
Application of concatenable queue for parallel
computational geometry algorithms

Vasyl Tereshchenko
Taras Shevchenko

National University of
Kyiv

Kyiv, Ukraine
vtereshch@gmail.com

Semen Chudakov
Taras Shevchenko

National University of
Kyiv

Kyiv, Ukraine
semen.chudakov7@gmail.com

ABSTRACT
This paper is devoted to the development of an algorithmic model that solves a set of interrelated computational ge-
ometry problems efficiently. To do this, an algorithmic environment with a unified data structure is created, which
allows to implement complex use cases efficiently with respect to required computational resources. We build the
environment based on the “divide and conquer” strategy. Once a convex hull is a key to a set of computational
geometry problems, we offer a concatenable queue data structure to maintain it. The data structure is in the form
of a modified balanced binary tree. This allows us to perform operations needed in algorithms for a set of problems
in O(log2 n) time. Furthermore we offer a way to execute the algorithms both sequentially and in parallel. In the
future the algorithmic environment can be improved to support other computational models with similar properties
for solving problems. As an example, the Voronoi diagram or the Delaunay triangulation can be considered.

Keywords
unified data structure, simulation problem, interrelated problems set, unified algorithmic environment, concaten-
able queue

1 INTRODUCTION

Nowadays, advanced computer simulations and visu-
alizations of complex scientific researches and large-
scale technical projects require to solve simultaneously
a set of problems. The core of this set are prob-
lems of computational geometry and computer graph-
ics. To solve such problems it is needed to create
suitable algorithmic frameworks that would yield ac-
curate results in real-time. Existing methods (ImageJ
[Ima19a], IMARIS [Ima19b], iLastic [SSKH11]), that
are based on a set of algorithms implementations or-
ganized in a package do not result in desirable effi-
ciency and accuracy. It is worth noting that there are
a lot of parallel algorithms designed to solve specifi-
cally certain computational geometry problems such as
in [ACG*88, AL93, AGR94, ACG89, BSV96, Che95,
CG88, GJ97, JaJ97, Rei93, Lee90]. Every such algo-
rithm requires its computational resources and is exe-
cuted independently from others. In such cases identi-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

cal steps, such as preprocessing and building data struc-
tures, are repeated several times.

Therefore, an important aim in developing algorithmic
models is to create a universal tool that would have a
means to solve efficiently a set of problems. This tool
should also execute identical steps of the algorithms
once and be able to represent the results of those steps
in the form of unified data structures. In [TA10] the no-
tion of a unified algorithmic environment is introduced,
which is based on the “divide-and-conquer” principle
and takes into account the aforementioned features of
the algorithms. In particular, preprocessing and divid-
ing the initial set of data to form a recursion tree is com-
mon for all problems and is executed only once. During
the merge stage, intermediate results are maintained in
a concatenable queue for the convex hull, Delaunay tri-
angulation and Voronoi diagram problems. This model
does not repeat identical computations, which yields
good performance.

In this article we first describe how the convex hull al-
gorithm for a static set of points is decomposed into
separate stages and incorporated into our unified al-
gorithmic environment model (UAEM). Then we de-
tailedly explain how we implement the concatenable
queue, which is used in the algorithmic environment.
Finally, we make a complexity analysis for the algo-
rithm and test its performance.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

56https://doi.org/10.24132/CSRN.2020.3001.7

2 UNIFIED ALGORITHMIC ENVI-
RONMENT

In this section we described the principle of how we de-
compose each algorithm into distinct stages. We then
use this partition to avoid repeating the computations
in the algorithmic environment. The principle will be
shown on a convex hull algorithm, which is similar to
the one described in [OL81]. The idea there is to di-
vide the hull into the left and right sub-hulls and repre-
sent them with two concatenable queues. This allows
to achieve O(log2 n) time for update operations such as
adding or removing points from the hull. We use the
approach to compute the convex hull for a static set of
points. Additionally, unlike in [OL81], a convex hull
here is divided into upper and lower sub-hulls.

2.1 Algorithms stages
The notion of a convex hull is simple. For a set of points
S in a k-dimensional space it is the smallest convex set
that comprises S. To solve such a problem means find-
ing a subset in S that is "skeleton" for the convex hull.
From now on, we will consider the case where k = 2.

