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ABSTRACT
CSG trees are an intuitive, yet powerful technique for the representation of geometry using a combination of
Boolean set-operations and geometric primitives. In general, there exists an infinite number of trees all describing
the same 3D solid. However, some trees are optimal regarding the number of used operations, their shape or
other attributes, like their suitability for intuitive, human-controlled editing. In this paper, we present a systematic
comparison of newly developed and existing tree optimization methods and propose a flexible processing pipeline
with a focus on tree editability. The pipeline uses a redundancy removal and decomposition stage for complexity
reduction and different (meta-)heuristics for remaining tree optimization. We also introduce a new quantitative
measure for CSG tree editability and show how it can be used as a constraint in the optimization process.
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1 INTRODUCTION
Constructive Solid Geometry (CSG) trees are a pow-
erful representation scheme for 3D geometry and an
important building-block of 3D modelling software
[Req80]. While the creation, reconstruction and
conversion from other representations of CSG trees has
been covered in the literature, few works deal with the
optimization of a given tree.
The nature of CSG tree expressions as a combination
of geometric primitives (so-called halfspaces) with
Boolean set-operations (union, intersection, com-
plement) suggests a deeper investigation of related
methods from switching function minimization. This
paper investigates an adaption of already proposed, as
well, as newly developed methods for the CSG tree
optimization problem and extends them to a robust
and flexible pipeline. Furthermore, it introduces the
idea that CSG tree optimization does not have to be
restricted to the reduction of the tree size but should
include improvements to the tree’s editability.
We consider our CSG tree optimization pipeline as
a solution to the following problems: Given a hand-
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modeled CSG tree with sufficient complexity, users
have difficulty keeping track of potentially redundant
parts. An automatic, but manually triggered, optimiza-
tion procedure comes in handy. Furthermore, automatic
CSG tree reconstruction methods [FP16, WXW18]
might result in trees that are not optimal in size and
hard to edit manually. Thus, our method can be
beneficial in this scenario as well.
This paper makes the following contributions:

• The description of a comprehensive pipeline for op-
timizing the editability of a CSG expression,

• A novel, sampling-based tree size optimization pro-
cedure suitable for Quantum Annealing hardware,

• A recursively defined measure of spatial subtree
proximity as an indicator for CSG tree editability,

• A multi-objective optimization using a Genetic Al-
gorithm that aims to minimize the CSG expression
size and maximize its proximity value in order to
improve tree editability.

The paper is organized as follows: Section 3 gives basic
definitions and concepts. Section 2 provides references
to related works, whereas Section 4 defines the problem
to solve. Our approach is described in Section 5 and
evaluated in Section 6. Section 7 concludes the paper.

2 RELATED WORK
Construction of CSG trees from the Boundary Repre-
sentation (B-Rep) of a solid was considered by Shapiro
and Vossler in [SV91a, SV91b, SV93]. The approach is
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based on: identifying a set of halfspaces sufficient for
representing the input solid, building a CSG expression
by considering all products of halfspaces, or their com-
plement, that are inside the input solid (so-called fun-
damental products), and minimizing this expression. In
particular, [SV91a] considers different approaches for
the minimization of two-level expressions, either com-
ing from switching theory [Qui52, MJ56, O’R82], or
based on geometric considerations.
Related to these works, Buchele and Crawford [BC04]
propose an algorithm for producing a CSG expression
from the Boundary Representation of a solid by con-
sidering early factoring of dominant halfspaces. Such
a factoring should help in limiting the size of the pro-
duced CSG expression. Andrews proposes to simplify a
CSG expression (obtained from a B-Rep) by removing
from each fundamental product cell, (spatially) distant
primitives [And13]. The reason is that distant primi-
tives may be viewed by the user as unrelated to a given
fundamental product cell, and thus could lead to unin-
tuitive results.
Recently, works on reconstructing a CSG expression
from a point-cloud have become popular, see for ex-
ample [FP16, WXW18] , among others. The approach
described in [FP16] tries to minimize the size of the
CSG expressions produced by a GA by penalizing large
expressions in the objective function. The method pro-
posed in [FFGLP19] is using multi-objective optimiza-
tion to prevent the growth of the generated CSG expres-
sions. It also uses a decomposition scheme that pre-
vents spatially distant primitives to be used in unrelated
CSG sub-expressions.
Other works related to the optimization, or manipula-
tion, of CSG expressions, such as [Ros11], try to im-
prove the rendering time of the model, and do not nec-
essarily help in minimizing the size of the expression or
improving its editability.

