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ABSTRACT
The process of filtering digital images represented by complex Cartesian allows to use the available one-
dimensional (1D) elements (interpixel); however, having those additional 1D elements increases both the volume
of data and the time for processing them. The time reduction strategy based on a parallel computing scheme on
the number of available central processing units (CPUs) does not consider additional computing resources such as
those offered by general purpose graphics processing units (GPUs) of NVIDIA. Parallel computing possibilities
provided by the NVIDIA GPUs were explored and, based on them, a computational scheme for the digital image
Cartesian complexes filtering task was proposed using the application program interface Open Computing Lan-
guage (OpenCL) provided for NVIDIA corporation GPUs. The results assessment was established by comparing
the response times of the proposed solution compared to those obtained using only CPU resources. The obtained
implementation is an alternative to parallelization of the filtering task, which provides response times up to 14
times faster than those obtained with the implementation that uses only the CPU resource. The NVIDIA multicore
GPU significantly improves the parallelism, which can be used in conjunction with the available multicore CPU
computing capacity, balancing the workload between these two computing powers using both simultaneously.
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1 INTRODUCTION

The increasing availability of high geometric, radiomet-
ric, spectral and temporal resolution multispectral digi-
tal images of the earth surface increases the possibility
of using them in space planning and management ap-
plications geographical. Such applications require ob-
ject detection capabilities for monitoring based on edge
detection procedures very frequently supported in the
outcomes of the application of filters for edge detec-
tion, which, given the high volumes of data to be pro-
cessed, demand huge computing resources. So, compu-
tational implementations, which are focused on reduc-
ing response times, are required.

In recent decades, specific purpose parallel computing
capabilities for graphics processing have evolved,
giving rise to graphical processing units (GPUs),
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which can be leveraged for other processing, when
conveniently using application programming interfaces
(APIs) they provide [1]. Efforts have been made
to provide strategies and environments that facili-
tate programming to enhance GPU-based software
development.

In [2] an introduction to modern PC architectures is
given and discusses strategies and guidelines for devel-
oping GPU programs. [3] introduces a graphical user
interface (GUI) tool called GPUBlocks whose purpose
is to facilitate parallel programming in multicore com-
puter systems. The GPU is designed for high-speed
graphic processing that is inherently parallel. The Open
Computing Language (OpenCL) takes a platform inde-
pendent simple model of data parallelism and incorpo-
rates it into a programming model [4]. The OpenCL
language makes the GPU look the same as another pro-
grammable device, using an execution model defined
in terms of device kernels and a host program. In
this way, the executable is in a virtual platform inde-
pendent architecture, The OpenCL framework. This
framework allows applications to use a host and one or
more OpenCL devices as a single heterogeneous paral-
lel computer system. Backwards compatibility allows
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that a device consume earlier versions of the OpenCL
C and other programming languages [5].

[6] manages to design and implement an alternative
method for segmenting multispectral images based on
axiomatic locally finite spaces (ALFS) provided by
Cartesian complexes, and which takes into account
topological and geometric properties [7]. This al-
ternative representation model provides a geometric
space that complies with the digital topology T0 free
of topological ambiguities, on which a new way of
segmenting image data is built. The proposed model is
developed and implemented in such a way that required
topological and geometric characteristics present in
the combinatorial semi-spaces are transformed into
combinatorial structures which encode them using
their associated oriented matroid [8, 9, 10]. Having
additional inter-pixel elements means that the volume
of data increases considerably. In particular, the task
of texture analysis demands a significant amount
of computing resources. The strategy adopted in
[6], based on a parallel computing scheme from the
execution in as many groups of 1-cells as the number of
central processing units (CPUs) available, significantly
reduces the time of processing required to process
the entire Cartesian complex. However, the size of
the digital image makes up such amount of data to be
processed that the response times, even with dozens of
CPUs, are prolonged.

