ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

Computer Science Research Notes

WSCG2020 Proceedings

Variable-Radius Offset Surface Approximation on the GPU

Ann-Christin Woerl!

anwoerl@students.uni-
mainz.de

Elmar Schoemer!
schoemer@uni-mainz.de

Ulrich Schwanecke?

ulrich.schwanecke@hs-
rm.de

lnstitute of Computer Science, Johannes Gutenberg University Mainz, Germany
2 Computer Vision and Mixed Reality Group, RheinMain University of Applied Sciences Wiesbaden
Rlsselsheim, Germany

ABSTRACT

Variable-radius offset surfaces find applications in various fields, such as variable brush strokes in 2D and 3D
sketching and geometric modeling tools. In forensic facial reconstruction the skin surface can be inferred from
a given skull by computing a variable-radius offset surface of the skull surface. Thereby, the skull is represented
as a two-manifold triangle mesh and the facial soft tissue thickness is specified for each vertex of the mesh. We
present a method to interactively visualize the wanted skin surface by rendering the variable-radius offset surfaces
of all triangles of the skull mesh. We have also developed a special shader program which is able to generate a
discretized volumetric representation that can be transformed into a skin mesh. In addition, we show the usefulness
of our method to calculate classical Minkowski sums and demonstrate its use for packing problems.

Keywords

Variable-radius offsetting, Minkowski sum, Shader based shape approximation

1 INTRODUCTION

Offset surfaces are an important tool in CAD/CAM ap-
plications. Here they are used for various tasks, such as
the construction of blend surfaces or the consideration
of the radius of a milling cutter. They can also be used
to account for the shrinkage of thermoplastics during
3D printing.

While simple variable-radius blend surfaces such as
rolling ball surfaces are a widely used tool in geomet-
ric modeling, offset surfaces with freely varying radii
are less common. One typical use case for these gen-
eral variable-radius offset surfaces is the modeling of
brush-strokes in 2D and 3D painting and modeling ap-
plications. Another rather niche application of variable-
radius offset surfaces is forensic facial reconstruction.
This is about reconstructing the face of a person on the
basis of a skull.

Usually forensic facial reconstruction is performed by
experts who, based on a lot of experience and statistical
knowledge, apply the skin thickness to various points
on a particular skull. In the next step, the gaps be-
tween these points are filled, which leads to a three-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

https://doi.org/10.24132/CSRN.2020.3001.12

dimensional reconstruction of the face. In [1] the au-
thors present an automatic method for forensic facial
reconstruction. Their approach is based on a paramet-
ric template skull and dense statistics of the facial soft
tissue thickness (FSTT). In the first step of their foren-
sic facial reconstruction method, the skull template is
fitted to the given skull. Then, based on the FSTT, a
variable-radius offset surface is constructed. Finally, a
head-template is fitted to the variable-radius offset sur-
face. The most time-consuming part of this process is
the creation of the variable-radius offset surface. In this
paper we present a new method for the efficient gener-
ation of such a surface.

An explicit exact formula for a variable-radius off-
set surface can be complicated and time-consuming to
evaluate. However, in many applications there is no
need for an exact representation. Thus, we opted for
an approximate representation, which leads to a better
runtime. Our approach is motivated by the following
simple observation: The intersection of a straight line
with a solid defined by its boundary surface can be de-
scribed by a set of disjoint intervals. Thus, we compute
the intersection of three sets of parallel lines of a Carte-
sian 3D grid with a given variable-radius offset surface
to approximate the surface. This also makes it possible
to generate a triangle mesh of the offset (and simulta-
neously the inset) surface using an adapted Marching
Cubes algorithm. Our algorithm works incrementally
by dividing the given triangular mesh into single tri-
angles and calculating the intersection intervals of the
straight lines and the variable-radius offset surface of

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

each individual triangle. Due to this decomposition we
obtain a set of intervals per line. Each interval is di-
rectly joined with previously calculated intervals. We
use a GPU to perform these computations in parallel.
Therefore, we must pay particular attention to avoid in-
coherent memory access while computing the union of
a new interval with an existing sorted list of disjoint
intervals. Furthermore, our method can be used to cal-
culate classical Minkowski sums. Another advantage
of the proposed representation is that it can be used to
quickly check whether a point is part of the Minkowski
sum, which can be used for collision detections.

The paper is structured as follows: In the next sec-
tion, we give a brief overview of work dealing with
variable-radius offset surfaces and the related topic
of Minkowski sums. Next, we describe our proposed
data structure for representing variable-radius offset
surfaces such that they can be efficiently evaluated
on a GPU and avoid incoherent memory access. In
section four we present a detailed description of our
shader-based algorithm for calculating variable-radius
offset surfaces and Minkowski sums on a GPU. In
the penultimate chapter we present two application
examples. The paper finally ends with a short summary
and some thoughts on further improvements of the
presented algorithm.

