fixed number of hemispheres per trian-
gle, retrieval has constant time complexity. It also al-
lows keeping the querying code simple, minimizing the
strain on the instruction cache. Furthermore, it opens up
options for aligning the data to cache lines and efficient
vectorized intersection tests.

Center Sphere Set. The center sphere set has the low-
est storage requirements. A hemisphere record requires
16 bytes: 4 for the radius and 12 for the position, which
comfortably fits in a single cache line. Alternatively,
the hemisphere position can be deduced from the trian-
gle vertex positions. Although this limits storage to 4
bytes, this is only beneficial if the vertex data is in the
cache.

Vertex Sphere Set. This method uses 3 times more
memory than the center sphere set. This may still fit in a
single cache line, although padding to 64 bytes may be
necessary to avoid extra cache line accesses. Alterna-
tively, the hemisphere data can be stored with the vertex
data, adding only the hemisphere radius to each vertex
position. Obviously, this change will impact other parts
of the renderer. It could degrade performance for the
acceleration structure or might simply be impossible to
implement (e.g. when using indexed triangles, where
vertices can be shared by multiple triangles).

Median Sphere Set. The median sphere set can be used
with or without the center hemisphere. Also storing the
center hemisphere will not add much overhead. If the
medians are recalculated from the vertices, the first step
is calculating the center, and storing the 4th radius al-
lows aligning the data to 16 bytes. If the hemisphere
centers are stored, adding the extra hemisphere will in-
crease the per triangle data to 64 bytes, exactly a cache
line.

Polygon Sphere Set. The polygon sphere set can be
stored and queried in two distinct ways. First, using
the method for the center sphere set. In that case the
same optimizations can be applied. Second, using an
indexed lookup. Since hemispheres are used by mul-
tiple triangles, they need not be stored multiple times.
This can reduce memory overhead, if we assume that
we store the hemisphere centers as well as the radii.

Total memory usage would be one index per triangle to
fetch the hemisphere, and one hemisphere per polygon.
The number of polygons will depend on the nature of
the scene and how many triangles are in the same plane
as their neighbours.

Further optimization can be done using SIMD instruc-
tions. For example, using SSE allows querying the cen-
ter sphere set with 4 rays at once, amortizing memory
cost over the 4 rays.

4 RESULTS
The scenes used in our experiments are shown in Ta-
ble 1. For each of the scenes several viewpoints are
selected. Results are averaged over these viewpoints.
Three ray classes are tested to account for different be-
haviours: ambient occlusion (AO) rays, diffuse rays and
shadow rays. AO rays are rendered using several radii
set to a fixed percentage of the scene size. Each pri-
mary ray that finds an intersection is used to generate
exactly one AO ray. For the diffuse renders each path
is extended in a random direction until it finds a light,
leaves the scene or reaches a maximum recursion depth.
For the shadow rays a single point light is added to each
scene.

Two types of statistics are collected: the number of vis-
ited nodes per ray (split by internal nodes and leafs) and
runtimes. Note that for the diffuse renders the number
of nodes is calculated per ray rather than per path. Gen-
erating and tracing primary rays, writing to the image
buffer or any other steps are excluded from the mea-
surements.

All experiments were run single-threaded on a 2.60GHz
Intel i7-6700HQ with 8GB DDR4 RAM. For BVH con-
struction and intersection tests the Intel Embree ray
tracing library (version 3.5.2) was used [WWB∗14]. All
images were rendered at 4096x4096 pixels.

4.1 Traversal
Table 2 shows the number of visited nodes and leafs
for AO rays. The rays were given a length, or radius,
of a percentage of the scene size. The baseline column
shows the absolute number of visited internal nodes and
leaves. These numbers increase as the radius increases.
When using any of the hemisphere sets to offset the
rays, the average number of visited nodes and leaves
decreases, as shown by each column corresponding to
the respective hemisphere set.

The median hemisphere set consistently outperforms all
other sets. This is only by a small margin however, sug-
gesting that a larger number of hemispheres per triangle
has little added benefit. When comparing the results of
the vertex sphere set with the center sphere set, we see
that it performs better in some scenes, but worse in oth-
ers. This seems related to the nature of the geometry:
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buddha bunny sibenik dragon hairball living rungholt sponza sponza
cathedral room crytek dragon

1.1M 144k 76K 871K 2.9M 581K 5.8M 262K 1.1M
16.6 2.2 1.1 13.3 43.9 8.9 88.7 4.0 17.3

Table 1: Overview of the scenes used in the experiments. For each scene we report the triangle count and the
memory cost (in MB) of the 16-byte center sphere set.