To eliminate corner cases during the merging step we
need to ensure that there are no 3 points that lie on a
horizontal or vertical line. Points that violate this con-
dition are removed from S in the preprocessing stage.
Formally, the removal criterion is formulated as fol-
lows. For a = (xa,ya) we denote x(a) = xa, y(a) = ya.
Let the points a1, ...,ak lie on one horizontal line and
x(a1) < ... < x(ak). Then, by the criterion, the points
a2,a3, ...,ak−1 must be removed. Analogously for the
vertical case.

The algorithm of removing "inner" repetitions in a
sorted array is trivial. To perform the preprocessing
described above, it is needed to:

1. Sort points by y (if y coordinates are equal, the x
coordinates are compared).

2. Delete "inner" repetitions by y coordinate using the
described algorithm.

3. Sort points by x (if x coordinates are equal, the y
coordinates are compared).

4. Delete "inner" repetitions by x coordinate.

As a result we get a list of points for which we can apply
the recursive convex hull algorithm.

At the stage of dividing the problem into sub-problems,
the list of points is split into left and right parts of
roughly equal size. This can be done in O(1) time for
an interval [i, j] by computing the average of indices i
and j.

The recursion stops when there are no more than 3
points in the list. For the base case the list of points

Figure 1: Merging two hulls.

can have 2 or 3 elements. In those two cases the con-
vex hull can be trivially constructed. The result of the
base case are two concatenable queues representing up-
per and lower sub-hulls with one or two points in each.

To merge two convex hulls that are separable by a ver-
tical line, we need to find upper and lower tangents that
will serve as a basis for the resulting hull. Those tan-
gents are found using the search algorithm described in
[OL81]. It remains to split the sub-hulls at four found
nodes that form upper and lower tangents and merge
the remaining parts. An example of performing such a
procedure is shown in Fig. 1.

We use the following markings on the convex hull
schemes. Sub-hulls of left and right hulls are marked
with orange color, sub-hulls of merged hull are marked
with blue color, correct tangents are marked with green
color, incorrect tangents are marked with red color and
removed edges during merging are overscored with two
red lines. Each convex hull is divided into the upper and
lower parts due to its representation in the algorithm.

Now we will consider the corner cases that arise when
performing the merging. The first of these cases is re-
lated to the ambiguity of the position of the utmost left
and utmost right points in the described representation.
They might be included both in the upper and lower
sub-hull. Both points must belong to the upper sub-
hulls of the left and right hulls before finding the tan-
gent line, because otherwise such tangent may be found
incorrectly. An example of such an incorrect search is
given in Fig. 2.

To avoid such a situation, it is necessary to move the
aforementioned points to the upper sub-hulls before
merging them. For the rightmost point of the left hull
and the leftmost point of the right hull we have the fol-
lowing cases. Similarly to the previous argument, they
must be transferred to the upper parts of the hulls. And
after merging, these points must be transferred to the
lower parts of the hull, if they do not belong to the
resulting upper part of the final hull. Otherwise, the
formed hull may be incorrect. An example of such a
case is shown in Fig. 3.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

57

Figure 2: Example of an incorrect position of the ut-
most left point in the left hull.

Figure 3: Example of a convex hull with a wrong posi-
tion of the utmost left point of the left sub-hull.

Figure 4: Example of the situation when upper and
lower sub-hulls do not form a correct convex hull.

To transfer the utmost left point of the lower sub-hull
to the upper sub-hull means to split the concatenable
queue representing the lower sub-hull over its utmost
left points and merge the obtained part with the upper
sub-hull.

After combining the parts of the convex hulls, another
corner case might take place. The search for the tan-
gent for the upper parts of the hulls does not take into
account the position of the lower parts and vice versa.
As a result, the upper and lower parts of the final hull
may not form a coherent structure. An example of such
a situation is shown in Fig. 4.

Figure 5: Correctly constructed convex hull. Here the
pivoting left and pivoting right nodes are represented by
the lowers points in the convex hull.

To avoid such a situation, it is necessary to perform the
step of cutting off the redundant left and right parts of
the formed lower sub-hull. To do so, we perform two
more binary searches on the lower sub-hull to find piv-
oting left and pivoting right nodes. The part of the lower
sub-hull in between those pivoting nodes forms the cor-
rect hull with the upper sub-hull. Fig. 5 shows example
of such procedure.