2 RELATED WORK

Fixed-radius offset surfaces are well studied since they
are often used in CAD/CAM modeling. In contrast,
variable-radius offset surfaces are less well known.
Qun and Rokne [16] developed explicit formulas for
variable-radius offset surfaces of parametric surfaces.
In [18], Thiery et al. describe a shape representation
algorithm using variable-radius offset surfaces. They
introduce so called sphere-meshes, which are a con-
nected set of spheres that are linearly interpolated over
a triangular area. Wang and Manocha [21] describe an
algorithm for fixed-radius offset computation on the
GPU. Based on layered depth images, they calculate
structured points located on a 3D grid, for which they
compute the union of many spheres centered at these
points. They use spatial hashing to find intersections.
Gietzen et al. [10] use dense statistics of facial soft
tissue thickness to reconstruct facial structures by
a union of spheres. Achenbach et al. [1] further
improved this approach by replacing the discontinuous
union of spheres with a global optimized sphere-mesh,
which is defined as the zero-set of a signed distance
function. From this implicit representation, an explicit
representation of the surface mesh can be obtained
by using the marching cubes algorithm [15]. We
present an algorithm that is able to interactively render
a variable-radius offset surface based on per pixel
calculations. Our method provides a higher accuracy

Computer Science Research Notes

100

WSCG2020 Proceedings

as the one proposed in [1], while being much less
time-consuming. In contrast to [21], our algorithm is
able to work directly with 3D meshes without making
an intermediate step via layered depth images and
using hash functions for finding intersecting rays.
Furthermore it can be easily generalized to calculate
the Minkowski sum of polyhedra.

In general, there are two basic approaches to determine
the Minkowski sum of two polyhedra. The first ap-
proach divides the polyhedra into convex components.
Then the Minkowski sum is calculated for all pairwise
convex components. Afterwards, the union of the indi-
vidual results must be formed. Hachenberger [11] uses
this approach to develop an algorithm for calculating
the Minkowski sum of two non-convex polyhedra with
exact geometric predicates, which, however, leads to
high computation times. Varadhan and Manocha [20]
also determine the Minkowski sum by convex decom-
position of the polyhedra. They were limited to an ap-
proximate representation using a voxel grid represent-
ing a signed distance field, resulting in a much faster
algorithm.

The second approach for calculating Minkowski sums
for non-convex polyhedra is to determine the convo-
lution of two polyhedra, which is a superset of the
Minkowski sum. Afterwards, redundant surfaces must
be removed by clever trimming. Lien [14] uses this ap-
proach and performs trimming in 2D using collision
detection. This can be done efficiently by accepting
a loss of accuracy. Campen and Kobbelt [3] use dif-
ferent criteria for trimming but are limited to the outer
boundary of the Minkowski sum. This leads to a re-
stricted field of applications due to the fact that inner
boundaries are common. Li and McMains [13] de-
scribe an approach to represent the outer boundary of
the Minkowski sum using voxelization on the GPU.
The accuracy of their approximative approach is lim-
ited by the resolution of the voxel grid. In addition, no
inner surfaces can be represented here either. Kyung
et al. [12] describe a robust convolutional algorithm to
calculate the Minkowski sum of two polyhedra, that
finds and removes intersecting facets using kd-trees and
achieves high accuracy.

3 SHADER BASED COMPUTATION

In our approach, the variable-radius offset surface is
represented by three sets of parallel lines of a Cartesian
3D grid. This results in three independent calculations,
each of the three orthogonal surfaces of the Cartesian
3D grid being considered a 2D grid. Thus, the image
plane is discretized with a fixed grid width, with the grid
points corresponding to the pixels. At each pixel our
algorithm determines the intersection of a straight line
with the given variable-radius offset surface. This re-
sults in a set of disjoint intervals for each pixel. Know-
ing the world coordinates of the underlying grid, it is

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

possible to check in quasi constant time whether any
position is part of the variable-radius offset surface or
not. Based on the distance between the origin of each
line and the variable-radius offset surface, the corre-

sponding index in the array can be determined and the
associated intervals can be found.

We use graphics hardware to compute the variable-
radius offset surface for arbitrary triangle meshes.
Since each object can be represented approximately
by a 3D triangle mesh, this is not a limitation of
our algorithm. Furthermore, this approach enables
our algorithm to calculate not only the offset surface
but also the inset surface simultaneously. A triangle
mesh consists of three-dimensional vertex data with
additional connectivity information. The vertices may
also contain some additional properties such as normals
or colors. As the triangle mesh passes through the
rendering pipeline, the shader receives variable-radius
data for each vertex of the mesh. All triangles of
the mesh are considered independently of each other.
In the following, we start by describing the general
procedure for calculating the variable-radius offset
surface for a single triangle which we will extend to
multiple triangles afterwards. Implementations of the
essential parts of the geometry and fragment shader
can be found in Appendix A.

Vertex processing takes place first. Here, each individ-
ual vertex is processed by the vertex shader. The ver-
tices are transformed into the two-dimensional image
plane by multiplying them with the modelview and pro-
jection matrix.

The vertex shader is followed by a geometry shader. As
an input it receives a single primitive and generates zero
or more primitives as an output. We use one triangle
as input and create two triangles as output. These two
triangles are constructed as follows. Let a,b,c € R3 be
the vertices of the input triangle 7, projected along the

z-axis and
() - (i)
Ymin ’
(=) - ()
max -
the lower left and upper right point of its axis-aligned
bounding box. Furthermore, let r,,rp,7. € R be the
variable-radii at the vertices and r = max{r,, rp,r. } the
maximum of these. A superset of the projection of
the variable-radius offset surface is given by [xim —
¥y Xmax + 1) X [Vmin — 1, Ymax + 1], 1.€. the projected axis-
aligned bounding box extended by the largest of the
three radii. The geometry shader generates this rect-
angle consisting of two triangles and sends it to the

fragment shader. In addition, the original coordinates
of the triangle vertices are passed such that the link be-

min{ay, by, cy}
min {ay, by, cy}
max {ay, by, cy}
max {ay,by,cy}

Computer Science Research Notes

101

WSCG2020 Proceedings

tween the generated rectangle and the original triangle
is known (see listing 1).