the architectural scenes that contain more concave ge-
ometry, such as the Cathedral, make the vertex sphere
set less useful. The polygon sphere set shows no im-
provement over the center sphere set, suggesting that
selecting the largest hemisphere is a poor optimization
strategy.
Scenes such as Buddha, Bunny and Dragon show a re-
duction of visited leaf nodes by up to 85% for short
rays. For longer rays reductions are not as large, al-
though still at least 30%. The strong reduction for short
rays is due to many rays receiving an offset that is larger
than their length, causing traversal to terminate in the
root node. Figure 4 shows this for the Dragon scene:
the fraction of rays for which the calculated offset (us-
ing the center sphere set) is larger than the ray length is
high for short radii and then drops quickly. For scenes
that do not contain both large open spaces and convex
geometry, this fraction drops much faster.
The Rungholt scene contains almost exclusively axis-
aligned geometry. Because of this, the majority of ex-
tension rays do not start inside the bounding box of the
leaf node the primary ray ended in, and there is lit-
tle improvement with offsets. Also shown in Table 2
are results for the Rungholt scene rotated by 15◦. The
baseline shows that the number of visited internal nodes
increases by about 20%, while the number of visited
leaves doubles. When using offsets, this increase is par-
tially undone.
The Sponza Dragon scene is the Sponza Crytek scene
with the dragon model added in its center. While the
Sponza Crytek scene shows negligible reduction for
long rays, with the dragon relative improvements be-
come larger, showing that the sphere sets adapt to vary-
ing geometry. The Sponza Dragon scene could be seen
as a common use case for e.g. games, where detailed
character models move through buildings.
Table 3 and Table 4 show the results for diffuse and
shadow rays. The overall behaviour for all scenes and
sphere sets is similar to that of the ambient occlusion
rays, with some slight differences. The scenes in which
the AO rays saw the largest reductions do not fare as
well. Conversely, some of the worst performers for long
AO rays (such as the Living Room and Sponza Crytek
scenes) do show more significant reductions.

Figure 4: Fraction of AO rays for which the offset is
larger than the radius (in the Dragon scene with the cen-
ter sphere set).

4.2 Runtimes
The traversal results have shown that the median sphere
set consistently outperforms all other methods. How-
ever, this is only by a small margin. The center sphere
set shows improvements within a range of several per-
cent. Because the center sphere set uses only a quarter
of the memory that is required by the median sphere set,
the results in this section only cover the center sphere
set. The implementations of the alternatives have not
been thoroughly optimized, and would probably not
perform better, as calculating the offsets is mostly mem-
ory bound. The center hemispheres were stored as a
simple array, retrievable using the triangle index. Each
hemisphere occupies 16 bytes: 3 floats for the center, 1
float for the radius.