2.2 “Divide-and-conquer” algorithm in-
terface

The next goal of this work is to build a unified algorith-
mic environment. The construction of such an object
requires the combination of an algorithmic database to-
gether with the necessary data structures. It is needed to
create an interface for generic algorithms based on the
“divide-and-conquer” strategy.

We first list the components of such an interface:

• Preprocessing.

• Dividing task into sub-tasks.

• Merging results of solved sub-tasks.

• Checking if a given input represents a base case.

• Solving the base case.

To construct the final interface it remains to determine
the input and output types of its functions. A large
number of computational geometry algorithms, such as
the minimum spanning tree, the Delaunay triangulation,
the Voronoi diagram, and the convex hull accept the list
of points. A list can also be easily split into two parts
of roughly the same size. The output type of the in-
terface should store result data computed by the algo-
rithmic environment. In our implementation we use a
special class Result with convexHull field. The field
stores convex hull computed on a specific step of the
recursion.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

58

Listing 1 shows the constructed algorithm model. Here
every aforementioned component is represented as a
function.

1 interface DaCAlgorithm:
2 Points preprocess(Points input)
3 Pair[Points, Points] divide(Points input)
4 Result merge(Result first, Result second)
5
6 boolean isBaseCase(Points input)
7 Result solveBaseCase(Points input)

Listing 1: Algorithm model based on the “divide-and-
conquer” principle. Here a list of points is denoted as
Points

2.3 Sequential and parallel execution
Although this model very accurately describes the class
of algorithms, it does not make it possible to solve the
problem directly by having input data. This allows us
to separate the implementation of the algorithm from
how it is executed. Next the principles of sequential
and parallel execution are discussed.

When executing sequentially an algorithm, the sub-
problems are computed one by one. We first check if
the current input is a base case and if so we can directly
compute it by calling solveBaseCase procedure. Other-
wise the input is split with divide and the obtained sub-
problems are solved sequentially. Finally the obtained
results are merged with merge procedure.

In parallel execution, we take into account that the in-
dividual sub-problems can be calculated independently,
which significantly speeds up the execution of the algo-
rithm. To construct the concurrent execution algorithm,
we use the following parallel computation abstraction
computeInParallel(f unction1, f unction2) which runs
the functions f unction1 and f unction2 simultaneously.
We use it to solve sub-problems obtained after dividing
a given input. Other than that parallel version is identi-
cal to the sequential one.

From the implementation standpoint, the performance
of parallel execution was improved by introducing a
limit on the size of sub-tasks that can be calculated in
parallel. This allowed us to distribute work between
threads more evenly.

3 CONCATENABLE QUEUE IMPLE-
MENTATION

As shown in [OL81], the concatenable queue is the key
data structure for the algorithm described above and is
therefore the basis for the UAEM. Now we will focus
on how to efficiently implement it for our algorithmic
environment.

Concatenable queue is an Abstract Data Type, that sup-
ports the following operations:

• insert();

• remove();

• getMinimum();

• contains();

• split();

• concatenate().

By default the elements in a concatenable queue are
kept in a certain predefined order [AH74, pp.. 155-157].
In this article the concatenable queue is implemented as
a modified balanced binary tree. Its nodes are divided
into non-leaf and leaf ones. The leaf nodes contain
all points kept in a tree. A ConcatenableQueue object
maintains pointers to the root of the tree as well as leaf
nodes that contain minimum and maximum values in
the tree. Every node has le f t and right pointers which
point to its left and right child respectively. For the leaf
nodes those pointers point to the left and right neigh-
boring leaf nodes or nil if the node is utmost in the tree.
Additionally every node keeps a pointer le f tMax to a
node with the largest element in its left sub-tree, which
allows us to perform binary search. The node construc-
tor accepts values le f tMax, le f t and right. The height
value each node is kept for the balancing during the split
and merge operations. Now we will go into details on
how this data structure is implemented.

The contains operations is pretty straightforward and
uses binary search over the tree so its complexity is
O(logn), where n hereafter denotes the numbers of
nodes in the queue.

Algorithm of inserting a new element in a queue looks
like as follows. First, the position for a new node is
searched. Then a new node is inserted between two ad-
jacent leaves. Going back a new non-leaf node is cre-
ated - the parent for the new node and one of its neigh-
bors. The algorithm is formally described in Listing 2.
Here the updateHeight subroutine updates the height
value for a given node, the insertLea f insets a new leaf
node between two adjacent leaf nodes.