Finally, all objects on the image plane are rasterized.
The resulting fragments are processed in the fragment
shader. We generate a straight line whose reference
points depends on the fragment position. The direction
of the line corresponds to the view direction which is
equal to the z-direction due to the parallel projection.
Afterwards, we determine the intersection of this line
with the variable-radius offset surface. If there is an
intersection, the corresponding interval is saved, other-
wise the fragment will be discarded (see listing 2). If
we consider not only the triangular surface of a model,
but the solid as such, then the front intersection of the
ray with the variable-offset surface provides the offset
surface, while the rear intersection defines the inset sur-
face.

Since the triangle mesh consists of more than one trian-
gle, we have to form the union of the resulting intersec-
tion intervals. As a data structure we propose a set of ar-
rays with a predefined length, one for each pixel p;, i =
0,...,m— 1. The first entry contains a mutex variable
m; € {0,1} which is used for concurrency control. In
the second entry we store the total amount of intervals
associated with this pixel. The following elements de-
scribe depth intervals [z2;,22i41], i =0,...,n— 1, where
the number of intervals n depends on the depth com-
plexity of the object. Our algorithm works incremen-
tally by inserting new intersection intervals into this ar-
ray. Thereby, inserting a new interval [¢],7;] means to
calculate the union of this interval with the given set
of ordered intervals. We perform a kind of insertion
sort algorithm to find the correct positions of #; and .
Based on these positions we form the union by using
shifts and deletions. This layout of the data is suitable
for the GPU. In our implementation, the arrays for all
pixels are combined into a single one-dimensional ar-
ray, which is connected to a shader storage buffer ob-
ject (SSBO). Since SSBOs are not only readable but
also writable, they are well suited for our application.
Unfortunately, SSBOs use incoherent memory access.
As the calculation on the GPU is performed in paral-
lel for many triangles, this must be taken into account.
To avoid errors while inserting a new interval, we im-
plemented a mutex function, which utilizes the mutexes
m; to block parts of the SSBO which are already in use.
We use the GLSL function at omicCompSwap which
exchanges a value of an array iff two given values are
equal. Our mutex function uses atomicCompSwap
to repeatedly check whether the mutex entry m; of the
current pixel array is zero. If m; = 0 we set m; = 1 and
the insertion of a new interval can start. We take the
union of the new interval with the already existing set
of intervals saved in the part of the array which belongs
to the actual straight line. After finishing the insertion,
the intervals are disjoint again. We have to update the

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

CSRN 3001
number of intervals and check whether it still fits the
maximum number of intervals. Finally, the mutex entry
must be reset, i.e. m; = 0. Instead of a fixed array for
each pixel, one could also use linked lists, as it is done
in modern A-Buffer implementations (see e.g. [22]).

In the next section we discuss the details of determining
the intersection of the straight line with the variable-
radius offset surface.

3.1 Variable-radius offset surface

A straight line with reference point p € R? describing
the position of a fragment and direction u € R? corre-
sponding to the view direction is defined by

s@t):=p+t-u,teR.

The variable-radius offset surface of a triangle 7;;,. can
be easily visualized, as shown in Figure 1 on the top
and in the center. The triangle can be understood as
a skeleton of the surface (see [2]). Tkach et al. [19]
use this representation for hand modeling and track-
ing. In contrast to our work, they use an iso-level-
function to describe the variable-radius offset surface
which leads to complex computations. We use ray-
tracing to approximate the surface instead. The final
goal is to calculate the intersection of the ray s(¢) with
the variable-radius offset surface. Therefore, we can
decompose the variable-radius offset surface into sim-
ple geometric figures like spheres located at the corner
points of the triangle, truncated tangential cones at the
edges and triangles shifted to the tangent planes of the
spheres. These simple geometric figures are displayed
in the center of Figure 1 in different colors. Intersecting
a ray with these geometric figures is much easier than
finding an explicit form of the variable-radius offset sur-
face. Later, the union of these different intersections is
formed to obtain the correct intersection interval.

To calculate the intersection of the ray with the upper
and lower triangles, we embed the triangles into the tan-
gential planes of the spheres at the triangle vertices. The
upper tangential plane can be described by

E., ={xcR|nl(x—a)=r,}

with ;. € R? being the normal vector of the plane. The
Hesse normal form allows to determine the intersection
between s(¢) and E,, directly by insertion. The same
calculation holds to the lower triangular surface. After
the intersection with the plane has been calculated, it
must be checked whether it is inside the triangle. The
normal vectors of the tangential planes can be deter-
mined based on the following system of equations

nT(b—a) = r—ry
n'(c—a) = ro—r, (1)
n'n = 1

Computer Science Research Notes

102

WSCG2020 Proceedings

Figure 1: Top: Triangle with variable radii at the ver-
tices. Center: Variable-radius offset surface of a trian-
gle decomposed into spheres (green), tangential cones
(blue) and tangent planes (red). Bottom: Tangential
cone of the spheres at vertices a and b

by assuming that the distance of each corner point a, b, c
to the tangential plane has to equal the radii r,,rp, 7.
System (1) leads to a quadratic equation with the two
solutions n_,n; for the lower and upper tangential
plane.