Figure 5 shows the ambient occlusion ray trace times.
For short rays (1% of the scene size) the Dragon scene
is traced using only 73% (827ms vs 1132ms) of the
original time. As the ray length increases this differ-
ence becomes smaller, with 85% (1339ms vs 1576ms)
at 50% of the scene size. Rungholt is traced slower by
up to 3% at all ray lengths. For all but the shortest rays,
the same happens for the Cathedral and Sponza Crytek
scenes. In all cases, performance improvements are in
accordance with the traversal improvements reported in
the previous section: more saved traversal steps means
shorter trace times.
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scene radius baseline center vertex median polygon
buddha 1% 7.71 / 0.80 46% / 19% 43% / 17% 44% / 15% 45% / 19%
buddha 5% 8.45 / 0.94 61% / 34% 59% / 32% 59% / 31% 60% / 34%
buddha 10% 8.73 / 1.01 63% / 39% 61% / 38% 62% / 37% 63% / 40%
buddha 25% 8.90 / 1.06 64% / 43% 63% / 42% 63% / 41% 64% / 44%
bunny 1% 6.50 / 0.26 47% / 40% 38% / 32% 41% / 33% 45% / 39%
bunny 5% 7.10 / 0.33 63% / 54% 58% / 47% 59% / 48% 62% / 53%
bunny 10% 7.40 / 0.39 66% / 61% 62% / 55% 63% / 56% 66% / 60%
bunny 25% 7.55 / 0.52 71% / 72% 68% / 68% 69% / 68% 70% / 71%
cathedral 1% 5.78 / 0.12 68% / 84% 79% / 93% 57% / 73% 80% / 86%
cathedral 5% 6.16 / 0.18 85% / 90% 89% / 95% 81% / 83% 91% / 91%
cathedral 10% 6.60 / 0.26 89% / 94% 93% / 97% 86% / 89% 92% / 94%
cathedral 25% 7.51 / 0.62 93% / 98% 95% / 99% 90% / 96% 95% / 98%
dragon 1% 6.32 / 0.43 55% / 17% 49% / 15% 50% / 15% 54% / 17%
dragon 5% 7.08 / 0.57 66% / 40% 62% / 39% 62% / 39% 66% / 40%
dragon 10% 7.43 / 0.65 69% / 50% 66% / 49% 66% / 49% 69% / 50%
dragon 25% 7.41 / 0.66 71% / 53% 67% / 52% 68% / 52% 70% / 53%
hairball 1% 9.18 / 1.45 76% / 58% 71% / 64% 66% / 43% 73% / 58%
hairball 5% 12.12 / 2.74 93% / 81% 93% / 83% 91% / 74% 92% / 81%
hairball 10% 14.16 / 3.76 94% / 87% 94% / 89% 93% / 83% 94% / 87%
hairball 25% 16.08 / 4.66 96% / 90% 95% / 92% 94% / 87% 95% / 90%
livingroom 1% 5.17 / 0.10 60% / 70% 64% / 71% 49% / 64% 77% / 77%
livingroom 5% 5.62 / 0.18 84% / 85% 84% / 85% 77% / 82% 88% / 88%
livingroom 10% 5.92 / 0.24 90% / 89% 89% / 89% 86% / 87% 93% / 92%
livingroom 25% 6.39 / 0.35 92% / 93% 92% / 93% 90% / 92% 95% / 95%
rungholt 1% 6.55 / 0.22 83% / 99% 80% / 98% 81% / 98% 82% / 99%
rungholt 5% 7.59 / 0.44 93% / 100% 91% / 99% 92% / 99% 93% / 100%
rungholt 10% 8.07 / 0.54 94% / 100% 92% / 99% 93% / 99% 94% / 100%
rungholt 25% 8.18 / 0.59 95% / 100% 93% / 99% 94% / 99% 95% / 100%
rungholtrotated 1% 7.98 / 0.45 77% / 70% 73% / 65% 74% / 64% 78% / 82%
rungholtrotated 5% 9.15 / 0.74 88% / 84% 86% / 82% 86% / 81% 90% / 91%
rungholtrotated 10% 9.49 / 0.89 90% / 88% 88% / 86% 89% / 86% 92% / 93%
rungholtrotated 25% 9.66 / 0.95 91% / 90% 89% / 88% 90% / 88% 92% / 94%
sponzacrytek 1% 10.33 / 0.18 86% / 80% 90% / 79% 79% / 74% 90% / 82%
sponzacrytek 5% 11.05 / 0.28 95% / 89% 95% / 88% 92% / 86% 96% / 90%
sponzacrytek 10% 11.62 / 0.39 96% / 93% 96% / 92% 94% / 91% 96% / 93%
sponzacrytek 25% 9.16 / 0.60 98% / 98% 98% / 97% 98% / 97% 99% / 98%
sponzadragon 1% 10.96 / 0.26 86% / 71% 87% / 70% 82% / 67% 87% / 73%
sponzadragon 5% 12.50 / 0.43 93% / 85% 93% / 84% 92% / 83% 94% / 86%
sponzadragon 10% 13.66 / 0.60 95% / 91% 95% / 90% 94% / 89% 95% / 91%
sponzadragon 25% 11.60 / 0.74 97% / 95% 97% / 95% 96% / 95% 97% / 96%

Table 2: Ambient occlusion traversal. radius: ray length relative to scene size. baseline: #visited internal nodes /
#visited leaf nodes per ray without offset. sphere sets: visited nodes / leaves relative to baseline.

The diffuse trace times are displayed in Figure 6. The
results follow the same pattern as for the AO rays: a loss
of 3% for Rungholt and gains up to 20% for the Dragon.
The results for shadow rays, as shown in Figure 7, again
follow the same pattern.
When combining the observations about visited nodes
and trace times, we can draw an important conclusion
about the computational overhead of offset calculation:
this overhead is small. Consider the Rungholt scene,
where the reduction of visited leaf nodes is 1% or less
for all ray types, and trace times increase by only 3%.