1 Node insert(int v, Node node):
2 Node result = nil
3 if v > node.leftMax.value:
4 if !node.isLeaf:
5 node.right = insert(v, node.right)
6 else:
7 Node newNode = insertLeaf(node, node.

right, v)
8 result = Node(node, node, newNode)
9 else:

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

59

10 if !node.isLeaf:
11 node.left = insert(v, node.left)
12 else:
13 Node newNode = insertLeaf(node.left,

node, v)
14 result = Node(newNode, newNode, node)
15
16 if result == nil:
17 result = node
18
19 updateHeight(result)
20
21 return result

Listing 2: Queue insertion algorithm

1 split(int v, Node node, ConcatenableQueue lq,
ConcatenableQueue rq):

2 if !node.isLeaf
3 if v < node.leftMax.value:
4 split(v, node.left, lq, rq)
5 rq.root = concatenate(rq.root, node.right,

node.leftMax)
6 else if v > node.leftMax.value:
7 split(v, node.right, left, rq)
8 lq.root = concatenate(node.left, lq.root,

node.leftMax)
9 else:

10 lq.root = node.left
11 lq.maxNode = node.leftMax
12 rq.root = node.right
13 rq.minNode = node.leftMax.right
14 cut(node.leftMax)
15 else:
16 lq.root = node
17 lq.maxNode = node
18 rq.minNode = node.right
19 cut(node)

Listing 3: Queue split algorithm

In the first step we find out if le f tMax point to a node
with smaller value than v. If so, then, if the current node
is not a leaf, the search proceeds on the right sub-tree
of the current node. Otherwise, a new leaf is created
between the current node and its right neighbor. The
case, when le f tMax has a greater value than v is analo-
gous. The procedure ends with updating the height on a
newly created node, which is returned as a result value.

Since in every step we perform a constant amount
of work, the complexity of the procedure is
O(h) = O(logn), where h hereafter denotes the
height of the tree. The remove operation is analogous.

Now we will discuss the split procedure. As an input
the procedure takes a value based on which the split

is performed, a current node as well as left and right
queues, which are constructed as a result of the proce-
dure. The value, by which the split has been performed,
belongs to the left queue. The procedure is formally de-
scribed in Listing 3.

Here the concatenate procedure is used. It performs
concatenation of two arbitrary nodes and uses their
heights to balance the resulting queue. The cut pro-
cedure breaks connections between two adjacent leaf
nodes in a queue and therefore is trivial. In the first step
of the split operation we check if the current node is
not a leaf. Is so, then the procedure continues on either
left or right sub-tree. Here a special corner case is con-
sidered, where le f tMax contains the dividing value. If
that is the case, then le f tMax becomes the maximum
node for the left queue and its right neighboring leaf
node becomes the minimum node for the right queue.
Finally, if node is a leaf, its connections are broken and
the value of maxNode is updated for the left queue as
well as the value of minNode for the right queue.

1 Node concatenate(Node ln, Node rn, Node
leftMax) {

2 if ln == nil:
3 return rn
4 else if rn == nil:
5 return ln
6 else if ln.height < rn.height:
7 rn.left = concatenate(ln, rn.left, leftMax)
8 updateHeight(rn)
9 return rn

10 else if ln.height > rn.height:
11 ln.right = concatenate(ln.right, rn, leftMax)
12 updateHeight(ln)
13 return ln
14 else:
15 Node result = Node(leftMax, ln, rn)
16 updateHeight(result)
17 return result

Listing 4: Algorithm of merging two queues

The algorithm of the concatenate procedure is de-
scribed in Listing 4. First, we consider corner cases
where one of the nodes is nil. This is needed to ensure
the correctness of the recursion. Then, if the left node
is lower than the right, one step down is taken for the
right node. If the right node is lower - we take a step
down for the left node. If the heights are equal, the
joining point is found and a new node must be created.
In each step, it is necessary to update the height of the
current node because it changes.

We begin analyzing the complexity of the split proce-
dure by determining the complexity of the concatenate
procedure. At each iteration, a step is performed ei-

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

60

ther to the left son of the current node or to the right
one. The execution of the recursive procedure finishes
by merging two nodes.