In order to determine the intersection points of the ray
s(r) with the spheres placed at the corners of T., we
have to find the points on the ray whose distance from
the center corresponds to the radius of the spheres.

The intersections of the ray s(f) with the truncated
cones at the edges of the triangle can be calculated by
using the implicit form of the conical surfaces, which
are tangential to the two spheres placed at the endpoints
of the edge (see bottom of Figure 1):

(xx(b—a)—ax b)2 = (ra(x—b) frb(xfa))a 2)

with x € R being the points of the conical surface. The
intersections of the ray s(¢) with the tangential cone can
then be calculated by inserting s(¢) into (2). A solution
of this quadratic equation is valid, i.e. it lies within the
truncated cone, if

ra(ra—rp)+d a<d"x <ry(ra—ry)+d"b.

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

withd = b —a.

In summary, using our method for calculating the
variable-radius offset surface, only linear and quadratic
equations have to be solved, which is easy to imple-
ment in a shader program. For each geometric figure
we obtain an intersection interval of which we form the
union.

3.2 The Minkowski Sum of a 3D mesh
and a cuboid

As already mentioned, our method can be generalized
to also determine the classical Minkowski sum. In
the following we demonstrate this by calculating the
Minkowski sum of a 3D mesh and an axis-oriented
cuboid.

The variable-radius offset surface of a triangle can be
easily visualized, such that a direct calculation of the
intersection of a ray with the variable-radius offset sur-
face is possible. In contrast, the decomposition of the
Minkowski sum of a triangle and a cuboid into simple
geometric objects is not as easy and clear. That is why
we choose a different approach in this case. We use the
fact that the Minkowski sum describes the subspace in
which two objects collide. We assume that the trian-
gle is fixed in space, while the cuboid can be moved
along the ray. Then we determine the interval of the
ray in which the cuboid center can be placed such that
cuboid and triangle collide. This interval corresponds
to the intersection of the ray with the Minkowski sum.
Therefore we need a dynamic intersection test. In con-
sequence of choosing the direction of the ray as the
negative z-direction, the collision always occurs on the
front side of the cuboid. So it is sufficient to use a rect-
angle instead of a cuboid, which simplifies the needed
intersection test.

We use the separating axis theorem (SAT, [9]) for col-
lision detection. It says that two convex polyhedra do
not collide if it is possible to find a plane that separates
them. Or in other words: Two convex polyhedra do not
collide if there is an axis for which the projection of the
two polyhedra do not overlap. The separating axis is
perpendicular to the separating plane. It is sufficient to
check only a small set of directions D which consists
of the two normal vectors of the triangle and rectangle
and the six pairwise cross products of the edges. Fur-
thermore, it is also necessary to check the five normals
of the edges which lie in the same plane as the triangle
respectively the rectangle. This is due to the fact that
when triangle and rectangle are located within the same
plane, the cross product of the edges results in the zero
vector.

First we assume that both the triangle and the rectangle
are fixed in space and set a condition to check whether
they collide. Let o € R? be the barycenter of the rectan-

Computer Science Research Notes

103

WSCG2020 Proceedings

gle and hy, hy € IR3 its half-axes. We get a collision iff
for all directions d € D it holds

dmin — 1 < dTO <dmax +r (3)
with
ro=|d"h+1|d" hyl,
Aimin min{d"a, d"b, d"c} and
dnax = max{d'a,d"b,d"c}.

In the last paragraph we assumed that both the triangle
and the rectangle are fixed in space. Now, the triangle
stays fixed while the rectangle can be moved along the
ray s(t) = p+t-u. Consequently, the center of the rect-
angle changes to o = p+1 - u, which leads to an adjusted
inequality (3), i.e. for all d € D it must hold

din—r <d" (p+1-1) < dmax +7. (4)
An intersection interval is obtained for each direction
to be checked. Concerning our former simplification to
use a rectangle rather than a cuboid, we have to increase
the intersection intervals by the length of the cuboid in
z-direction. By forming the intersection of all these in-
tervals, we obtain the interval in which no separating
plane can be found. This interval is equivalent to the
intersection of the ray with the Minkowski sum.

3.3 The Minkowski Sum of two 3D
meshes

Finally, we can calculate the Minkowski sum of two
arbitrary 3D meshes. Our approach divides one of
the 3D meshes into single triangles and calculates the
Minkowski sum of a 3D mesh and an individual trian-
gle incrementally. We form the union of one resulting
Minkowski sum with the ones previously calculated.

Since we use a GPU, the triangles of the 3D mesh are
treated separately. Thus, we can adjust inequality (4)
introduced in the last section to perform a dynamic in-
tersection test between two triangles 71 = T;,,,, and
T = Ty,p,c,- This leads to

dV —a® < daT(prr-uy<d® —al), 5)
with
d") = min{d"a;, d b, d ¢;} and
dily = max{d'a,d b, d ¢}, i=1,2.