5 CONCLUSION
We presented a simple auxiliary data structure to accel-
erate ray tracing. We precompute a set of hemispheres

located on the surface of the scene’s geometry that are
guaranteed not to contain any objects. When given an
extension ray, we retrieve the hemispheres that start on
the same geometric primitive and offset the ray origin.
With a large enough offset, the ray will be moved out of
the leaf node it started in, thus saving expensive inter-
section tests at the bottom of the tree during traversal.
Additional internal nodes may also be culled if the ray
is moved out of their bounding box.
Improvements vary between scenes. In the most opti-
mal case, the number of visited leaf nodes can be re-
duced by several factors. Additionally, there is a large
reduction of the number of visited internal nodes. How-
ever, this is only for short occlusion rays in scenes con-
taining large open spaces and convex geometry. On the
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scene baseline center vertex median polygon
buddha 9.93 / 2.38 68% / 32% 67% / 31% 67% / 29% 68% / 32%
bunny 8.12 / 2.24 74% / 45% 70% / 42% 71% / 40% 73% / 45%
cathedral 10.09 / 2.29 94% / 91% 96% / 97% 91% / 86% 96% / 93%
dragon 9.49 / 2.42 74% / 48% 71% / 42% 71% / 40% 74% / 49%
hairball 19.62 / 8.39 95% / 83% 95% / 87% 94% / 78% 95% / 84%
livingroom 9.21 / 2.18 92% / 87% 92% / 88% 90% / 82% 95% / 92%
rungholt 9.35 / 1.02 95% / 99% 93% / 97% 94% / 97% 95% / 99%
rungholtrotated 11.99 / 2.16 89% / 70% 87% / 66% 88% / 65% 92% / 85%
sponzacrytek 16.20 / 4.20 96% / 93% 96% / 94% 94% / 91% 97% / 94%
sponzadragon 18.77 / 4.87 95% / 91% 95% / 91% 94% / 89% 95% / 92%

Table 3: Diffuse traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset.
sphere sets: visited nodes / leaves relative to baseline.

scene baseline center vertex median polygon
buddha 10.18 / 0.40 72% / 47% 70% / 44% 71% / 44% 72% / 47%
bunny 10.42 / 0.15 81% / 64% 78% / 57% 79% / 58% 80% / 64%
cathedral 7.27 / 0.05 93% / 89% 94% / 94% 90% / 80% 96% / 90%
dragon 8.15 / 0.18 71% / 34% 69% / 32% 69% / 32% 70% / 34%
hairball 16.66 / 1.43 97% / 90% 97% / 91% 96% / 85% 96% / 89%
livingroom 6.38 / 0.05 91% / 77% 90% / 76% 88% / 70% 93% / 83%
rungholt 6.96 / 0.08 93% / 99% 91% / 97% 92% / 98% 92% / 99%
rungholtrotated 8.78 / 0.20 88% / 79% 86% / 72% 87% / 73% 87% / 82%
sponzacrytek 15.61 / 0.09 97% / 86% 96% / 83% 95% / 81% 97% / 87%
sponzadragon 17.71 / 0.14 96% / 78% 95% / 76% 95% / 74% 96% / 79%

Table 4: Shadow traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset.
sphere sets: visited nodes / leaves relative to baseline.

Figure 5: Ambient occlusion ray trace times.

other end of the spectrum there are scenes for which
there is next to no reduction of visited nodes. Changes
in actual trace time range from speedups of up to 25%
to a loss of 3%. This last number indicates that the
overhead of offset calculation is low.

The memory overhead added by the hemisphere set is
linear in the scene size, requiring a fixed number of
bytes per triangle. The optimized hemisphere set used
in this paper uses 16 bytes per triangle. The hemisphere
set is also completely independent of the acceleration
structure, making it compatible with any form of traver-
sal of the BVH or even alternative acceleration struc-
tures.

6 FUTURE WORK
Only the center sphere set implementation was thor-
oughly optimized. While the alternatives offer little ex-
tra reduction of visited nodes at the cost of several times
more memory overhead, it might be worthwhile to in-
vestigate their performance when properly optimized.

The polygon sphere set could perform better than the
center sphere set with a better heuristic for selecting

Figure 6: Diffuse ray trace times.

Figure 7: Shadow ray trace times.

the optimal hemisphere. Taking into account additional
properties, such as the area of overlap between a hemi-
sphere and the triangles, might result in a higher quality
hemisphere set.
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Concave geometry has been shown to result in little re-
duction of visited nodes. This may be improved by us-
ing other methods to offset rays, such as other geomet-
ric primitives that better represent empty spaces in these
areas.
A deciding factor for the viability of hemisphere sets
is how they perform in a GPU renderer. Offset calcu-
lation will have a different overhead and the traversal
algorithms used on the GPU tend to be different.
Efficient construction of the hemisphere sets was not a
subject of this work. This will become especially rele-
vant for dynamic scenes, where quick reconstruction of
(parts of) the hemisphere set will be needed.
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