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ABSTRACT 
Cancer treatment planning using SRS (Stereotactic Radio Surgery) uses approximate sphere packing algorithms 
by guiding multiple beams to treat a set of spherical cancerous regions.  Usually volume data from CT/MRI scans 
is used to identify the cancerous region as set of voxels.  Computationally optimal Sphere Packing is proven NP-
Complete. So usually approximate sphere packing algorithms are used to find a set of non-intersecting spheres 
inside the region of interest (ROI).  We implemented a greedy strategy where largest Euclidean spheres are found 
using distance transformation algorithm.  The voxels inside of the largest Euclidean sphere are then subtracted 
from the ROI, and the next Euclidean sphere is found again from the subtracted volume.  The process continues 
iteratively until we find the desired coverage.   In this paper, our goal is to analyze the rotational invariance 
properties of resulting sphere-packing when the shape of the ROI is rotated.  If our sphere packing algorithm 
generate spheres of identical radius before and after the rotation, then our algorithm could also be used for matching 
and tracking similar shapes across data sets of multiple patients. In this paper, we describe unique shape descriptors 
to show that our sphere packing algorithm has high degree of rotation invariance within ±epsilon. We estimate the 
value of epsilon in the data set for 30 patients by implementing these ideas using Slicer3D™ platform.   
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1. INTRODUCTION 
In Stereotactic radio surgery, tumors are irradiated by 
beams of high-energy waves. It is a challenge during 
cancer treatment planning to provide minimal damage 
to healthy tissue around the tumors that get exposed to 
the radiation and still radiate cancerous cells. Our goal 
using sphere packing is to arrange beams on “spheres” 
in a way that hit the unhealthy tissue and leave the 
healthy tissue intact. A key geometric problem in 
Stereotactic radio surgery planning is to fill a 3D 

irregular-tumor shape (ROI) with disjointed spheresIn 
several medical applications such as inspection of  
tumor or interacting with portion of a 3D volume data, 
the cancer, represented as Region of Interest (ROI),  
could be rotated at arbitrary angles. If a sphere packing 
algorithm is used before and after such rotation, then 
rotational invariance suggests that there might be high 
correlation between spheres found by our sphere 
packing algorithm before and after the rotation. 
Defining correspondences between the original and 
rotated ROIs is an important task that could be solved 
by spheres’ descriptors.  If these descriptors are highly 
correlated, then we can anticipate that the ROIs might 
be similar as well. Li et al. (Li & Simske, 2002) stated 
that translation and scaling are easy compared to 
rotation. Rotation of a 3D volume data or 3D image 
involves simultaneous manipulation of three 
coordinates to maintain invariance. In the case of 
sphere packing, as we capture the ROI with non-
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intersecting spheres, the rotation invariance means 
that set of spheres will remain identical in size 
although their placement is expected to change under 
an arbitrary rotation. There are three major techniques 
to prove the rotation invariance: landmarking, rotation 
invariant features/shape extraction descriptor 
(Kazhdan and Funkhouser, 2003) and brute force 
rotation alignment mapping the problem to sub-graph 
isomorphism (Johnson and Garey et.al.) which is NP-
Complete. The landmarking is normally carried out by 
following two methods, domain specific landmarking 
and generic landmarking (Szeptycki, Ardabilian, & 
Chen, 2009). The domain specific landmarking 
accepts some fixed point in the image and does 
rotation with respect to that about an arbitrary axis. 
The generic landmarking method on the other hand, 
finds the major axes of the 3D/2D image and that can 
rotate the volume or image as a whole in carrying out 
the rotation. Because the size of the volume data can 
be typically large based on the size of the data, both 
these approaches require that large memory storage is 
available as the complete voxel information is 
required, and usually is time consuming. The brute 
force alignment method divides/degrades the object 
into large number of smaller parts and works with 
them for rotation. This method is time consuming, 
complex and complicated because parts have to be 
organized. The developed code for a particular shape 
in this method may only apply to the data in hand and 
may not be generalizable. Finally, Invariant 
feature/shape descriptor involves identification of 
certain invariant features (measurable quantities) that 
remains unaltered under rotations of the 3D image or 
volume data.  
The field of 3D object shape-similarity has been 
studied for years. Shape analysis is the key problem in 
the object similarity issues. There are different 
methods used for recognition of the representation of 
the objects such as using the global features, local 
features, or spatial features. The human notation of 
similarity is based on the overall shape which rely on 
the global features of the whole object. Our algorithm 
uses global method for capturing the whole object by 
filling it with spheres and then using the local method 
for the sphere packing based radius and distance 
matching, under the constraint of preserving the 
relative features such as size. Figure 2(b) shows the 
main idea of ESP algorithm where we use distance 
transformation isolate largest spherical volume first in 
the given volume data. The center and radius of this 
largest so far spherical volume is recorded. More 
details of O(n) algorithm to find distance 
transformation and the largest sphere are explained 
elsewhere (Alhazmi and Semwal, 2018a; Anhazmi 
and Semwal, 2018b; Alhazmi and Semwal 2019; 
Alhazmi 2019).  Once one sphere is found, volume 
data is subtracted (Figure 2(c)) and the process is 
repeated again, and the iteration continues until we 