3 BACKGROUND
3.1 CSG Tree Representation
3.1.1 Formal Representation
We follow the formal definition of CSG trees from
Shapiro et al. [SV91a]: Given a solid’s point-set S,
its boundary ∂S consists of patches of halfspaces HS.
Halfspaces are regular sub-sets of the universal point-
set W usually described by signed distance functions
(SDF) FH : {x ∈ R3 : FH(x) = 0}. A CSG tree ex-
pression Φ (in the following, upper-case Greek letters
are used for CSG tree expressions) consists of half-
space literals {h0,h1, ...} and symbols for regularized
set-operations {∪∗,∩∗,\∗,−∗}. Applying Φ to the set
of halfspaces HS results in a CSG representation Φ(HS)
of S iff |Φ(Hs)|= S, where | · | denotes the point-set in-
duced by a CSG representation.
A CSG representation of S is in disjunctive normal form

(DNF) if it contains a sum (∪∗) of halfspace prod-
ucts (∩∗-combined halfspaces or negated halfspaces,
so-called implicants). If each implicant of a DNF ex-
pression contains all halfspaces (or their negations), it
is in a so-called disjunctive canonical form (DCF). In
that case, an implicant is called canonical intersection
term (CIT) or fundamental product (FP). For example,
the universal set W can be decomposed in 2n CITs in
case of n halfspaces being used.
An implicant Ψ is a so-called prime implicant of S if
|Ψ| ∈ S and the removal of a single halfspace from Ψ

results in |Ψ| /∈ S. A dominant halfspace (DH) g ∈ HS
is a halfspace for which S = g∪∗ S is always true (g is
then also a prime implicant of S).
Where necessary, we use the following abbreviations
for CSG expressions (halfspaces and set-operations):
|h0|∪∗ |h1| := h0+h1, |h0|∩∗ |h1| := h0 ·h1, \∗|h0| := h0
and |h0|−∗ |h1| := h0−h1.

3.1.2 SDF-based implementation

In order to compute the point-set of a CSG represen-
tation (e.g., |Φ(Hs)|) we use an SDF-based approxi-
mation with min- and max-functions [Ric73, PASS95,
Sha07]:

• Intersection: |Φ|∩∗ |Ψ| := max(FΦ,FΨ)

• Union: |Φ|∪∗ |Ψ| := min(FΦ,FΨ)

• Complement: \∗|Φ| :=−FΦ

• Difference: |Φ|−∗ |Ψ| := max(FΦ,−FΨ)

Here, FΦ and FΨ are the SDFs corresponding to expres-
sion Φ and Ψ. We assume, as a convention, that F < 0
in the interior of the corresponding solid S.
Note that min- and max-functions are not regularized
set-operations in the strict sense [Sha99] but a sufficient
approximation for our purposes.

3.2 Metaheuristics for Combinatorial
Problems

3.2.1 Genetic Algorithms

Genetic Algorithms (GA) are metaheuristics for solv-
ing discrete or continuous optimization problems. The
process is inspired by biology and consists of evolv-
ing a population of creatures. Each creature represents
a candidate solution to the problem. Starting from a
randomly initialized population, a GA produces an up-
dated population at each iteration by: a) ranking crea-
tures according to a fitness function, b) generating new
creatures by mutating a selected creature from the pre-
vious population, or by combining a selected pair of
creatures from the previous population, c) selecting a
few creatures to be preserved into the next population
(elitism). Selection is performed based on the rank of
each creature. The process is iteratively repeated until
a termination criterion is met.
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3.2.2 Quantum Annealing

Quantum Annealing (QA) is another metaheuristic for
solving (in general, discrete) optimization problems. It
is based on quantum physics to find low energy states
of a system corresponding to the optimal solution of
a problem. The QA algorithm is described by a time-
dependent Hamiltonian H (t):