The directions d € D we have to check are the two nor-
mals of the triangles, the nine pairwise cross products
of the edges and the six normals of the edges, which
are lying in the same plane as the triangles to cover the
degenerated case. After intersecting all these resulting
intervals, we obtain the intersection interval of the ray
with the Minkowski sum.

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

4 APPLICATIONS

After explaining the theoretical background, we now
focus on some practical applications. Furthermore we
will evaluate the runtime of our algorithm. All our tests
were conducted on a system with an Intel Core i7 pro-
cessor with 2.5 GHz, 16 GB RAM and an NVIDIA
GeForce GTX 1070 GPU. The runtime of the algo-
rithm is affected by the orientation of the individual
surfaces with respect to the image plane. The reason
for this is that a rectangle is generated in the geom-
etry shader whose size corresponds to the sum of the
bounding boxes of the two objects projected into the
image plane. To eliminate this factor from the compar-
isons, the runtime is considered in relation to the num-
ber of fragments processed. For the runtime analysis of
the different applications, a window size of 500 x 500
pixels is used as default. In general, doubling the win-
dow size in both the x- and y-directions leads to a fac-
tor of four of the processed fragments. The execution
of our algorithm with doubled window sizes confirmed
that the runtime is almost quadrupled.

4.1 Fixed radius inset/offset computation

The algorithm described in 3.1 calculates the variable-
radius offset surface. Of course this approach can also
be used to compute the special case of a fixed radius
offset. For evaluating the approximation error of our
method, we use a 3D mesh of a wooden puzzle. Figure
2 displays the original puzzle (top left) and the exact
offset surface (top right) with an offset radius of 0.2.
To compare our approximation error with the exact off-
set surface, we calculate the Hausdorff distance with a
low resolution approximation respectively a higher res-
olution approximation (Figure 2 bottom). Therefore,
the Hausdorff distances are linear interpolated between
dark blue and red (see Figure 2 lower right), while dark
blue parts correspond to a Hausdorff value of O and red
parts to a Hausdorff value of at most one percent of the
offset radius (2¢3). By comparing the lower left and
middle part of Figure 2, one can see, that the approxi-
mation error of our method can become arbitrary small
by refining the approximation resolution.

In addition to the offset calculation, our algorithm is
also suited to simultaneously calculate an inset sur-
face. Figure 3 displays these calculations for the al-
ready mentioned wooden puzzle.

4.2 Forensics

The main application for our algorithm is facial recon-
struction. Therefore, we calculate the variable-radius
offset surface of a given model skull. Gietzen et al.
[10] developed an automatic approach for facial recon-
struction based on dense statistics of FSTT. Computer
tomographic data is used to generate a 3D model of
a skull. Afterwards, landmark points are mapped to a

Computer Science Research Notes

104

WSCG2020 Proceedings

/
=

IO

Figure 2: Original puzzle (top left), exact offset surface
(top right), low poly approximation (lower left), high
poly approximation (lower middle) with color bar of
error measurement (lower right).

L

Figure 3: Offset (left) and inset (right) approximation

given model skull for which the average distance be-
tween the bones and the skin is known for each vertex.
With respect to these vertex-radius pairs, [10] generate
a sphere mesh (see [18]) which was further improved
by Achenbach et al. [1].

If FSTT data is understood as radii at the vertex points,
then our approach can be used to calculate a facial re-
construction in an efficient manner by using a 3D mesh
representation of the skull. Figure 4 shows the result
of our algorithm. On the top the model skull is shown,
while on the bottom the result of the variable-radius off-
set surface reconstruction using the FSTT is displayed.

To compare our approach to [1], we need to generate a
new 3D mesh of the facial reconstruction. Therefore,
we use a modified version of the marching cubes algo-
rithm (see [15]). Marching cubes extracts a triangular
mesh of an isosurface from a three-dimensional discrete
scalar field by calculating the intersection points of this
isosurface with the edges of a voxel. We adapted this

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Figure 4: Facial reconstruction (bottom) of a skull
(top).

algorithm so that it works with our representation. The
intersection points can be read directly from our repre-
sentation of the variable-radius offset surface.

The three calculations of the variable-radius offset sur-
face need 6 seconds, while marching cubes takes an ad-
ditional 18 seconds. So we need 24 seconds to perform
a facial reconstruction with our approach, while the ap-
proach presented in [1] takes 67 seconds on an Intel
Xeon CPU (4 x3.6Ghz).

The runtime of the facial reconstruction depends on the
chosen resolution. We choose a resolution of 1 mm per
voxel, while [1] use a resolution of 2 mm per voxel. So
our approach is almost 3 times faster, while at the same
time allowing twice the resolution.

The upper graph in Figure 5 depicts the runtime of the
fixed-radius offset surface calculation of a skull with
approximately 138,000 triangular surfaces depending
on the relative offset radius compared to the diagonal
L, of the bounding box. Taking a closer look at the
curve, one can assume that it matches with a power
function of the kind y; = ¢-x{. More detailed inves-
tigations show that the exponent corresponds nearly to
the value 1.5. This means that a doubling of the radius
does not lead to a complete quadrature of the runtime.
The lower graph in Figure 5 shows the runtime of the
calculation of a variable-radius offset surface of a skull.
The runtime is shown in dependency of the number of
processed fragments. The curve is almost linear from
about 200 fragments with a slope of 140 ms per 100
million fragments.