have the desired coverage or size of the sphere is very 
small (defined by 1-2 voxels).  The output of our ESP 
(Euclidean Sphere Packing) algorithm is set of 
spheres’ center and radius.  This descriptor set is 
defined as shape-descriptor for the given volume data.  
The sphere-packing descriptors (SPDs) are shown in 
Figure 1.  
 

 
Figure 1: Top: 3D original and rotated volume with its 
spheres packing. Bottom: small difference in the 
distance ratio and radiuses measurements. 
The sphere packing centers define a spatial 3D-
template of the shape of the 3D object. The template 
is defined using the centers of all spheres generated 
using ESP whose main idea has been explained in the 
previous section. The set of centers of these spheres 
define vertices, and edges are defined by the sequence 
of edges connecting two consecutively generated 
spheres’ centers. In summary, vertices represent the 
spheres centers and the edges connects every pair of 
the spheres. Our study focuses on analyzing this 
template representation under translation, scaling and 
rotation. Our objective to analyze the sphered 
description resulting from packing the 3D objects 
(tumors) based on spheres packing descriptor (SPD) 
that doesn’t change when transforming the objects. 
Our proposed SPD development is a novel featureless 
method. SPD can describe volumetric shapes more 
succinctly than its voxel representation and 
approximated the volume-data representation by 
packing spheres to represent the volume data. Figure 
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1 shows the volume data and their corresponding 
SPDs. Before and after graphs are within Epsilon (e) 
of each other under novel rotation and ratio measures 
developed in this paper. Our method characterizes the 
3D object similarity by the size, shape, arrangement, 
and proportions of its parts. The sphere packing 
together with the radius and center provide an 
integrated approach for characterization and 
compression of shape information.  When the volume 
data is rotated the SPDs provide rotational variance 
within +/-Epsilon.  The significance of our work is that 
we have found a value of epsilon which works across 
the image data in slicer3D available for our research.  
In the rest of the paper we will explain these results 
and develop the idea of SPD using ESP method. 
The outcome of the ESP is defined as a set of n 
unequal spheres and object P of a bounding box B. 
Each sphere 𝒊	𝝐	𝒏 = {𝟏, 𝟐,… . . , 𝒏} is characterized by 
its radius 𝒓𝒊 and center 𝒄𝒊. The first goal of our study 
is to optimize the coverage of the object P such that all 
spheres in n are packed in the target object inside B 
without overlapping. The second goal, is to apply 
transformations on our spheres and study the 
invariance of SPD under translation, scaling and 
rotations. 
We use the packed spheres to represent the 3D object 
as regions. Therefore, this method of representation 
can also be seen region-based descriptor since it is 
based on regions. The idea is to find correspondence 
between object elements under different 
transformations. The size of the regions can be 
controlled depending on the treatment planning 
collimator size as we discussed earlier. 
 

 

Figure 2: (a) sphere’s shape =0, multiply by (b) 
segmented region. (c) the result of the segment 
region without the pixels/voxels of the first sphere. 