H (t) = s(t)HI +(1− s(t))HP

The QA process starts in the lowest-energy state of a
so-called initial Hamiltonian HI . During the anneal-
ing process, the problem Hamiltonian HP is introduced
and the influence of the initial Hamiltonian is reduced
(described by s(t), which decreases from 1 to 0). At the
end of the annealing process, one ends up in an eigen-
state of the problem Hamiltonian, which actually en-
codes the objective function of the problem. If this tran-
sition is executed sufficiently slowly, the probability to
find the lowest energy state of the problem Hamiltonian
is close to 1, w.r.t the adiabatic theorem [AL18].
To perform QA on D-Wave Systems Quantum Anneal-
ing hardware, one needs to encode the problem (HP) in
a so-called Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem, which is a unifying model for
representing a wide range of combinatorial optimiza-
tion problems. The functional form of the QUBO the
quantum annealer is designed to minimize is:

min xT Qx with x ∈ {0,1}nQ , (1)

where x is a vector of binary variables of size nQ, and
Q is an nQ×nQ real-valued matrix describing the rela-
tionship between the variables. Given the matrix Q, the
annealing process tries to find binary variable assign-
ments to minimize the objective function (Eq. 1).

4 PROBLEM STATEMENT
We focus on the optimization of a CSG tree’s editabil-
ity: Given a solid’s point-set S, a halfspace set HS and a
CSG tree expression Φ with |Φ(HS)|= S, find the CSG
tree expression Φopt with the best editability which is
assumed to be determined by two quantitative metrics:

• Size: The amount of literals and operations in Φopt .

• Proximity: The ratio between the number of oper-
ations of Φopt whose operands imply point-sets that
overlap to the number of operations with operands
that imply disjoint point-sets. This property is de-
fined recursively as follows: Given a node Ψ of
Φopt , either Ψ is a leaf (an halfspace) or it has two
children (operands) Ψ1 and Ψ2 such that the implied
solids intersect (that is: |Ψ1|∩∗ |Ψ2| 6=∅).

A size-optimal tree has no redundant operands which
makes tree modification easier and a tree with a high
degree of proximity leads to more predictable behavior
when sub-trees are transformed spatially.

5 CONCEPT
The CSG tree optimization process is depicted in
Fig. 1: First, redundant sub-expressions are removed
(orange, Section 5.1). Then, a recursive decomposition
scheme is applied that further shrinks the expression
size (grey, Section 5.2). If an unoptimized expression
(solid) remains, it is optimized with a separate opti-
mization method (blue or purple, Section 5.3) which
results – after another run of the redundancy removal
method – in the final optimized CSG tree.

GA-based	optimization

redundancy	removal

DHs	found?

input	tree

decomposition

remaining	S?

Yes

No

sampling-based	optimization

Espresso

output	tree

GA

Quine-McCluskey

Set-Cover
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or

orreplace	DHs
with	empty	set

literal 

Yes

No

5.1

5.2

5.3.2

5.3.1

redundancy	removal
5.1

CIThierarchical or

CIThierarchical or

5.1.1 5.1.2

Figure 1: The proposed CSG tree optimization pipeline.

5.1 Redundancy Removal
Our redundancy removal approach is inspired by
a method described in [Til84]. It uses the spatial
information additionally given by the halfspaces used
in the CSG tree (e.g., a sphere’s location and radius):
• If the sets described by the operands (halfspaces or

subtrees) of an intersection operation do not have
elements in common, i.e., the operand sets do not
spatially overlap, the expression is replaced with the
empty set expression ∅.

• If the sets described by the operands of a union op-
eration are identical, the expression is replaced with
one of the operand expressions.

Empty set ∅ as well as universal set W expressions are
then replaced based on the following rules:
• If one operand of an intersection expression is the

empty set ∅, the expression is replaced with the
empty set.

• If one operand of an intersection expression is the
universal set W , the expression is replaced with the
other operand.

• If one operand of a union expression is the empty set
∅, the expression is replaced with the other operand.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3001

WSCG2020  Proceedings 

81



• If one operand of a union expression is the universal
set W , the expression is replaced with W .