[11] examines parallel algorithms for performing image
boundary detection as part of the segmentation process
and performs deployment on highly parallel NVIDIA
processors, achieving a contour detector that provides
accuracy with an F-measure of 0.70. The runtime is re-
duced from 4 minutes to 1.8 seconds. The efficiency
gains that are made there allow the detection of con-
tours in much larger images and the algorithms are
applicable to various approaches to image segmenta-
tion. [12] starts from the fact that nowadays it is in-
creasingly common to detect changes in land use and
coverage using multispectral images and that a large
part of the available change detection (CD) methods
available focus on pixel-based operations. Since the
use of spectral-spatial techniques helps to improve ac-
curacy results, but also implies a significant increase
in process time, [12] used a GPU framework to make
object-based CD from multitemporal hyperspectral im-
ages and achieved real-time execution with accelera-
tions of up to 46.5 times with respect to an open multi-
processing (OpenMP) implementation.

This research proposes the implementation of the multi-
kernel multi-scale steerable filtering task of digital im-
ages represented as Cartesian complexes, on graphical
processing units (GPUs), using a parallel computational
scheme in terms of the OpenCL API. In this way, the
processing that is currently assigned to each CPU can

be performed in parallel including also the processing
cores available on the GPU. The evaluation of the re-
sults was established by comparing the response times
of the proposed solution compared to those obtained
using only CPU resources. The produced implementa-
tion is an alternative parallelization of the filtering task,
which provides response times up to 26 times faster
than those obtained with the proposed implementation
in [6].

2 PARALLELIZATION SCHEMA
The possibilities of parallel computation provided by
the GPUs were explored in the context of the multi-
kernel multi-scale steerable filtering task proposed in
[13] and reformulated in [6] in terms of Cartesian com-
plex. Finally, a parallel computational scheme was pro-
posed and the outcomes quality assessment was estab-
lished by comparing the response times of the proposed
solution against the response times obtained through the
implementation proposed in [6].

2.1 RAM memory resource management
scheme

Memory in OpenCL is divided into Host and Device
Memories. The device memory is directly available
to kernels executing on OpenCL devices. In fact, a
OpenCL kernel through work-items can access data
from private memory spaces, local memory that can be
used to allocate variables that are shared by all work-
items in a work-group. Additionally, all work-items in
all work-groups running on any device within a context
can access to any element of a memory object in both
Global and Constant Memories [5]. Therefore, it is un-
avoidable to transfer data from the host memory space
to the device memory for processing and from the de-
vice memory to the host memory to obtain the results.

In order to reduce the copying time, the OpenCL
function call for non-blocking memory transfers
between host-device are used, by submitting Memory
commands to a command-queue. So, the waiting times
of the data copying between device and host memories
in non-blocking mode can concurrently be used to
perform other tasks on the host side. Based on the
above, the required global device memory must be fully
allocated to copy to there the input data from the host
memory and then passed to each device work-item the
segments that it must copy to the shared local memory,
process and , after getting the results, copy from the
shared local memory to the global device memory.
There are two sets of data that must be copied in this
way: (i) the one-dimensional cells of the Cartesian
complex space over which the filtering process is to
be performed; and (ii) the set of multi-kernel and
multi-scale steerable filters [6] that will be applied.
The two data sets will remain in the device memory
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shared by the threads within a block, which involves
the intra-device copying between global and shared
memories.

If GPU device provides support for concurrent copy-
ing, the transfer time between memory spaces becomes
a load balancing parameter, being clear that whenever
possible it should be performed simultaneously with
data subset processing assigned to the threads available
on the CPU. On the other hand, the use of the paral-
lel computation processing available in the GPU can be
incorporated into the processing of the functions of the
multi-kernel and multi-scale oriented filtering task of
Cartesian complexes based on at least two paralleliza-
tion schemes: (i) considering each CORE of the GPU
as an additional processing unit and extending to them
the parallelism scheme proposed in [6], and (ii) creat-
ing as many GPU work-items as one-dimensional space
cells present in the Cartesian complex corresponding
to the image to be processed and leave parallelization
management to the GPU. Regardless of the schema
used, the code block that the kernel must execute must
present as few branches as possible in order to increase
the performance of the underlying work-items within
a single work-group execute concurrently guaranteed
to make independent progress in the presence of sub-
groups and device support [5]. Next, the algorithmic so-
lution for each of the two parallelization schemes men-
tioned above will be presented.