 
The invariant features are indexed with a feature 
vector also known as shape signatures. Then, the 
optimal rotation can be defined by measuring model’s 
similarities in terms of the distance such that the 
rotation invariant property would mean that these 
distance measures are as close to each other with 
certain limit before and after the rotation. There are 
literally many of rotation invariant features that been 
used in the past, including ratio of perimeter to area, 

fractal measures, circularity, min/max/mean 
curvature, and shape histograms, etc. Lin et al. (Lin, 
Khade, & Li, 2012) and Yankov et al. (Yankov, 
Keogh, Wei, Xi, & Hodges, 2008) use time series 
representation as a feature vector to match the 3D 
shapes to prove the rotation invariance. Based on our 
research, most of the studies have been used spherical 
harmonic method to map the features of objects into a 
unit sphere to prove the invariance under rotation 
(Kazhdan, Funkhouser, & Rusinkiewicz, 2003; Nina-
Paravecino & Manian, 2010; Vranic, 2003). The 
spherical harmonic method does not always give 
accurate results to distinguish between models since 
the internal parts of the 3D shapes may not fit in same 
sphere. Other researchers combined the spherical 
harmonic with spatial geometric moments (El Mallahi, 
Zouhri, El-Mekkaoui, & Qjidaa, 2017; Kakarala & 
Mao, 2010). The most common graph method used is 
skeletons. The skeletons are based on medial axis. The 
medial axis of the 3D objects has been used as a shape 
descriptor in a number of researches (Iyer, 
Kalyanaraman, Lou, Jayanti, & Ramani, 2003; Iyer, 
Jayanti, Lou, Kalyanaraman, & Ramani, 2004; Liu, 
2009; Lou et al., 2003; S'anchez-Cruz & Bribiesca, 
2003; Sundar, Silver, Gagvani, & Dickinson, 2003).  
However, this method is sensitive to noise and has a 
heavy computationally cost. 
In this paper, we considered the set of spheres as 
shape-descriptors and analyzed the sphere packing 
before and after the rotations and looked for the 
similarity measure. We aimed to show that set of 
spheres are invariant such that even if we rotate the 
image, the size of the spheres and center’s distances 
are highly correlated. We used our sphere packing 
algorithm to pack non-intersecting spheres into the 
ROIs before and after rotations.  As mentioned earlier, 
those spheres could provide invariant shape 
descriptor. After rotation the voxels will be populated 
with the new voxel orientation. Our shape descriptor 
provides a novel featureless method that doesn’t 
depend on any specific feature or texture, instead is 
related to sphere packing generated by our sphere 
packing algorithm. Our method characterizes the 3D 
object similarity by the shape geometries of  the sphere 
packing, and sphere’s correspondence with one 
another and their spatial relationships. In this paper, 
we show that our previous work for sphere packing 
(Alhazmi and Semwal 2019; Alhazmi 2019) can be 
used to show the invariance under rotation since our 
algorithm can describe volumetric shapes more 
succinctly than voxel representation. In this work, the 
spheres packing together with the radiuses and centers 
functions provided an shape descriptor, a novel 
approach for characterization and compression of 
shape information for 3D volume and voxel data. As 
we will discuss later, our heuristics is e-invariant and 
has an impressive result of  96% invariant under 
rotations. 
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2. SPHERE PACKING DESCRIPTOR 
We use the spheres packing to represent the 3D object, 
so this method of representation is called region-based 
descriptor since it is based on regions. In one of our 
work, Sphere Packing algorithm is used based on the 
maximum Euclidean distance has been studied and 
implemented in Slicer3D using medical imaging 
(Alhazmi and Semwal, 2019). Sphere packing 
problem is heuristically solved by using Euclidean 
maximum distance. The solution is to find a set of non-
intersecting spheres that used greedy method and can 
be called largest sphere first. Each sphere is 
characterized by its radius and center. The size of the 
regions can be controlled depending on the treatment 
planning required size. Also, in our implementation, 
the density of the volume coverage can be customized 
such as we did in (Alhazmi and Semwal, 2019; 2018), 
we used 50%- 90% of the density. This means 50% to 
90% (or theoretically any amount up to 100%) of the 
ROI is covered disjoint spheres which our algorithm 
finds. Of course, more the coverage, more time is 
taken by the algorithm to find all the spheres satisfying 
the user selected criteria. Generally for all patients, 
50% coverage takes up to 25 minutes, and 90% takes 
minimum of  7 hours and maximum of 72 hours. 
Our algorithm for the sphere packing is defined as a 
set of n unequal spheres and object P of a bounding 
box B. The goal of this algorithm is to pack sets of 
disjoint spheres inside the ROI providing certain 
coverage. Our strategy is as follows: A uniform grid 
(voxelization) is used to calculate the maximum 
distance of each voxel to the 3D object boundary. 
Then, use the maximum distance to be the radius of 
the first sphere and the location to be the sphere center. 
Iteratively, we extract new spheres each time and 
recalculate the distances based on the following 
constraints: spheres must not intersect with other 
spheres  must completely locate inside the volume, 
and the volume covered by spheres is maximized 
using greedy strategy by subtracting the volume of the 
largest sphere for every iteration where largest sphere 
is found using a distance transformation. In our 
technique, sphere placements are no longer on the 
skeleton line. Instead, the spheres are placed wherever 
the maximum distance value occurred inside the ROI 
during that iteration (Figure 2d). We applied our 
maximum distance sphere packing strategy  algorithm 
successfully on many MRIs using the Slicer3D 
platform; a new module in Slicer3D to be used for 
different shape approximation purposes.  
The spheres centers of the 3D object represent a spatial 
template as a graph. The graph is a representation of 
the intersection of the sphere’s centers that represent 
vertices of the graph of all maximum distances 
contained inside the 3D object, and edges connected 
each two consecutive generated spheres (Fig. 3). 