In addition, the complement of a complement operation
is replaced with the operand of the inner complement
operation. The redundancy removal algorithm contin-
uously iterates over the whole CSG tree until no rule
applies anymore to the current result.
Especially relevant for the algorithm is the fast and ro-
bust evaluation of the empty set and identical set de-
cision algorithms. Since the identical set decision can
be expressed as an empty set decision (|Φ| = |Ψ| ⇐⇒
|Φ|∩∗ (\∗|Ψ|) =∅∧|Ψ|∩∗ (\∗|Φ|) =∅ ), an empty set
decision algorithm is sufficient.
We use a sampling-based approach: If the tree repre-
sents an empty set, its SDF value is positive (outside)
in the complete sampling domain. Two different sam-
pling strategies are proposed: hierarchical sampling and
CIT-based sampling.

5.1.1 Hierarchical Sampling
This sampling method is an Octree-based, hierarchical
sampling of the CSG tree’s SDF. The sampling point-
set is defined by the width, height and depth of the
axis-aligned bounding box (AABB) dimensions of the
used halfspaces (w0,h0,r0) and the user-defined mini-
mum sampling cell size (wmin,hmin,rmin). The coarse-
to-fine hierarchical sampling methodology, as depicted
in Fig. 2 allows for early stopping in case of a non-
positive SDF value. To further speed-up the process, a
lookup-table for already proven empty set expressions
is used.

Figure 2: Hierarchical sampling strategy. The space de-
fined by (w0,h0,r0) is consecutively subdivided in sub-
quadrants of sizes si = (

wi−1
2 ,

hi−1
2 ,

ri−1
2 ), i = 1,2, ... until

wi ≤ wmin ∨ hi ≤ hmin ∨ ri ≤ rmin. The center of each
quadrant is the sampling position (yellow, green, or-
ange). In the example, early stopping is possible since
the red-hatched area, which marks the non-empty vol-
ume, is sampled at quadrant size (w2,h2,r2) which is
one level above the smallest possible quadrant size.

5.1.2 CIT-Based Sampling
This sampling method uses a sampling point-set con-
sisting of a point for each CIT located inside the tree.

CITs are retrieved with the method explained in Sec-
tion 5.3.1. For each point we check if the tree’s SDF
is positive. The approach can potentially be faster than
hierarchical sampling since the used sampling point-set
is usually smaller.

5.2 Decomposition
The decomposition of a solid S (that is described by a
CSG tree Φ and halfspaces HS) as proposed in [SV91a]
is a tree expression that consists of a chain of halfspaces
from HS that either dominate S or S and a (potentially
empty) remaining solid Srem:

S = |((...(Srem⊕d1)⊕ ...)⊕d2)⊕dn|, (2)

where {d1, ...,dn} is the set of dominating halfspaces
and ⊕ is either + if the following halfspace dominates
S or − if it dominates S. This decomposition is a size-
optimal tree expression for S since each halfspace ap-
pears only once [SV91a]. For example, in Fig. 3, h0,h2
dominate S and h3 dominates S, resulting in the decom-
position S = |((h4−h0)−h2)+h3|. Here, Srem contains
h4 and h1 but since h1 has no impact on the result, Srem
equals h4 and thus is replaced in the result expression.
Please note that we use the example in Fig. 3 differently
than in Section 5.3.1: The solid shown is considered S,
which is decomposed to get Srem, while in Section 5.3.1
the solid shown is considered Srem which is then further
optimized.
Recursive Decomposition. If Srem is not empty, a size-
optimal expression for it has to be found. Therefore, a
(potentially not size-optimal) expression Φrem is com-
puted by replacing all appearances of previously found
dominating halfspaces in Φ with the empty set literal
and applying the redundancy removal method (see Sec-
tion 5.1). This is followed by another run of the decom-
position technique. This recursive process is continued
until either the current Srem is empty, or no more dom-
inating halfspaces can be found during decomposition.
In the latter case, an optimal expression for Srem has to
be found using different methods, see Section 5.3.
Sampling-Based Search for Dominant Halfspaces.
For the identification of the dominant halfspaces of S,
we propose two different sampling strategies as already
described in Section 5.1: Firstly, a hierarchical sam-
pling strategy similar to that proposed in Section 5.1.1
can be used. But instead of taking the whole AABB of
S as sampling volume, each halfspace h in HS is sepa-
rately tested using its corresponding AABB. If all sam-
pling points inside |h| are inside S as well, h dominates
S. If all sampling points inside |h| are not elements of
S, h dominates S. The early-stopping criteria is met if a
sampling point is in |h| but not in S. Secondly, a CIT-
based sampling strategy as discussed in Section 5.1.2
can be used.
Improving Proximity. Although decomposition can
result in size-optimal expressions, the editability crite-
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rion is also influenced by the proximity metric which is
not considered by the proposed decomposition method.
To overcome this deficiency, we propose a simple spa-
tial sorting scheme: The halfspaces in the chain of half-
spaces (Eq. 2) are arranged such that operands of ⊕ do
always spatially overlap (if possible).