2.2 Parallelism scheme considering each
GPU core as a processing unit equiva-
lent to a CPU core

One intended parallelism scheme using the highly mas-
sive capabilities provided by a GPU is to treat each
GPU core as an equivalent CPU core. In parallelism
scheme proposed in [6], the one-dimensional cells of
the Cartesian complex space are distributed using the
row prime path [14, pp. 233, 234], among the m avail-
able CPU cores (see Fig.1 left). What is proposed here
is to make the distribution of the one-dimensional cells
taking each one of the p GPU cores that are available,
as an additional processing unit, for a total of m+ p pro-
cessing units (see Fig.1 right). However, in the case of
the GPU, the following should be taken into account:
first, the necessary copies between the host and device
memory resources must be made; and second, differ-
entiated code bifurcations between work-items of the
same work-group should be avoided [15].

In this parallelism scheme, there is a one-dimensional
NDRange consisting of as many work-items as the
number of cores available on the device (GPU). In or-
der to avoid code divergence between work-items that
are part of each work-group eventually released by the
GPU, the number of one-dimensional cells assigned to
each GPU core must be the same, so the expression for

the size calculation of each group of one-dimensional
cells proposed in [6, p. 98] should be rethought.

A balanced mapping is made between the CPU and
GPU, with an initial distribution based on the propor-
tion that the number of GPU cores represents of the to-
tal available processing units. So, the number pct

GPU
of one-dimensional cells proportionally assigned to the
GPU is set based on equation Equation (1), and number
g1 of one-dimensional cells assigned to each core based
on Equation (2).

pct
GPU

= ceil
(

r
p

m+ p

)
× c , (1)

where r and c are respectively the number of rows and
columns in the image, while m and p are respectively
the number of CPU cores and GPU cores. ceil means
“the smallest integer larger than”.

g1 =
pct

GPU
−
(

pct
GPU

%p
)

p
, (2)

where % represents the module operation. The number
of cells assigned to the GPU nGPU that guarantees the
same number of cells for each of its threads is given by
Equation (3).

nGPU = g1 × p . (3)

So, the number of one-dimensional cells assigned to the
CPU nCPU is set according to Equation (4).

nCPU = (r× c)−nGPU . (4)

Finally, the distribution scheme proposed in [6, p. 98]
is applied to obtain the two group sizes applicable to the
CPU cores according to Equations (5) and (6).

g2 =
nCPU −

(
nCPU %m

)
m

. (5)

g3 = g2 +1 . (6)

Therefore, each of the p cores of GPU will get as-
signed g1 one-dimensional cells, and there will be as
many as m − (nCPU %m) CPU cores with g2 assigned
one-dimensional cells and as many as (nCPU %m) CPU
cores with g3 assigned one-dimensional cells.

2.3 Parallelism scheme creating as many
GPU threads as cells assigned to the
device

The second tested parallelism scheme, using the
highly massive capabilities provided by a GPU, is to
create as many GPU work-items as the number of
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Figure 1: Only CPU versus GPU and CPU parallelism schemes.

two-dimensional cells assigned to it. This scheme
uses the same group sizes used in section 2.2 by
Equations (2), (5) and (6) but instead of creating p
device work-items each with g1 two-dimensional cells,
p × g1 work-items are created in the device, each
processing a cell of the Cartesian complex as shown in
Figure 2 (bottom). As can be seen in the figure (above),
the cells assigned to the CPU are distributed among the
available cores using the scheme proposed in [6, p. 98].

Figure 2: One GPU thread by two-dimensional cell par-
allelism scheme.

As in the scheme proposed in section 2.2, in the case of
the GPU, the following should be considered: first, that
the necessary copies between the host and device mem-
ory resources must be made; and second, that differenti-
ated code bifurcations between work-items of the same
work-group should be avoided. In this parallel scheme,
a three-dimensional NDRange whose first and second
dimension sizes correspond respectively with the num-
ber of rows and columns of the two-dimensional cells
set assigned to the GPU, and the third dimension corre-
sponds to nl layers in the digital image to be processed.
In this case the divergence of the code between the
work-items that are part of each work-group, is coun-
teracted by assigning to each work-item only one cell
of the Cartesian complex in each layer of the digital
image. Since the position of the two-dimensional cell
assigned to a work-item is determined by the position
of the work-item within the hierarchy of work-items,

the number of cells must be a multiple of the number
of columns in the image. By the above, in this case the
number of two-dimensional cells assigned to the GPU
is defined based on Equation 1 but using Equation 7 in-
stead of Equation 3.