Ordering of the spheres is important for example: B, 
C, A will give different signature graph than A, B, C.  
 

 
Figure 2d: 3D results of our algorithm for sphere 
packing in Slicer3D with 50%, 60%, 70%  of packing 
density (gray is tumor, blue is sphere) Alhazmi and 
Semwal 2018; 2019). 
 
  
 
 
 
 
 
Figure 3: Spatial template graph of the original and 
rotated volumes generated from the intersection of the 
spheres’ centers. 
 

3. EPSILON ROTATION INVARIANT 
  
We introduce a measure called epsilon-rotation 
invariant. Such geometric accuracy of MRI is practical 
especially when it used for planning radio surgery. 
Testing different angles of the image for beam 
planning is needed. Rotating the 3D volume must give 
the similar arrangement of sphere packing. We 
captured inner distances between two consecutive 
spheres’ centers of our shape descriptors as an 
approximation to compute the difference between the 
two 3D shape descriptors, before and after the 
rotation. This graph distances representation is useful 
to abstract a geometric meaning of the 3D shape and 
to characterize the connectivity information. From 
Figure 3, assuming we rotated a 3D tumor, apart from 
how close d1 is to d’1 and d2 is to d’2 etc., we also look 
at the inner spheres’ centers distances between center 
of the original spheres compared with the 
corresponding distances on the rotated volume by 
finding the ratio as follow:  

Original Rotated 
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Distance ratio =  

/			
𝑑1

𝑑2	3 = 	𝑑`1 𝑑`23 					  invariance is met

𝑑1
𝑑2	3 ≠ 	𝑑`1 𝑑`2						3 invariance not met

 

The inner distances between the spheres capture the 
distances before and after the rotation of 3D object, 
and find the sphere packing descriptors. In other 
words, we find how similar the spherical coverage is 
before and after, and intuitively compare that to the 
graph inside the spheres.  Although we did not 
implement the orientation of such inter-distances, we 
expect that to be closely related for better results for 
our distance transformation based shape descriptors.  
Intuitive idea is that apart from radius being equal, the 
relationship between the centers should also be similar 
between one sphere to another. Our algorithm 
descriptor map entries correspond to the Euclidean 
distance between spheres’ centers and these values are 
arranged in a manner that preserve the relative 
position of each sphere. 