Since each step moves us down one level and a con-
stant amount of work is performed for each level, the to-
tal complexity of the concatenate procedure is O(h) =
O(logn). The split procedure uses the concatenate pro-
cedure as a subroutine. The complexity of a split call is
equal to the complexity of concatenate. The number of
recursive split calls for one such operation is O(logn),
so the total complexity of the procedure O(log2 n). The
merge operation of two queues is reduced to the clamp-
ing of their root nodes by the concatenate procedure,
so its complexity is O(logn).

4 COMPLEXITY ANALYSIS
Theorem 1. The complexity of the described convex
hull construction algorithm for a static set of points is
O(n logn) with sequential execution.

Proof. We will argue the complexity of the algorithm
by listing the complexities of the main steps.

1. Preprocessing: sorting and removal of “inner” rep-
etitions by x and y coordinates O(n logn).

2. Divide step: splitting list of points in half O(1).

3. Merge step: merging convex hulls obtained from
solved sub-tasks O(log2 n):

(a) transfer of the utmost points to upper parts of
convex hulls with at most 4 calls to split and
merge operations O(log2 n);

(b) finding the tangent for the upper parts of the
hulls with a binary search O(logn);

(c) splitting and merging the upper parts with 2 calls
to split and 1 call to merge operations O(log2 n);

(d) moving the utmost points to the bottom of the
hulls with at most 2 calls to split and merge op-
erations O(log2 n);

(e) finding the tangent for the lower parts of the
hulls with a binary search O(logn);

(f) splitting and merging the lower parts with 2 calls
to split and 1 call to merge operation O(log2 n);

(g) normalization of the obtained lower part with
2 binary searches and 2 calls to split operation
O(logn).

Using known algorithms, we can perform sorting in
O(n logn). To estimate the complexity of the recursive
procedure for constructing a convex hull, we make the
following equation:

T (n) = 2T (
n
2
)+O(log2 n) (1)

According to result from the theory of algorithmic com-
plexity, we have that the solution of this equation is:

T (n) = O(n) (2)

Thus, taking into account the preprocessing, we get the
total complexity of the algorithm O(n logn).

Theorem 2. The complexity of the recursive convex
hull construction is O(log3 n) when executed concur-
rently on n

2 processors.

Proof. The recursion tree has a height of O(logn) lev-
els. At the lowest level, the number of sub-tasks cre-
ated is n

2 . Thus, each sub-task takes no more than n
2

time. Next, O(log2 n) work is performed at each level.
Having the height of the recursion tree, we get the total
complexity of the algorithm.

5 PERFORMANCE EVALUATION
We implement the UAEM with Java programming lan-
guage using its standard library. We used a machine
running Ubuntu 18.04 LTS equipped with 16GB of
DDR4/2 RAM and Intel Core i7-8750H CPU which has
6 cores and supports up to 12 threads.

To efficiently solve “divide-and-conquer” subproblems
we delegate parallelization to the ForkJoinPool which
is available as part of the Oracle’s JDK 8. Furthermore,
we limit the average number of recursive subproblems
per thread. This allows us to better control load bal-
ancing for large inputs. We conducted the performance
comparison of sequential execution and parallel exe-
cution with different numbers of average sub-tasks per
thread. Parallel execution was done with 12 thread. All
performance data is reported in Table 1.

Parallel computation allows us to achieve up to 37%
performance improvement in the best case. Fine-tuning
through the average number of sub-problems per thread
achieves up to 8% speedup compared to the unbalanced
case. Base on collected data we can conclude that the
optimal number of subproblems per thread for the con-
vex hull computation is 30.

6 CONCLUSION
We’ve considered in detail the process of designing and
implementing the UAEM as well as the unified data
structure for it. In this model a generic interface of a
“divide-and-conquer” algorithm was created. This al-
lows to execute the algorithms which are implemented
according to this model both sequentially and in paral-
lel. Apart from that a concatenable queue was imple-
mented and served as the basis for the model described
above.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

61

Number of Time (µµµs)
points sequential 20 tpth 30 tpth 40 tpth 50 tpth
1 ·105 62 43 444111 44 44
5 ·105 457 309 222888888 311 308
1 ·106 861 666444333 644 686 672
5 ·106 3926 2876 222888666000 3005 2973
1 ·107 6002 5207 555111111222 5465 5120

Table 1: Performance of the convex hull computation in the UAEM. Since our model uses fork-join parallelism we
measure how the average number of recursive tasks per thread (tpth) affects the computation time. Bold numbers
indicate the best time in each row.