5.3 Remaining Solid Optimization
After decomposition, there might be a remaining solid
Srem = |Φrem(Hrem)| left, for which an optimal expres-
sion has to be found. We investigate two optimization
methods: Firstly, a sampling-based technique that gen-
erates tree expressions in DCF form that are then opti-
mized using well-known two-level logic minimization
techniques (Quine-McCluskey [MJ56], Espresso logic
minimizer [BHMSV84]) and a new approach based on
a QUBO formulation of the Set Cover problem (Sec-
tion 5.3.1). Secondly, a GA-based method is proposed
that uses tree size and the proximity metric as part of its
objective function (Section 5.3.2).

5.3.1 Sampling-Based Optimization
Sampling. The AABB of Srem is sampled. For each
sample, the tree’s SDF is evaluated to decide if the
point is inside. If it is inside, each halfspace SDF in
Hrem is evaluated as well. If the sampling point is
located inside the halfspace, the halfspace is part of a
CIT. If not, then its complement is. Finally, the CIT
is added with a ∪∗ operation to the resulting DCF
expression ΦDCF . See Fig. 3 for an example.

Figure 3: Example of the sampling step. The red-
hatched area is the point-set to represent, {h0, ...,h4}
is the halfspace set Hrem. The grey dots indicate sam-
pling points outside the solid. The orange dots result in
the implicant h0 ·h1·h2·h3 ·h4 (0), the green dots in h0 ·
h1·h2·h3 ·h4 (1), the light blue dots in h0 ·h1·h2 ·h3 ·h4
(2) and the purple dots in h0 ·h1·h2 ·h3 ·h4 (3).

DCF Minimization. Besides the already mentioned
classic methods for DNF minimization (Quine-
McCluskey, Espresso logic minimizer), we propose
a third option: First, the prime implicants of ΦDCF ,
PDCF , are computed by directly applying the definition
of a prime implicant (see Section 3) to each CIT

in ΦDCF . Using the example of Fig. 3, the prime
implicants would be h3 and h0 ·h2 ·h4 (Note that we do
not consider decomposition for this example).
The problem of finding all relevant prime implicants
is then formulated as a Set Cover problem: The
set to cover, U , is the set of indices of all CITs
located inside |ΦDCF | (in Fig. 3: U = {0,1,2,3}).
Each prime implicant in PDCF covers a subset of
U resulting in a collection of subsets V with el-
ements Vk ⊆ U,1 ≤ k ≤ card(PDCF) (in Fig. 3:
V = {h3 : {2,3},h0 ·h2 ·h4 : {0,1,2}}). Within the Set
Cover problem, one has to find the smallest possible
number of subsets from V , such that their union is
equal to U . This problem was proven to be NP-hard
[Kar72]. In [Luc14] the QUBO formulation for the Set
Cover problem is given by:

HA = A
card(U)

∑
α=1

(
1−

card(PDCF )

∑
m=1

xα,m

)2

+

A
card(U)

∑
α=1

(
card(PDCF )

∑
m=1

mxα,m− ∑
k:α∈Vk

xk

)2

,

and

HB = B
card(PDCF )

∑
k=1

xk, (3)

with xk being a binary variable which is 1, if set Vk is
included within the selected sets, and 0 otherwise. xα,m
denotes a binary variable which is 1 if the number of se-
lected subsets Vk which include element α is m≥ 1, and
0 elseways. The first energy term in HA imposes the
constraints that for any given α exactly one xα,m must
be 1, since each element of U must be included a fixed
number of times. The second term in HA states that
the number of times that we declared α was included
is in fact equal to the number of subsets Vk we have
included with α as an element. A is a penalty value,
which is added on top of the solution energy, described
by H = HA +HB, if a constraint was not fulfilled,
i.e., one of the two terms are unequal to 0. Therefore
adding a penalty value states a solution as invalid. Ad-
ditionally, the Set Cover problem minimizes over the
number of chosen subsets Vk, as stated in (Eq. 3). For
a given problem instance, H is transformed into the
QUBO formulation required by QA hardware (Eq. 1)
and minimized.
Note that the prime implicant selection via Set Cover
is not needed if Hrem does not contain halfspaces that
fully contain other halfspaces and no separating half-
spaces [SV91a] are used. Furthermore, the sampling
step can be omitted if the input expression is already in
DNF form.