nGPU = ceil
(

r× c
p

m+ p

)
. (7)

3 PARALLELISM MODEL IMPLE-
MENTATION

For performance reasons, the parallelization model of
the multi-scale, multi-kernel steerable filtering process
proposed in Section 2 using the OpenCL API, was
adapted to Nvidia’s CUDA programming framework
and implemented using the integrated development en-
vironment (IDE) provided by Eclipse [16], for the Java
and C/C++ programming languages. The Java language
was used to include in the implementation proposed in
[6] the copying of the host memory to that of the device
(and vice versa) and for the configuration of the grid of
threads blocks that are launched in the GPU using the
respective support provided by the JCuda API version
10.1 [17]. The C / C ++ language was used to imple-
ment the kernel code that is executed by each thread.
Next, a description of these components is made.

3.1 Host - device memory copying and
thread block grid configuration

The implementation of the host - device memory copy
scheme proposed in Section 2.1, included two phases:
(i) the first phase includes copying the input data from
the host memory to that of the device before launching
the Thread block grid and the final copy of the results
from the device memory to the host; and (ii) the second
phase comprises the copying of the input data from the
device memory to the memory shared by the threads of
each block, as well as the final copying of the results
from the memory shared to the device memory.

Copying between host and device memory was carried
out concurrently for the four data sets: (i) the Cartesian
input complex, (ii) the filter bank to be applied, (iii) the
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arrangement with the number of 2-cells (pixels) in each
filtering kernel, and (iv) the resulting Cartesian com-
plex. This was implemented as shown in the code frag-
ments of the filtering process shown in the Java program
listing 1.

Because the JNI API used by JCuda to pass the pa-
rameters in the components implemented in Java and
C programming languages only allows the use of one-
dimensional arrays, it was necessary to convert the in-
put data sets to a representation of one-dimensional
primitive data arrays and vice versa (lines 8 and 11).
To carry out this copying process, the asynchronous
memory copy support provided by the GPU was used.
The asynchronous copying process began by creating a
stream which was assigned in the creation of the page-
locked memory segments of the host and device (lines
12, 14, 17, 19, 21, 24 and 31), in asynchronous copying
from conventional memory to host page-locked mem-
ory (lines 13 and 15), from host memory to device
memory (lines 18 and 20), as in those copied from the
memory of the device to that of the host (line 32). To
ensure that the asynchronous copying process was car-
ried out consistently, before proceeding to a next phase,
synchronization points were included (lines 16, 24, 30
and 33).

Copying to the shared memory segments was config-
ured using the support provided by JCuda in launching
the thread block grid (lines 26 to 29), defining the size
of the memory segment shared by the threads within a
block (line 28) and copying in it the input data for each
GPU thread. The kernels that must be executed by each
GPU thread, according to the massively concurrent pro-
cessing schemes proposed in Sections 2.2 and 2.3, were
implemented in C programming language in the way
described below.

3.2 Kernel code implementation consid-
ering each GPU core as an additional
processing unit

In the GPU Kernel listing 2, shown below, presents the
GPU kernel that must be executed by each thread for
the parallelism scheme defined in Section 2.2.

Each kernel starts by defining the memory segment
shared by the threads that are members of a block (line
27), in which the input data that will be used in the fil-
tering process is placed (line 30), seeking to use the
memory management that guarantees the greatest ef-
ficiency. In contrast to the filtering process imple-
mented in [6], it acts not on two-dimensional but on
one-dimensional data structures, so that their indexing
had to be adapted (lines 5, 6, 13, 23 and 34). On the
other hand, in order to avoid the divergence of threads
warps, the "if" sentences were completely replaced by
logical expressions that evaluate to 1 or 0 used to ade-
quately activate addends or factors in accumulation ex-

pressions (line 14). These logical expressions were also
used to activate / deactivate displacements in indexing
expressions (lines 14 and 23). In this way, the only
flow control statement used is “for”, but assigning to
each GPU thread the same number of one-dimensional
cells, which guarantees that the number of cycles in
each thread that is part of A warp is exactly the same.

3.3 Kernel code implementation for a
GPU thread for each two-dimensional
cell

In the GPU Kernel listing 3, shown below, presents the
GPU kernel that must be executed by each thread for
the parallelism scheme defined in Section 2.3.