4. IMPLEMENTATION 
We implemented our method in Slicer3D (Fig. 4). The 
Slicer3D (Kikinis, Pieper, & Vosburgh, 2014), is an 
open source medical visualization tool. The 3D slicer 
builds on top of different libraries such as VTK, ITK, 
CMake, NA-MIC, Qt and Python (Alhazmi and 
Semwal, 2018). Also, it contains more than a hundred 
modules written in C++ or Python to provide 
researchers many common tools and rich 
implementations to achieve and implement their goals. 
The visualization toolkit (VTK) framework is an open 
source with C++ libraries that contains many filters for 
data representation/visualization. We developed our 
Slicer3D Python module for sphere packing to work 
with the VTK for volume rotation. 3D arbitrary 
rotations are introduced for medical images as an 
extension of our previous work carried out for sphere 
packing (Alhazmi and Semwal, 2019).  We used 
VtkTransform to apply rotation via 4x4 matrix 
multiplications. Our algorithm rotates images any 
number of degrees around x, y, and z axes. Any 
arbitrary rotation can be described by specifying the 
coordinates of the object in 3D space and rotation 
angels. Unlike 2D rotation, 3D rotation occurs along 
an arbitrary axis. Suppose the rotation angle is a, the 
rotations about three major axes uses well known 
formulae:  
 

- Rotation along x= 6
1 0 0
0 cos(a) −sin(a)
0 sin(a) cos(a)

B  

- Rotation along y= 6
cos(a) 0 sin(a)
0 1 0

−sin(a) 0 cos(a)
B 

- Rotation along z= 6
cos(a) − sin(a) 0
sin(a) cos(a) 0
0 0 1

B 

Slicer3D create a 3D scene file as Medical Reality 
Markup Language (MRML) and display images in 
physical space using patient coordinates system RAS 
(Right Anterior Superior), based on the information of 
the image spacing, origin, and direction. When 
applying rotation, we used the spheres packing 
information along with the origin and spacing. Thus, 
before we apply the rotation, we need to know the data 
of the volume: 

- Position: the 3D coordinates of the object. 
- Bound: the bound box of the object 

represented as (xmin, xmax, ymin, ymax, 
zmin, zmax). 

- Origin: it is the position of the first voxel in 
the patient coordinate (0, 0, 0). It is the space 
origin, which is the center of all rotations 

- Spacing: it is the voxels distances along each 
axis in the image. 

 
Applying rotation using VtkTransform is done by 
following six phases as follow: 
• Phase 1: Create and add a transformation node. 

We first create a TransformNode using 
VtkMRMLTransformNode, then add that node to 
the MRML scene. This node contains the 
transform ID and can store any linear 
transformations of composite of multiple 
transformations. 

 
def addTransform(self): 
 transformNode = slicer.mrmlScene.AddNode                           
               (slicer.vtkMRMLTransformNode()) 
 
• Phase 2: Create a homogenous 4x4 

transformation matrix. VtkTransform generates 
4x4 matrix that initialized to the identity matrix 
transformation (all zeros with ones in the 
diagonal) to describe the linear transformation. 

Rotation = vtk.vtkTransform() 
 
Phase 3: Set the parameters of rotation. Our algorithm 
rotates images any number of degrees around x, y, and 
z in z, x, y order.  
 
     if rx != 0: 
        rotation.RotateX(rx) 
     if ry != 0: 
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        rotation.RotateY(ry) 
     if rz != 0: 
        rotation.RotateZ(rz) 
 
RotateX, RotateY, and RotateZ create the rotation 
matrix. Since VtkTransform rotate the object around 
the origin (0,0,0), the rotation algorithm performs the 
following steps to rotate the volume about its center. 
The volume is first translated to its center so that its 
centroids lie on the center of the image instead of the 
origin (0,0,0). The resulting volume is then rotated 
according to transformation chosen by the user (x, y, 
and z angles values).  Then, translate the volume back 
to its original pose. 
 
Phase 4: Apply transformation. 
 
tNode.ApplyTransformMatrix(rotation.GetMatrix()) 
 
Where tNode is the transform node. GetMatrix is used 
to return the current values to be used for the view 
manipulations such as rotate the current values in x, y, 
z angles. So, the current values (vtkMatrix 4x4) are 
multiplied by transformation matrix. Applying 
transformation is basically done by multiplying 
current node with the transform node and stored in 
simple linear transform: 
 
VtkMRMLVolumeNode(tNode) * transformNode 
 
Phase 5: Concatenate multiple (nested) 
transformations and attach volume to transform node. 
 