5.3.2 GA-Based Optimization
The methods described in Section 5.3.1 are two-level
minimization techniques, which in general do not re-
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sult in size-optimal trees [SV91a]. Moreover, other op-
timization goals like, for example, the proximity metric
are not considered. Their main advantages are a possi-
ble short execution time and the fact that non-optimality
of sufficiently small trees (e.g., after decomposition as
explained in Section 5.2) has usually smaller and thus
negligible negative effects on tree size and proximity.
In order to find possibly better trees (w.r.t. size and
proximity), the corresponding problem is formulated as
a combinatorial optimization problem over all possible
trees given a set of halfspaces Hrem and set-operations.
Let Φrem be the input CSG tree expression that needs to
be optimized. A GA is used to solve this optimization
problem. Each creature Φc in the population of the GA
represents a potential CSG tree expression. The same
mutation, crossover and selection as in [FP16] are used.
Additional details about the GA are provided below.
Initialization. The population is initialized with a mix-
ture of randomly generated trees with a maximum size
equal to the size of the input tree Φrem and copies of the
input tree.
Pre-processing. To reduce the computational effort of
evaluating the fitness function in the GA, we compute a
limited number of sample points. This is done by com-
puting the CITs of Φrem via sampling as described in
Section 5.3.1 with the difference that CITs that are lo-
cated outside of Φrem are considered as well. During
the sampling process, a point in each CIT is added to
the sampling point-set Sin if the corresponding CIT is
inside of Φrem. Otherwise, it is added to Sout .
Ranking. The fitness of a creature Φc corresponding to
a given CSG tree is given by

f (Φc) = α · fgeo(Φc)+β · fprox(Φc)+ γ · fsize(Φc),

where fgeo(), fprox() and fsize() are the geometric score,
the proximity score and the size score, respectively, and
α,β and γ are user-defined parameters. The geometric
score counts how many points from Sin are elements of
|Φc| and how many points from Sout are not in |Φc|:

fgeo(Φc) = fin(Φc)+ fout(Φc),

with

fin(Φc) =
1

card(Sin)
∑

s∈Sin

{
1, if |FΦc(s)| ≤ εp

0, otherwise

and

fout(Φc) =
1

card(Sout)
∑

s∈Sout

{
1, if |FΦc(s)|> εp

0, otherwise
,

where card(S) is the cardinality of the point-set S.
The proximity score tries to enforce that two operands
of a Boolean operation are spatially connected. It is an
implementation of the proximity metric (Section 4):

fprox(Φ) =
Prec(Φ)

#|Φ|
,

where #|Φ| is the number of nodes in the tree corre-
sponding to the creature Φ and the function

Prec(Φ)=

{
1, if Φ is a leaf node
Prec(Φ1)+Prec(Φ2)+∆(Φ1,Φ2) otherw.

,

where Φ1 and Φ2 are the two children of Φ (if it is not
a leaf node), and

∆(Φ1,Φ2) =

{
1 if |Φ1|∩∗ |Φ2| 6=∅
0 otherwise

.

Finally, the size score tries to favor the simplest (short-
est) possible CSG tree and corresponds to

fsize(Φc) =
#|Φrem|−#|Φc|− f min

size

f max
size − f min

size
,

where #|Φrem| and #|Φc| are the number of nodes in
the CSG trees Φrem and Φc, f min

size is the minimum and
f max
size the maximum tree size within the current itera-

tion’s population.
Termination. The GA terminates if either a user-
defined maximum number of iterations is reached or the
score does not improve over a number of iterations.