Using the data structure allowed to significantly reduce
the time and computational resources for solving the
convex hull problem. The main advantages of the de-
veloped algorithm are an optimized preprocessing stage
and the efficiently implemented merge step, due to the
usage of concatenable queue.

The performance comparison for both types of execu-
tion shows that the algorithm has a high level of paral-
lelism. We’ve achieved a speedup of 37% in the best
case. It is easy to extend the functionality of the created
environment either by adding new or modifying exist-
ing algorithms.

7 REFERENCES
[Ima19a] Imagej: An open platform for scientific

image analysis. https://imagej.net/Welcome. Ac-
cessed: 15.04.2019.

[Ima19b] Imaris software. https://imaris.oxinst.com.
Accessed: 15.04.2019.

[ACG*88] Aggarwal, A., Chazelle, B., Guibas, L.,
O’dunlaing, C. and Yap., C. Parallel computa-
tional ge- ometry. Algorithmica, 3(1-4):293-327,
November 1988. DOI: 10.1007/BF01762120.

[AH74] Aho, Alfred V. and Hopcroft, John E. The
Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1974.

[AL93] Akl, Selim G. and Lyons, Kelly A. Parallel
Computational Geometry. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1993.

[AGR94] Amato, N.M., Goodrich, M.T., and Ramos,
E.A. Parallel algorithms for higher-dimensional
convex hulls. In Proceedings 35th Annual Sym-
posium on Foundations of Computer Science,
pages 683-694, Nov 1994. DOI: 10.1109/S-
FCS.1994.365724.

[ACG89] Atallah, M.J., Cole, R. and Goodrich,
M.T. Cascading divide-and-conquer: A tech-
nique for designing parallel algorithms. SIAM
J. Comput., 18(3):499-532, June 1989. DOI:
10.1137/0218035.

[BSV96] Berkman, O., Schieber, B. and Vishkin, U. A
fast parallel algorithm for finding the convex hull

of a sorted point set. Int. J. Comput. Geometry
Appl., 6:231-242, 1996.

[Che95] Chen, D.Z. Efficient geometric algorithms on
the erew pram. IEEE Transactions on Parallel and
Distributed Systems, 6(1):41-47, Jan 1995. DOI:
10.1109/71.363412.

[CG88] Cole, R. and Goodrich, M.T. Optimal parallel
algorithms for polygon and point-set prob- lems.
In Proceedings of the Fourth Annual Symposium
on Computational Geometry, SCG ’88, pages
201-210, New York, NY, USA, 1988. ACM. DOI:
10.1145/73393.73414.

[GJ97] Goodman, Jacob E. and O’Rourke, J., (eds.).
Handbook of Discrete and Computational Ge-
ometry. CRC Press, Inc., Boca Raton, FL, USA,
1997.

[JaJ97] JaJa, J. An Introduction to Parallel Algorithms.
Addison Wesley, 1997.

[OL81] Overmars, Mark H. and Leeuwen, Jan V..
Maintenance of configurations in the plane. Jour-
nal of Computer and System Sciences, 23(2):166
- 204, 1981.

[Rei93] Reif, John H. Synthesis of Parallel Algo-
rithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1993.

[SSKH11] Sommer, C., Straehle, C., Koethe, U. and
Hamprecht, F.A. Ilastik: Interactive learning and
segmentation toolkit. In 2011 IEEE International
Symposium on Biomedical Imaging: From Nano
to Macro, pages 230-233, March 2011. DOI:
10.1109/ISBI.2011.5872394.

[TA10] Tereshchenko V.N. and Anisimov A.V. Recur-
sion and parallel algorithms in geometric model-
ing problems. Cybernetics and Systems Analysis,
46(2):173-184, 2010.

[Lee90] Leeuwen, Jan V., (eds.). Handbook of The-
oretical Computer Science (Vol. A): Algorithms
and Complexity. MIT Press, Cambridge, MA,
USA, 1990.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

62

	2020-Full-Temp-6 56
	2020-Full-Temp-6 57
	2020-Full-Temp-6 58
	2020-Full-Temp-6 59
	2020-Full-Temp-6 60
	2020-Full-Temp-6 61
	2020-Full-Temp-6 62