OutputVolume.SetAndObserveTransformNodeID(tN
ode.GetID()) 
        
Phase 6: Harden transform. 
Describe applying transformations and save it as a 
transformed model. Invoking transform model and 
harden transform the volume to get the correct new 
orientation, which will be stored in the image header. 
Thus, harden transformation is used for: changing 
orientation and generation of the output volume.  
 
logicH = slicer.vtkSlicerTransformLogic() 
logicH.hardenTransform(outputVolume) 
 
Our heuristic is based on the greedy concept of 
generating largest spheres first, is O(n*K) where n is 
the number of spheres found to satisfy the chosen 

coverage and K is per sphere iterative constant where 
K= number of voxels in the volume data set. The 
pseudo code for Euclidean sphere packing rotation 
algorithm is as follow: 

1. Input volume as nrrd file 
2. Calculate 3D coordinates position, origin, 

and spacing 
3. Add a transfer node: 

VtkMRMLTransformNode 
4. Create a homogenous 4x4 transformation 

matrix: VtkTransform 
5. Set the parameters of rotation: RotateX(), 

RotateY(), RotateZ() 
6. Apply transformation: ApplyTransform 
7. Compute the new spacing, origin 
8. Output (Rotated Model) 
9. SegmentedRegion= Bounded rotated Model 
10. Distance= 

EuclideanDistance(SegmentedRegion) 
11. Max= maximum distance 
12. Sphereraduis= max 
13. Spherecenter= location(max)           // center 

inside bounding box 
14. Sphereisocenter= (Spherecenter + nrrd)   //center 

inside nrrd volume 
15. Spheregrid= (distance, radius, center) 
16. SegmentedRegion= (1- Spheregrid) 
17. While(pixels not covered > pixels in desired 

coverage)do 
1)       Repeat Steps 10-16 
18. Draw MultiSpheres() 

 
Figure 4: The GUI of our sphere packing rotation in 
Slicer3D. 

5. Similarity Distance Ratio Calculation 
The Euclidean distance from spheres’ centers are 
compare as:  CD

CE
= 	 CD

F

CEF
 where 𝑑1 and 𝑑2 are the 
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distances of the original volume from center1 to 
center2 and center 2 to center 3. While 𝑑1G  and 𝑑2G  are the 
corresponding distances between the transformed 
volume from center1 to center2. By repeating the same 
process, we can get the full range of distances to be 
compared for similarity.  Here is the psedo-code: 
1. def getRatios(self, centerList, radiusList): 
2.  num = int(len(radiusList) / 3) 
3. circleSetList = [] 
4.  distRatioList = [] 
5. for i in range(num): 
       c1 = centerList[i * 3] 

         c2 = centerList[i * 3 + 1] 

         c3 = centerList[i * 3 + 2] 

         cList = [] 

         cList.append(c1) 

         cList.append(c2) 

          cList.append(c3) 

         circleSetList.append(cList) 

      d1 = np.sqrt((c1[0] - c2[0]) ** 2 + (c1[1] - c2[1]) ** 2 + (c1[2] 
- c2[2]) ** 2) 

      d2 = np.sqrt((c3[0] - c2[0]) ** 2 + (c3[1] - c2[1]) ** 2 + (c3[2] 
- c2[2]) ** 2) 

      distRatioList.append(d1 / d2) 

6. return circleSetList, distRatioList 
5.1. Accuracy 
This is the accuracy of approximating the same 
radiuses/ratio values after transformation.  For each 
patient, we divide each radius or ratio in the original 
volume by its corresponding radius/ratio after 
transformation to see how well our algorithm works. 
Then, we take the average accuracy per patient. 
Finally, we find the overall average accuracy for our 
algorithm regarding how accurate our algorithm 
approximated the volume after rotation. 
Accuracy = IF sphere_before < sphere_after  
Sphere_before / sphere_after 
else 
sphere_after / sphere_before 
5.2. Error Percentage 
This is the percentage of the number of radiuses/ratios 
distances that are not covered after transformation. It 
is calculated by dividing the sum of the absolute 
difference in total number of distances ((sum_before) 
- (sum_after )) over correct number of distances before 
transformation (sum_before). 
Finally, Error percentage = (Before_sum – 
After_sum) / sum(before_spheres) 

6. RESULTS 
In our experiments, we used thirty MRIs of segmented 
brain tumors from the BRATS dataset (Menze, Bjoern 
H and Jakab, 2015) separated on three datasets with 

ten patients on each (Fig. 5). The three datasets were 
already manually revised and delineated by experts 
board-certified neuroradiologists and radically 
different in size, shape and complexity, so that was 
helpful to our research. The tumor sizes range from 
248318 to 12948 pixels.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 3D MRI datasets of brain tumor. 