Each kernel starts by defining the memory segment
shared by the threads in a block (lines 19 and 21), in
which the input data that will be used in the filtering
process is placed (lines 25 and 26), looking for use
memory management that guarantees the highest effi-
ciency. As in the parallelism scheme implemented in
Section 3.2, it acts not on two-dimensional data struc-
tures but on one-dimensional data, so, its indexing had
to be adapted (lines 3, 4, 8, 9 and 10). On the other
hand, with the purpose of avoiding the divergence of
thread warps, the “if” sentences were completely re-
placed by logical expressions that evaluate values 1 or
0 used to adequately activate addends or factors in ac-
cumulation expressions (line 10); as well as displace-
ments in indexing expressions (line 15). Addition-
ally, the multidimensionality of the GPU threads hier-
archy was used, using the thread X dimension (threa-
dIdx.x) and thread blocks (blockIdx.x) to access the
2-cells of the input Cartesian complex, the Y dimen-
sion of the thread block grid (blockIdx.y) to access
each filtering kernel, and the Z dimension of the thread
block grid (blockIdx.z) to Access each input channel.
This allowed the removal of the respective “for” cycles
of the DirectionalFilterProcessor, computeFilteredCell
and applyFilter functions, leaving only one “for” cycle
in the applyFilter function to control the filtering kernel
neighborhood.

Thus, unlike the parallelism scheme implemented in
Section3.2, the only flow control statement used is a
“for” cycle which is evidenced in the algorithmic sim-
plicity of the implementation presented in the GPU Ker-
nel listing 3 regarding the one presented in the listing 2.
The “if” flow control statement used on line 39 does not
introduce significant divergence of threads as it is used
exclusively to avoid the process of threads that are not
assigned 2-cells.

4 RESULTS AND DISCUSSION
The implementation described in Section 3, was exe-
cuted on a machine with OpenSUSE linux Leap 15.1

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3001

WSCG2020  Proceedings 

23



Listing 1: Java copying code snippet for FilteredCartesianComplex method

1 public FilteredCartesianComplex(...) {
2 int cores = Runtime.getRuntime().availableProcessors();
3 // Enable exceptions and omit all subsequent error checks
4 JCudaDriver.setExceptionsEnabled(true);
5 String ptxFileName = preparePtxFile("DirectionalFilterProcessorByCore.cu");
6 cuInit(0); CUdevice device = new CUdevice();
7 ...
8 inputImage = aCartesianComplex.convert2PrimitiveArray(rows4GPU);
9 hostInputImage = new Memory(MemoryType.PAGE_LOCKED,...,stream);

10 hostInputImage.put(inputImage);
11 float inputFilterBank[] = convert2PrimitiveArray(nFilterKernel, ...);
12 Memory hostInputFilterBank = new Memory(MemoryType.PAGE_LOCKED, ...);
13 hostInputFilterBank.put(inputFilterBank);
14 Memory hostFilterKernelsCellCount = new Memory(MemoryType.PAGE_LOCKED,...);
15 hostFilterKernelsCellCount.put(filterKernelsCellCount);
16 cuStreamSynchronize(stream);
17 deviceInputImage = new Memory(MemoryType.DEVICE, sizeOf2CellValues,stream);
18 cuMemcpyHtoDAsync(deviceInputImage , hostInputImage, ...);
19 deviceFilterBank = new Memory(MemoryType.DEVICE, ..., stream);
20 cuMemcpyHtoDAsync(deviceFilterBank, ..., stream);
21 devFilterKernelsCellCount = new Memory(MemoryType.DEVICE, ..., stream);
22 cuMemcpyHtoDAsync(devFilterKernelsCellCount, ..., stream);
23 deviceOutputImage = new Memory(MemoryType.DEVICE, ..., stream);
24 cuStreamSynchronize(stream);
25 ...
26 cuLaunchKernel(function,1/gridSizeX/, 1, 1, // Grid dimension
27 blockSizeX , 1, 1, // Block dimension
28 inputFilterBank.length * Sizeof.FLOAT, null, // Shared memory size and stream
29 kernelParameters, null); // Kernel- and extra parameters
30 cuCtxSynchronize();
31 Memory hostOutputImage = new Memory(MemoryType.PAGE_LOCKED, ..., stream);
32 cuMemcpyDtoHAsync(hostOutputImage, deviceOutputImage, ..., stream);
33 cuStreamSynchronize(stream);
34 hostOutputImage.get(outputImage);
35 cuStreamSynchronize(stream);
36 ...
37 }

operating system, with AMD FX
TM − 8320 processor

with 8 cores, RAM memory (host memory) of 16
GiB and a GPU device with the configuration features
shown in Table 1. With the purpose of dedicating the
GPU to the filtering process only, the machine was
equipped with a second ATI Radeon 3000 video card
for the management of the Graphic interface.