Computer Science Research Notes
CSRN 3001

105

WSCG2020 Proceedings

4500

3500

3000

2500

time [ms]

1500 -

1000 -

500 -

008 01 012 014
relative offset radius [r / L]

0.06

variable-radius offset surface —s—
2000

1800

1600 -

1400 -

1200 |

1000 -

800 -

600 -

400 -

200 -

0

1 1 .
600 800 1000
fragments [millions]

L L
0 200 400 1200

Figure 5: Top: Runtime of the fixed-radius offset sur-
face depending on its relative radius. Bottom: Runtime
of the variable-radius offset surface

4.3 Packing problems

Packing problems are a kind of optimization in which a
number of objects are packed collision-free into a con-
tainer. As an real world example we choose the pack-
ing of standardized cuboids into a trunk to determine
its volume. There are two different standards to cal-
culate this volume - the European and the American
standard. The American standard is described in the
SAE J1100 standard [17]. It requires to place a set of
different sized cuboids in the trunk to determine its vol-
ume. Ding and Cagan [8] used extended pattern search
to solve this problem with respect to the SAE standards.

In our work, we choose the European standard, which
is described in the DIN standard 70020-1 [4] and ISO
3832 [5], but our approach can be used with the Amer-
ican standard as well. To determine the volume of a
trunk we have to calculate the maximum amount of
standardized cuboids measuring 50 x 100 x 200 mm
which can be placed collision-free inside the trunk.
This can be done by physically packing these cuboids
or by an algorithmic approach. Eisenbrand et al. [6] de-
veloped an algorithm to solve this problem by discretiz-
ing the trunk geometry using a three-dimensional cubic
grid. They used different greedy algorithms and heuris-
tics to determine a maximum amount of axis-oriented
cuboids which can be placed collision-free inside the
cubic grid. In [7], they extended this approach by al-
lowing continuous positions and orientations while us-
ing a simulated annealing algorithm to solve this prob-
lem. This randomized algorithm selects a lot of ran-
dom positions inside the trunk where it tries to place
the cuboids. Each time, it has to decide whether this
position leads to a collision with the trunk boundary

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3001

which is the bottleneck of this algorithm. This is equiv-
alent to decide whether the given position is part of the
Minkowski sum of the cuboid and the trunk. We only
allow axis-oriented cuboids. Therefore, we have to cal-
culate six different Minkowski sums, one for each dif-

ferent orientation. The calculation of each Minkowski
sum can be done in real-time.

Using our data structure to decide whether a given po-
sition is part of the Minkowski sum corresponds to a
simple look up in a list of sorted intervals. This can be
done in a quasi constant time. Figure 6 shows the result
of the packing algorithm using our representation of the
Minkowski sum of a trunk and a standardized cuboid.
Our approach can be used in all algorithms that pack
axis-oriented DIN- or SAE-cuboids into a trunk. These
can benefit from our method of collision detection be-
tween cuboid and trunk geometry.

o,

] g\v‘
i
s
oo

o

Figure 6: Result of a packing algorithm based on a
trunk geometry

5 CONCLUSION AND FUTURE
WORK

In this paper we presented a new method to approxi-
mate the variable-radius offset surface. Our implemen-
tation utilizes the GPU, which, due to its parallel func-
tionality, is well-suited to perform similar calculations
simultaneously. We use a set of straight lines over a
two-dimensional grid to represent the variable-radius

Computer Science Research Notes

106

WSCG2020 Proceedings

offset surface. Applying our algorithm to determine
three orthogonal representations, we are able to gener-
ate a new triangular mesh of the variable-radius offset
surface by adapting the marching cubes algorithm. Be-
cause the focus of our work was on developing an algo-
rithm for calculating the variable-radius offset surface,
the marching cubes algorithm is not optimized yet. Op-
timizing the marching cubes algorithm contains a large
potential of speed improvements and could be done in
further research. Our algorithm also allows the fast cal-
culation of classical Minkowski sums between a trian-
gular mesh and another object with a relatively small
description complexity. Further improvements could
focus on optimizing the implementation for general tri-
angle meshes.

We demonstrated the value of our algorithm on three
different applications. First, we applied our algorithm
to offset and inset computation and showed, that the
approximation error of our method can become arbi-
trarily small. Second, we demonstrated how to use our
method for facial reconstructions in a forensic context.
We compared our method with [1] and demonstrated
that it provides a clear speed advantage while allowing
a higher resolution. Third, we apply our algorithm to
solve packing problems. As an example we determine
the trunk volume by packing axis-oriented standardized
cuboids. Therefore, we use the the Minkowski sum
representation presented here for collision detection in
quasi constant time. With the approach presented here
we can calculate the Minkowski sum of the trunk ge-
ometry and axis-oriented cuboids in a few milliseconds
and use them to pack standardized cuboids into a trunk
without collision with the boundary.

6 REFERENCES
[1] Jascha Achenbach, Robert Brylka, Thomas Gi-
etzen, Katja zum Hebel, Elmar Schomer, Ralf
Schulze, Mario Botsch, and Ulrich Schwanecke.
A Multilinear Model for Bidirectional Craniofa-
cial Reconstruction. In Puig Puig et. al., editor,
Eurographics Workshop on Visual Computing for
Biology and Medicine, pages 67-76. The Euro-
graphics Association, 2018.