We created arbitrary rotations to the data sets (as 
shown in Figure 6); and applied our algorithm of 
section 5. We wanted to study the ESP algorithm with 
the matching similarity performance of ESP algorithm 
before and after the rotations.  That meant comparing 
the rations of the set of spheres which are output of our 
ESP algorithm before and after the arbitrary rotations.  
We expected a few differences as ROI before and after 
the rotation is expected to the voxels slightly 
differently. We first pack the ROI-volume with 
spheres. Then, distances ratios and radii of each sphere 
are calculated to be compared with the correspondence 
on the rotated volume of distance ratio and radii values 
(Section 5). More similarity measurements are 
investigated such calculating the accuracy along with 
the Mean Absolute Error (MAE) of our algorithm. Our 
epsilon value measure for similarity based on our 
study is developed using Error percentage before and 
after the rotations.  This allowed us to manage 
differences that result due to the fact that voxel sizes 
also change and are within epsilon (e) of each other. 
 

Results under Epsilon (e) -value criteria  
In our study, we observed interesting patterns looking 
at the radius of spheres, and they are being close 
enough before and after the rotation. The spheres 
radiuses and distance ratios are actually within epsilon 
(e) value criteria. The Epsilon is the maximum 
distance in terms of voxel size and is always given 
within a small range of numbers. Thus, after analyzing 
our 30 patients MRIs, the epsilon values of the 
difference spheres’ radius before and after rotation are 
under one unit of difference, specifically within the 
value of 0.8 mm. Therefore, any radiuses within ± 0.8 
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are meant to be acceptable and there is then a high 
probability that the 3D volumes are similar when there 
are no multiple spheres with the same sphere-radius. 
Since previous epsilon value is based on the 50% of 
the packing density, we tested our epsilon value under 
different packing densities such as 60%, 70% and 
90%. We found that, our epsilon value is consistent 
under ± 0.8 (Fig. 7).  
On the other hand, when we consider the ratio of 
distance between two consecutive spheres in both 
before and after sphere packing list, the epsilon value 
between the distance ratios of the original volume and 
the rotated volume is within ± 2.5. That means, the 
difference in distance ratio between any consecutive 
spheres has to be within ± 2.5. However, increasing 
the packing density strongly increase this value to ± 4 
in 60%, ± 12 in 70%, and ± 32 in 80% of packing 
density (Fig. 8).  This is as expected as we go deeper 
in the list of spheres the difference is expected to 
increase as more (100+) additions are being made (See 
Figure 8). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Before (brown) and after (purple) rotated 
ROIs with their ESP spheres. 
 

 
Figure 7: Radius difference plotted against number of 
spheres within epsilon value for three different 
packing density filling the ROI 60, 70, and 80%. 
 

 
 
Figure 8: Increase in the epsilon value with the 
increase of spheres packing density from low up to 15, 
to medium 45, and large 100+. 
 
The accuracy of our technique to approximate the 
same radiuses/ratio values after rotation is calculated 
for each patient data, we divided each radius or ratio 
in the original volume by its corresponding 
radius/ratio after rotation to see how well our 
algorithm works. The overall average radiuses 
accuracy percentage is 96.86% (Fig. 9). On the other 
hand, differences between the ratio of distance before 
and after, the overall Ratio average accuracy of getting 
same ratios is 69.23% (Fig. 10). We noted that our 
results are driven by a good accuracy and further 3D-
spatial improvements will fetch better results. 
To increase the accuracy, we further tested the 
accuracy of some of our results by varying the volume 
dimension (voxel size). Our datasets patients’ grid size 
varies so we increased the dimensions to different 
values to have bigger grid size with a greater number 
of voxels of smaller sizes. We find that the decrease in 
voxel size change the accuracy level. The more the 
voxel size decreased (grid became finer), the accuracy 
increased (Fig. 11).   This is expected because smaller 
voxel sized provide more accuracy than the bigger size 
 

 
Figure 9: Radiuses accuracy. 
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Figure 10: Distance ratio accuracy. 
 