For the multi-scale multi-kernel steerable filtering pro-
cess it was used a 500 by 500 pixel image. The im-
plementation execution was monitored using NVIDIA
Nsight Systems software version 2019.5.2, taking the
events of creation and destruction of the GPU context,
respectively as the start and end of the filtering process.
The monitoring the execution of the filtering process
using only the 8 CPU cores showed that (Figure is not
shown for reasons of space), the filtering process starts
at 1.48594 seconds, after the end of the CUDA context

Nvidia Device GeForce GTX 950
CUDA Driver Version 10.1
CUDA Capability 5.2
Total global memory 2002 MBytes
Multiprocessors (MP) 6
CUDA Cores / MP 128 (768)
Total shared memory 49152 bytes (per block)
Warp size 32
Max block size(x, y, z) (1024, 1024, 64)
Max grid size (x, y, z) (2147483647,65535,65535)
Concurrent copy and
kernel execution

Yes, 2 copy engine (s)

Table 1: GPU hardware configuration of the test envi-
ronment.

creation event. The filtering process ends at 2.18768
seconds, before the start of the CUDA context destruc-
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Listing 2: process that employs one GPU core per 2-cell group

1 extern "C" _device_ void applyFilter(int central1DCoord, ...) {
2 int aCoord1D = 0;
3

4 for (int channel = 0 ; channel < numberOfInputChannels ; channel++) {
5 int inputChannelCentral1DCoord = channel * numberOfInputCellTypes * pixelsInX *

pixelsInY + central1DCoord;
6 int outputChannelCentral1DCoord = ((kernelIndex * numberOfInputChannels +

channel) *
7 numberOfOutputCellTypes + cellType) * pixelsInX * pixelsInY + central1DCoord;
8 aFilteredCC[outputChannelCentral1DCoord] = 0;
9

10 for (int cellInd = 0 ; cellInd < kernelCellCount ; cellInd++) {
11 int cX = (aFilterKernel[cellInd * 3] - 1 + cellType) / 2,
12 cY = (aFilterKernel[cellInd * 3 + 1] - cellType) / 2;
13 aCoord1D = central1DCoord + (cY * pixelsInX) + cX;
14 aFilteredCC[outputChannelCentral1DCoord] += ((1 && (aCoord1D >= 0) && (aCoord1D

< (pixelsInY * pixelsInX))) * (aMonochromatic[inputChannelCentral1DCoord + (1
&& (aCoord1D >= 0) && (aCoord1D < (pixelsInY * pixelsInX))) * ((cY * pixelsInX)
+ cX)] * aFilterKernel[cellInd * 3 + 2]));}

15 }
16 }
17 extern "C" _device_ void computeFilteredCell(int central1DCoord, ...) {
18 float * dF = nFilterKernel + cellType * filterKernelsCellCount[0] * 3;
19

20 for(int iFK= cellType ; iFK < numberOfKernels ; iFK += 2){
21 applyFilter(central1DCoord, ...);
22 dF = dF + (filterKernelsCellCount[iFK] + filterKernelsCellCount[(iFK + 1) %

numberOfKernels]) * 3;}
23 }
24 extern "C" _global_ void DirectionalFilterProcessor(...){
25 extern _shared_ float interchangedData[];
26 float * sharedFilterBank = interchangedData;
27 int groupStart = threadIdx.x * groupSize;
28 if (threadIdx.x == 0) memcpy(sharedFilterBank, nFilterKernel, sizeof(float) *

bankSize);
29 __syncthreads();
30

31 for(int i = 0; i < groupSize; i++){
32 int central1DCoord = groupStart + i;
33 computeFilteredCell(central1DCoord, HORIZONTAL_CRACK, ...);
34 computeFilteredCell(central1DCoord, VERTICAL_CRACK, ...);}
35 }

tion event. That is, the filtering process performed con-
currently only by the eight CPU cores, each processing
31250 or 31251 pixels according to Equations 5 and 6,
took a time of 701.74 milliseconds.