Jules Bloomenthal and Ken Shoemake. Convo-
lution surfaces. SIGGRAPH Comput. Graph.,
25(4):251-256, July 1991.

Marcel Campen and Leif Kobbelt. Polygonal
boundary evaluation of minkowski sums and

swept volumes. Computer Graphics Forum,
29(5):1613-1622, 2010.

Deutsches Institut fuer Normung e.V. DIN 70020
part 1, road vehicles; automotive engineering; di-
mensional terms, 02 1993.

(2]

(3]

(4]

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

(5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

CSRN 3001

Deutsches Institut fuer Normung e.V. ISO 3832,
passenger cars - luggage compartments - method
of measuring reference volume, 06 2002.

Quan Ding and Jonathan Cagan. Automated trunk
packing with extended pattern search. SAE Tech-
nical Papers, 03 2003.

Friedrich Eisenbrand, Stefan Funke, Andreas Kar-
renbauer, Joachim Reichel, and Elmar Schomer.
Packing a trunk - now with a twist! International
Journal of Computational Geometry & Applica-
tions, 17(05):505-527, 2007.

Friedrich Eisenbrand, Stefan Funke, Joachim Re-
ichel, and Elmar Schomer. Packing a trunk. In
Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest, Hungary, September 16-
19, 2003, Proceedings, pages 618-629, 2003.
Christer Ericson. Real-time collision detection.
Morgan Kaufmann, 2007.

Thomas Gietzen, Robert Brylka, Jascha Achen-

bach, Katja zum Hebel, Elmar Schomer, Mario
Botsch, Ulrich Schwanecke, and Ralf Schulze.

A method for automatic forensic facial recon- é
struction based on dense statistics of soft tissue 2
thickness. PLOS ONE, 14(1):1-19, 01 2019. 5
Peter Hachenberger. Exact minkowksi sums of 3
polyhedra and exact and efficient decomposition g
of polyhedra into convex pieces. Algorithmica, 19
55(2):329-345, 2009. }é
Min-Ho Kyung, Elisha Sacks, and Victor 13
Milenkovic. Robust polyhedral minkowski sums }g

with gpu implementation. Computer-Aided De- 16
sign, 67:48-57, 2015. b
Wei Li and Sara McMains. Voxelized minkowski
sum computation on the gpu with robust culling. 21
Computer-Aided Design, 43(10):1270-1283, 22
2011.

Jyh-Ming Lien. A simple method for computing 24
minkowski sum boundary in 3d using collision 25
detection. In Algorithmic foundation of robotics »;
VIII, pages 401-415. Springer, 2009.

William E. Lorensen and Harvey E. Cline. March- 28
ing cubes: A high resolution 3d surface construc- »
tion algorithm. SIGGRAPH Comput. Graph., 30
21(4):163-169, August 1987. »
Lin Qun and J. G. Rokne. Variable-radius offset 22
curves and surfaces. Mathematical and Computer 35
Modelling, 26(7):97 — 108, 1997. 36
Society of Automotive Engineers. SAE J1100, 37
motor vehicle dimensions, 11 2009.

18
19

23

38
Jean-Marc Thiery, Emilie Guy, and Tamy
Boubekeur. Sphere-meshes: Shape approxima-
tion using spherical quadric error metrics. ACM
Transactions on Graphics, 32(6):1 — 12, 2013.

39

40
41
42
43

107

Computer Science Research Notes

WSCG2020 Proceedings

[19] Anastasia Tkach, Mark Pauly, and Andrea

Tagliasacchi. Sphere-meshes for real-time hand
modeling and tracking. ACM Trans. Graph.,
35(6), November 2016.

[20] Gokul Varadhan and Dinesh Manocha. Accu-
rate minkowski sum approximation of polyhedral
models. In 12th Pacific Conference on Computer
Graphics and Applications, 2004. PG 2004. Pro-
ceedings., pages 392—401. IEEE, 2004.

[21] Charlie CL Wang and Dinesh Manocha. Gpu-
based offset surface computation using point sam-
ples. Computer-Aided Design, 45(2):321-330,
2013.

[22] Jason C Yang, Justin Hensley, Holger Griin, and
Nicolas Thibieroz. Real-time concurrent linked
list construction on the gpu. In Computer Graph-
ics Forum, volume 29, pages 1297-1304. Wiley
Online Library, 2010.

A SHADER IMPLEMENTATION

#version 450 core

layout (triangles) in;

layout (triangle_strip , max_vertices = 6) out;

layout (std430, binding=3) buffer data_buffer {

float radians[]; }:
in VS_OUT {
int index;
} vdatal[];
out GS_OUT {
vec3 vertices [3];
float id[3];

} data;

// uniform variables: zoom, uMMat, uVMat, uPMat

void main() {

vecd hp[3];
vec3 p[3];
for(int i=0; i<3; i++) {

data.vertices[i] = (uMMat * gl_in[i].
gl_Position).xyz;

data.id[i] vdata[i].index;

hp[i] uPMat * uVMat * uMMat % gl_in[i].
gl_Position;

plil = hp[i].xyz/hp[i].w; }

float radius_ = max(radians[vdata[O].index], max

(radians[vdata[1].index], radians|[vdata[2].