Still, we analyzed the data further. For each patient, 
we computed the absolute error between the original 
and the rotated radiuses/ratios. Absolute values were 
estimated across a range of different patients. 
Absolute error = (Before_radius – After_radius). 
Then, the mean absolute error (MAE) was calculated 
for patients using the distribution of ratios and 
radiuses in 30 patients. The closer this value to the 
zero indicate the great algorithm approximation to 
cover the targeted object. The overall MAE of our 
algorithm is 0.2. In medical applications (Irwig, 2007), 
we believe that this measure could be important 
because the absolute error represents the risk of 
developing recurrent disease because this value 
indicates the untreated cells/voxels. Being able to 
differentiate between patient with highest and lowest 
absolute risk of recurrence is an important task in 
order to diagnose the patient with the appropriate 
treatment. Therefore, the MAE could play an 
important role to differentiate whom radiotherapy can 
yield to meaningful benefits. 

7. Conclusions and Future Research 
The spheres radius works the best for our study for 
finding the similarity after rotation. Even though there 
are differences between the total number of calculated 
distances before and after rotation, our algorithm 
accuracy is reasonably high because it is able to 
calculate almost similar radiuses each time within 
epsilon value. The consistency of spheres radius is 
because our algorithm at each iteration finds the 
maximum radius distance to pick first, so increasing 
the number of packed spheres to cover the required 
voxels based on the desired packing density doesn’t 
affect the epsilon value. Changing the topology due to 
equal spheres is the main reason of the increase of the 
epsilon value of the distance ratios because ESP 
algorithm can generate spheres with same radius yet 
distributed far away from each other, and the list of 
spheres generated before and after the rotations can 
have different order for these same-radius spheres in 
their list . The algorithm decision of choosing which 
sphere of the same size to place first, is the big issue 
here. Therefore, increasing the number of packed 

spheres will significantly increase the changes in 
topology which will results in increasing the epsilon 
value.  In other words, when the radiuses are equal, the 
descriptor graph before and after might change 
considerably based on which sphere our algorithm 
suggests. In this case, aggregate we will need to collect 
all those spheres which are equal and replace them by 
the average of the center of the sphere in the shape 
descriptor, and so then (e) value will be similar in the 
shape description before and after the rotation. Thus, 
set of spheres whose radius are equal are replaced with 
one sphere. That is expected to reduce the epsilon (e) 
value further. Moreover, the topology changing in our 
study affect our accuracy results. We believe that 
eliminating equal spheres by using the enclosing 
sphere in our implementation will decrease the 
distance ratio results comparing the shape descriptors 
before and after the rotation of the ROI.  That can be 
tried in future.    
 

 
Figure 11: Increased radius accuracy. 
 
Our novel medical visualization techniques promise to 
improve the efficiency, diagnostic quality and the 
treatment. The field of 3D shape approximation and 
similarity have been a focus in the area of geometry in 
general for several hundred years now. Shape analysis 
for feature extraction is the key problem in the shape 
approximation and similarity issues. The best way for 
similarity matching is to identify certain shape 
signatures (prominent features in the image). These 
signatures are then compared between the transformed 
images through similarity assessment, distance 
computation or any other appropriate methods. This 
paper presented a method for defining a possible 
invariant shape descriptor from 3D-image or 3D-
volume data to be used to match the objects from 
different rotations/viewpoints. Our method can be 
applied to a wide variety of data types such as 2D 
images and even polygonal meshes. Our heuristics is 
e-invariant and has an impressive result of 96% 
invariant under rotations. The experimental results 
prove the effectiveness of our novel idea. The 
proposed system was fully software implemented in 
Slicer3D and has been tested on 30 patient’s 
databases. For future works, we will apply other 
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measures such as 3D-spatial sorting based on the 
spheres found, or identifying a minimal volume 
enclosing sphere surrounding all spheres of equal 
radius (as mentioned earlier) to improve epsilon (e) 
value further. Moreover, as Slicer3D is experimental, 
not FDA approved, yet used worldwide, our plan is to 
upload our implementations under BSD license so that 
world-wide communities can try the system and 
provide more feedback using their 3D volume data 
and reporting e-value for their data. 
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