6 EVALUATION

6.1 Data Acquisition
We prepared 11 different, hand-crafted CAD models for
our experiments (see Fig. 4) with a complexity compa-
rable to models commonly used in CSG tree reconstruc-
tion tasks [FP16, DIP+18]. To simulate particular lev-
els of sub-optimality, we have implemented a generator,
which takes a CSG tree as input and iteratively adds re-
dundant parts at random positions in the tree, based on
the following strategies:
Copied Subtree Insertion (CSI): Insert a union or in-
tersection at a random position with both operands be-
ing copies of the subtree at that position.
Double Negation Insertion (DNI): Insert two chained
negations at a random position.
Distributive Law Insertion (DLI): Apply the distribu-
tive laws A(B+C) = (A ·B)+ (A ·C) or A+(B ·C) =
(A+B) · (A+C) to a random subtree.
Absorption Law Insertion (ALI): Apply the absorp-
tion laws A = A+(A ·B) or A = A ·(A+B)) to a random
subtree.
GA-based Redundancy Insertion (GRI): Use the GA
(Section 5.3.2) with negative size and proximity weight
to produce trees with redundant parts.
A particular run of the generator can be parameterized
by the tuple (Niter,PCSI ,PDNI ,PDLI ,PALI ,PGRI), where
Niter is the number of iterations of the generator and P...
are the probabilities of the insertion strategies. These
artificially introduced redundancies cover all sorts of
redundancies potentially appearing in CSG trees. Table
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6.1 lists properties of the input models and their gener-
ated inflated versions. Data set 1 uses all possible infla-
tion mechanisms with the same probability for 10 iter-
ations (10,1.0,1.0,1.0,1.0,1.0), data set 2 uses GA in-
flation only for 20 iterations (20,0.0,0.0,0.0,0.0,1.0).
All sampling techniques use a step size of 0.1.

6.2 Execution Times
For evaluating the execution time, we used a quad core
CPU @2.80 GHz and 16GB of RAM. Set covers are
computed without QA hardware acceleration.

6.2.1 Pipeline
For the pipeline steps Redundancy Removal and
Decomposition, different options are possible: a) de-
composition or b) the redundancy removal method can
use the hierarchical sampling strategy (0) or CIT-based
sampling (1) and c) redundancy removal can be used
(1) or not (0). Options a) - c) can be combined resulting
in 6 possible configurations. A particular configuration
is identified by a binary 3-tuple, e.g., (1,0,1) for de-
composition with CIT-based sampling and redundancy
removal with hierarchical sampling. All cases use
Espresso for the remaining solid optimizer. Results are
given in Fig. 5 and 6. For both data sets, CIT-based
sampling is inferior in any configuration due to its
processing time. The initial redundancy removal does
not have any positive impact on execution times as well
(exception: model 3 and model 10 in both data sets).

6.2.2 Remaining Solid Optimization
Results for data set 1 are given in Table 6.2.2. For
data set 2 results are similar and thus are not shown
due to space constraints. Overall the fastest method
is Espresso, followed by the Quine-McCluskey method
(exception: model 10 where Set Cover is faster). Within
the Set Cover method, the prime implicant generation
part is the most time expensive whereas solving the Set
Cover problem is neglectable (∼ 1-3ms). The slowest
method is the GA-based optimization with the excep-
tion of model 8, where Set Cover is the slowest.

6.3 Optimization Characteristics
All experiments use the pipeline configuration (0,0,1).

6.3.1 Pipeline
For both data sets, resulting size (Fig. 7) and proximity
(Fig. 8) for models 1, 3, 4, 5, 6, 7 and 9 are the same
for all methods since for these models, the remaining
solids are empty after decomposition and thus no re-
maining solid optimization is necessary.
For both data sets, the GA produces the best size results
(exception: model 11) but not always the best proxim-
ity results (e.g., data set 2, model 2). This can be ex-
plained by two factors: The GA’s objective function’s

size weight used in our experiments is greater than its
proximity weight (10 vs. 1) and larger trees have more
redundancies and thus tend to have higher subtree over-
lap resulting in higher proximity scores. This explains
as well the results of the Set Cover method which are
the worst in terms of tree size but among the best re-
garding proximity. Compared to the original, hand-
crafted input trees, resulting trees have equally good
or better size and proximity values for both data sets
(exception: size for model 8, data set 2). Also worth
mentioning is that the Quine-McCluskey method can-
not handle the size of model 8.