index]));

vecd radius = uPMat x vecd (zoomxradius_ , zoomsx

radius_, 0, 1);

float min_x = min(p[0].x, min(p[1l].x, p[2].x));

float max_x = max(p[0].x, max(p[l].x, p[2].x));

float min_y = min(p[0].y, min(p[1].y, p[2].y));

float max_y = max(p[0].y, max(p[l].y, p[2].y)):

vecd s = vecd(min_x — radius.x, min_y — radius.y

, 0, 1)

vecd t = vecd(max_x + radius.x, min_y — radius.y
0, 1)

vecd u = vecd(min_x — radius.x, max_y + radius.y

, 0, 1)

vecd v = vecd4(max_x + radius.x, max_y + radius.y

, 0, 1)

gl_Position
gl_Position
gl_Position

s; EmitVertex () ;
t; EmitVertex () ;
u; EmitVertex ();

O 0NN A WN—

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

CSRN 3001

EndPrimitive () ;

gl_Position =
gl_Position = v;
gl_Position = u;
EndPrimitive () ;

t; EmitVertex () ;
EmitVertex () ;
EmitVertex () ;

Listing 1: Essential parts of the geometry shader

#version 450 core

layout (std430, binding=1) buffer offset_data {
int intervals[]; };

layout (std430, binding=3) buffer data_buffer {
float radians|[]; };

layout (std430, binding=5) buffer shader_error {
int error[4]; };

in GS_OUT ({
vec3 vertices [3];
float id[3];

} data;

// uniform variables: uMMat, uVMat, uPMat, ulnvVMat
, ulnvPMat, width, height, lod,
decimalPrecision

vecd intercept_points[7], normals([7]; // ray surface
intersections

void mutex(int t1, int t2, uint i) {
int max_value = 5000;
bool done = false;
while (!done && max_value— > 0) {

if (atomicCompSwap(intervals[i], 0, 1) == 0)
{
// insert interval [tl, t2] into
interval list at index i, see section 3

save_interval (t1, t2, i);
atomicExchange (intervals[i], 0);
done = true; }
}
if (max_value == 0)
atomicExchange(error [0],

1)

check_t(veed t[7],
bool intersection =
int idx = —1;

uint i) {
false ;

for (int i = 0; i < t.length();
if (t[i]l.z !'= —1) {
intersection =

break; }

i++) {
true ;

}
if (intersection
discard;

false)

float
float

t_small =
t_big =

infinity ;
—infinity ;

for (int j = 0; j < t.length();
if (t[jl.z == -1
continue;
t_small = min(t_small ,
if (t[jl.y > t_big) {
t_big = t[jl.y;
idx = j;)

i+

t[jl.x);

}

if (t_small > t_big)
discard;

mutex (int (floor (t_small x decimalPrecision)),
int(ceil (t_big x decimalPrecision)), i);

return idx;

64 void main() {

103

108

Computer Science Research Notes

}

// Build triangle normal

vec3d e0 = data.vertices[l] — data.vertices [0];
vec3 el = data.vertices[2] — data.vertices[0];
vec3d e2 = data.vertices[l] — data.vertices [2];
vec3 n_triangle = normalize(cross(e0, el));

vecd ul = ulnvVMat * ulnvPMat * vecd (0, 0, —1,
0);

vecd u = normalize(ul.xyz); // view direction
uint posX = uint(gl_FragCoord.x);

uint posY = uint(gl_FragCoord.y);

uint idx = (posY * width + posX) * lod * 2;
vecd pl = ulnvVMat % ulnvPMat * vecd ((2.0f =
posX)/width — 1, (2.0f % posY)/height — 1, 0,
1)

veed p = pl.xyz / pl.w;

// Intersections

vecd tmp[7]; // store depth

intersections

for (int i = 0; i < tmp.length(); i++) {
tmp[i] = vee3(0, O, ;
intercept_points[i] =

values of

)3

vec3 (0, 0, 0);
}

// see section 3.1 for detailed intersection
tests

intersect_triangle (p, u, n_triangle, tmp[O0]);

intersect_sphere(p, u, 0, tmp[l]);
intersect_sphere(p, u, 1, tmp[2]);
intersect_sphere(p, u, 2, tmp[3]);
intersect_cone(p, u, 0, 1, tmp[4]);

intersect_cone(p, u,
intersect_cone(p, u,

2, 0, tmp[5]);
1, 2, tmp[6]);

// union of intervals; find
point in view direction
int min_idx = check_t(tmp,

index of nearest
idx) ;

vec4d ndc =
[min_idx], 1);
gl_FragDepth = (1 + ndc.z)/2;

vec3d normal_ = normalize (normals[min_idx]);

vec3 1Dir = normalize(u); // light direction
FragColor = vec4 (max(dot(1Dir, normal_) ,0.0)x*
vec3(0.94), 1.0);

108

Listing 2: Essential parts of the fragment shader

WSCG2020 Proceedings

uPMat * uVMat * vecd4(intercept_points

	2020-Full-Temp-6 99
	2020-Full-Temp-6 100
	2020-Full-Temp-6 101
	2020-Full-Temp-6 102
	2020-Full-Temp-6 103
	2020-Full-Temp-6 104
	2020-Full-Temp-6 105
	2020-Full-Temp-6 106
	2020-Full-Temp-6 107
	2020-Full-Temp-6 108