On the other hand, Figure 3 presents the results of the
monitoring of the filtering process execution using, in
addition to the 8 CPU cores, also the 768 GPU cores. In
this case, of the 500× 500 = 250,000 pixels, 247,296
were assigned to the GPU, that is, 768 groups (one for
each GPU core), each of 322 pixels. As shown in the
figure, the filtering process starts at 1.49453 seconds,
after the end of the CUDA context creation event. As

can also be seen, the filtering process ends at 1.64496
seconds, before the start of the CUDA context destruc-
tion event (labeled in the figure as call to cuCtxDe-
stroy). Therefore, the filtering process performed con-
currently by the eight CPU cores, each processing 338
or 339 pixels according to equations Equations 5 and 6,
took a time of 150.43 milliseconds. In the case of GPU
threads, the filtering process performed concurrently by
processing each 322 pixels, started at 1.52946 seconds
and finished 1.58076 (labeled in the figure as Direc-
tionalFilterProcessor), that is, it took 51.3 milliseconds.
This means that, using all available CPU and GPU com-
puting resources, the process performed by the CPU
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Listing 3: process that employs one GPU thread per 2-cell

1 extern "C" _device_ void applyFilter(int central1DCoord, ...) {
2 int aCoord1D = 0;
3 int inputChannelCentral1DCoord = channel * numberOfInputCellTypes * pixelsInX *

pixelsInY + central1DCoord;
4 int outputChannelCentral1DCoord = ((kernelIndex * numberOfInputChannels +

channel) * numberOfOutputCellTypes + cellType) * pixelsInX * pixelsInY +
central1DCoord;

5 aFilteredCC[outputChannelCentral1DCoord] = 0;
6

7 for (int cellInd = 0; cellInd < kernelCellCount; cellInd++) {
8 int cX = (aFilterKernel[cellInd * 3] - 1 + cellType) / 2, cY =

(aFilterKernel[cellInd * 3 + 1] - cellType) / 2;
9 aCoord1D = central1DCoord + (cY * pixelsInX) + cX;

10 aFilteredCC[outputChannelCentral1DCoord] += ((1 && (aCoord1D >= 0) && (aCoord1D
< (pixelsInY * pixelsInX))) * (aMonochromatic[inputChannelCentral1DCoord + (1
&& (aCoord1D >= 0) && (aCoord1D < (pixelsInY * pixelsInX))) * ((cY * pixelsInX)
+ cX)] * aFilterKernel[cellInd * 3 + 2]));}

11 }
12 extern "C" _device_ void computeFilteredCell(int central1DCoord, ...) {
13 applyFilter(central1DCoord, ...,
14 nFilterKernel + filterKernelsCellCount[2 * (2 * iFK + cellType) + 1],

filterKernelsCellCount[2 * (2 * iFK + cellType)], pixelsInX, pixelsInY,
channel);

15 }
16 extern "C" _global_ void DirectionalFilterProcessor(...){
17 extern _shared_ float interchangedData[];
18 float * sharedFilterBank = interchangedData;
19 extern _shared_ float sharedFilterKernelsCellCount[numberOfKernels * 4];
20 int central1DCoord = blockIdx.x * blockDim.x + threadIdx.x;
21

22 if (threadIdx.x == 0){
23 memcpy(sharedFilterBank, nFilterKernel, sizeof(float) * bankSize);
24 memcpy(sharedFilterKernelsCellCount, devFilterKernelsCellCount, sizeof(float) *

numberOfKernels * 4);}
25

26 __syncthreads();
27

28 if (central1DCoord < (pixelsInX * pixelsInY)){
29 computeFilteredCell(central1DCoord,HORIZONTAL_CRACK, blockIdx.z,blockIdx.y,...);
30 computeFilteredCell(central1DCoord,VERTICAL_CRACK, blockIdx.z,blockIdx.y,...);}
31 }

cores was 701.74
150.43

∼= 5 times faster, while the process per-
formed by the GPU cores was 701.74

51.3
∼= 14 times faster.