6.3.2 GA Specifics
For the GA, we used a population size of 150, a mu-
tation rate of 0.3, a crossover rate of 0.4 and a tourna-
ment selection k = 2. Objective function weights are
α = 50,β = 1,γ = 10. The maximum iteration count
is 1000, and after 500 iteration without score change,
the GA is terminated as well. Fig. 9 shows one of
the main advantages of the GA approach for remain-
ing solid optimization: It is possible to manually select
the best size/proximity trade-off solution for a particu-
lar use-case after the optimization process has finished.

7 CONCLUSION
In this paper, we proposed a flexible new pipeline for
the efficient optimization of a CSG tree’s editability.
We have evaluated different pipeline combinations
with a representative set of models.
It is possible to use the sampling-based optimization
method (Section 5.3.1) in situations where the input
expression is not known in advance (only the solid
point- and halfspace-set). In that case, another strategy
for inside-outside decisions would be needed.
Furthermore, the decomposition technique (Section
5.2) can be also used for the task of CSG tree recon-
struction from other geometry representations (e.g.,
point clouds or B-Rep representations). Therefore,
the dominant halfspace detection must be adapted
according to the geometry representation of the input
and the discussed recursion would end after the first
iteration without applied redundancy removal (which
is not possible without a given input tree). A GA-based
approach [FP16] (or the aforementioned variant of the
sampling-based optimization method) could be used to
find a tree expression for the remaining solid.

8 REFERENCES
[AL18] Tameem Albash and Daniel A Lidar.

Adiabatic quantum computation. Re-
views of Modern Physics, 90(1):015002,
2018.

[And13] James L Andrews. User-Guided Inverse
3D Modeling. PhD thesis, University of
California, Berkeley, 2013.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3001

WSCG2020  Proceedings 

85



Models (number of nodes, proximity score, (dimensions)) Data set 1 Data set 2
model1 (9, 0.75, (20.0×22.0×20.0)) (97, 0.442) (78, 0.35)
model2 (13, 0.833, (15.8×31.7×11.3)) (41, 0.952) (23, 0.727)
model3 (39, 0.474, (21.0×6.0×21.0)) (79, 0.675) (57, 0.536)
model4 (27, 1, (13.4×13.4×12.0)) (65, 0.97) (97, 0.708)
model5 (19, 0.667, (24.0×18.0×27.0)) (59, 0.645) (48, 0.76)
model6 (19, 0.556, (23.1×10.0×10.0)) (99, 0.667) (43, 0.857)
model7 (91, 0.706, (21.6×7.4×21.8)) (144, 0.725) (151, 0.728)
model8 (73, 0.722, (31.5×12.7×4.5)) (145, 0.74) (97, 0.813)
model9 (171, 0.471, (29.7×3.84×30.1)) (191, 0.51) (216, 0.519)
model10 (17, 0.875, (13.0×12.5×13.0)) (41, 0.864) (32, 0.563)
model11 (37, 0.789, (26.0×13.0×22.0)) (86, 0.894) (66, 0.8)

Table 1: Models and their inflated variants. For each data set, (number of nodes, proximity score) is depicted.

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5 (f) Model 6 (g) Model 7

(h) Model 8 (i) Model 9 (j) Model 10 (k) Model 11

Figure 4: Models used for the evaluation.
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Figure 5: Timings for different pipeline configurations using data set 1. For each model configurations from left to
right: (0,0,0), (1,0,0), (0,0,1), (0,1,1), (1,0,1) and (1,1,1).
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Figure 6: Timings for different pipeline configurations using data set 2. For each model configurations from left to
right: (0,0,0), (1,0,0), (0,0,1), (0,1,1), (1,0,1) and (1,1,1).
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(b) Data set 2

Figure 7: Ratio of input and output tree size for both data sets. The light blue bar ’Original’ indicates the size of
the initial hand-crafted expression.
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Figure 8: Ratio of input and output tree proximity for both data sets. The light blue bar ’Original’ indicates the
proximity of the initial hand-crafted expression.
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Figure 9: All trees representing the remaining solid produced by the GA for data set 2 with a geometric score of
1.0. The darker the point, the more trees have exactly this size/proximity combination. The red dot indicates the
input tree that represents the remaining solid, the green one the selected resulting tree.
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