On the other hand, Figure 4 presents the results of the
monitoring of the filtering process execution using all
computing resources, the 8 CPU cores and the 768 GPU
cores. In this case, the GPU was also assigned 247,296
2-cells (pixels), however, a GPU thread was created for
every 2-cell of each channel in the Cartesian input com-
plex and for each filtering kernel. This is evidenced in
Figure 4 in which can be seen the hierarchy of threads
composed of a grid of threads blocks of 242×2×1 and
each grid of threads within each block of 1024×1×1.
As shown in the figure, the filtering process starts at

1.37085 seconds and ends at 1.52964. Therefore, the
filtering process performed concurrently by the eight
CPU cores, each processing 338 or 339 pixels, took
a time of 158.79 milliseconds. In the case of GPU
threads, the filtering process carried out concurrently by
processing each one an input channel and a kernel of the
two 1-cells of the pixel assigned to it, started at 1.40355
seconds and ended 1.43087, that is, it took 27.32 mil-
liseconds.

This means that, using all available CPU and GPU com-
puting resources, the process performed by the CPU
cores was 701.74

158.79
∼= 4 times faster, while the one per-

formed by GPU cores were 701.74
27.32

∼= 26 times faster.
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Figure 3: Monitoring of the filtering process using 8 CPU and 768 GPU cores.

Figure 4: Monitoring of the filtering process using a GPU thread for every 2-cell.

The adopted hierarchy of memory scheme, which is
based on the use of the device’s global memory to copy
there both the input image represented by the Cartesian
complex, and the filter bank to be applied to each 1-Cell
and then copy it to the memory shared by each block of
threads, involves three phases of memory transfer, in-
cluding the final copying of the results. The processing
time is significantly reduced by performing it in parallel
using the asynchronous copy scheme provided by the
CUDA API, as well as assigning to each of the threads
blocks the copying in the shared memory segments, the
data to be processed. This means that, although it is
true, additional time is devoted to copy processing, the
overall performance is also increased when processing
on the cells of the Cartesian complex, since they are
placed in shared memory of the device, which has the
largest bandwidth.

The massive parallelization schemes presented in Sec-
tion 2, which were introduced using the Java program-
ming language and the CUDA implementation for Java
called Jcuda [17], as well as the C programming lan-

guage for the case of the processing kernels to be exe-
cuted by a GPU thread, show at least two ways of per-
forming the multi-scale and multi-kernel filtering pro-
cess of an image represented as a Cartesian complex, by
distributing the cell processing among GPU and CPU
resources highly massive available.

5 CONCLUSIONS AND FUTURE
WORK

The proposed scheme for multi-scale and multi-kernel
oriented filtering of an image represented as a Cartesian
complex implies additional processing times dedicated
to memory copying and conversion of the Cartesian
complex to one-dimensional primitive arrays. How-
ever, since these processes are carried out in parallel,
their impact on overall performance is negligible com-
pared to the performance gain when performing the fil-
tering process using the highly massive processing of-
fered by GPU devices.
While it is true, the parallelism capability offered by a
multi-core CPU is greatly exceeded by that offered by
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a multi-core GPU, the proposed parallelism approach
manages to perform a proportional balance between
these two parallel computing capabilities using both in
a concurrent way. Although in general the frequency
of a CPU may be slightly higher than that of a GPU,
the data orientation of the latter makes it more appro-
priate for the processing of high volumes of data such
as digital images represented as Cartesian complexes.

The proposed approach constitutes a prototype and
therefore presents several limitations that must be taken
into account and that would warrant the continuation of
this research. On the one hand, the proposed process-
ing contemplates the copying of the input Cartesian
complex, represented as a one-dimensional primitive
arrangement, to the global and shared memories of the
device. However, these resources are limited, so that
the size of the image that can be processed is quite re-
stricted for practical purposes. In order to be applicable
to images regardless of their size, a research should be
undertaken that extends the copying component to and
from the global and shared memories of the device,
by partitioning the image into fragments that can be
housed in these memory resources.

The approach proposed in [6, pp. 94-97] supports the
types of data that the input image presents through the
use of the GDAL layer ([18]); however, the approach
proposed here only supports the float data type, so a
research should be undertaken that addresses the types
supported by GDAL layer.
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