
Memory-Friendly Deep Mesh Registration

François Le Clerc
InterDigital

975 avenue des Champs Blancs
F-35576 Cesson-Sévigné, France
Francois.LeClerc@InterDigital.com

Hao Sun1

Tencent
1081C Hongmei Road

200233 Shanghai, China
mikiyasun@tencent.com

ABSTRACT
Processing 3D meshes using convolutional neural networks requires convolutions to operate on features sampled
on non-Euclidean manifolds. To this purpose, spatial-domain approaches applicable to meshes with different
topologies locally map feature values in vertex neighborhoods to Euclidean ’patches’ that provide consistent inputs
to the convolution filters around all mesh vertices. This generalization of the convolution operator significantly
increases the memory footprint of convolutional layers and sets a practical limit to network depths on the available
GPU hardware. We propose a memory-optimized convolution scheme that mitigates the issue and allows more
convolutional layers to be included in a network for a given memory budget. The experimental evaluation of
mesh registration accuracy on datasets of human face and body scans shows that deeper networks bring substantial
performance improvements and demonstrate the benefits of our scheme. Our results outperform the state of art.

Keywords
Geometric deep learning, convolutional neural networks, shape matching, 3D mesh

1 INTRODUCTION
Mesh registration, aka shape matching, is a key stage
of a 3D geometry processing pipeline that provides con-
trol on the sampling of vertices and brings all processed
meshes to a common representation. Effective regis-
tration techniques based on non-rigid Iterative Clos-
est Point approaches have been developed, but their
computational cost makes them unsuitable for inter-
active processing. Besides, landmark annotations are
needed to drive the convergence of these algorithms.
Recent advances in machine learning and particularly
deep learning offer promising prospects for improve-
ments in the field. Inference on a deep network is
fast thanks to the availability of high-performance GPU
hardware, and learning rather than computing the reg-
istration removes the need for landmarking. The chal-
lenge for learning-based approaches is to maintain the
high levels of accuracy achieved by computational ge-
ometry algorithms.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1 Work done while the author was with Technicolor R&D, now
InterDigital

Convolutional neural networks were originally applied
to signals regularly sampled on a Euclidean domain,
for which the implementation of discrete convolution is
straightforward. For signals defined on non-Euclidean
mesh surfaces, the convolution operator becomes a
position-dependent filter [Bro17a]. When the pro-
cessed meshes have different topologies, the feature
values known at the locations of vertices must be
locally mapped to Euclidean ’patches’ to provide the
inputs to the convolution filters. The patch extraction
process incurs additional computations and increased
memory requirements. In practice, the network depth
is limited by the memory capacity of the available
GPU hardware: network architectures proposed in
[Mas15a, Mon17a, Ver18a] do not contain more than 3
convolutional layers.

In this paper we quantify the storage space needed for
implementing convolutions on feature signals sampled
on the surface of a 3D mesh. In addition to the Eu-
clidean case requirements, local geometry information
around each vertex must be fed into the network for
extracting the patches, and storage must be allocated
for intermediate tensors in the computation of convolu-
tions. We propose mitigation schemes for both of these
issues to reduce the memory footprint of convolutional
layers. For a given memory budget, more of these lay-
ers can be squeezed into the network. The shape match-
ing performance of our memory-optimized networks
is evaluated on human body and human face mesh
datasets with varying resolutions. The results show
that the registration accuracy greatly benefits from in-

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

1https://doi.org/10.24132/CSRN.2020.3001.1

creased network depths. Our approach outperforms the
state-of-art and achieves close to perfect registration
scores on the FAUST dataset.

2 RELATED WORK
We focus our review of past research on approaches
most related to our work, and in particular to registra-
tion algorithms that can deal with non-isometric defor-
mations. For a comprehensive review of shape match-
ing, we refer the reader to the survey in [Kai04a].

Non-rigid Iterative Closest Point
Early shape matching approaches [Sum04a, Amb07a]
were extensions of the Iterative Closest Point method to
non-rigid registration, where the deformation between
a source and a target mesh is modelled as a set of local
affine transforms. The registration is obtained by glob-
ally solving for the deformed source vertex positions,
with regularization terms to ensure a spatially smooth
mapping. Landmark correspondences, typically ob-
tained by manual annotation, are required to initiate
the process. [Zel13a] improves the resilience of these
methods to large differences in the geometries of the
source and target mesh by initiating the computation
of the deformation on geometrically simplified meshes.
All of these approaches require solving a bulky sparse
linear system dimensioned by the number of vertices
and faces in the meshes, making them unsuitable for
interactive operation except on small meshes.

Functional Maps
Functional maps [Ovs12a] extend the notion of vertex-
to-vertex correspondence to mappings between real-
valued functions that encode descriptors of the geome-
try around each vertex. The mapping between functions
is expressed as a linear operator on orthogonal bases
taken to be the eigenfunctions of the Laplace-Beltrami
operator. Solving a large linear system yields the co-
efficients of this linear operator. [Lit17a] improves on
the original approach by leveraging a deep network to
jointly compute the functional map correspondence and
optimize the functional descriptors.

Learning descriptor-based correspon-
dences
In early machine learning approaches, shape registra-
tion is cast as a classification problem and the corre-
spondence is computed from local mesh geometry de-
scriptors. In [Rod14a] correspondence labels for shape
vertices are computed from the outputs of a random
forest whose split functions are designed based on the
Wave Kernel Signatures of the vertices. In [Wei16a]
per-pixel descriptors on depth maps of human bodies
are learnt as intermediate features of a shape classifica-
tion network, and the correspondence problem is solved
by a closest neighbor search in descriptor space.

Graph Convolutional Neural Networks
Deep learning approaches formulate mesh registration
as a classification problem whose outputs for each
source mesh vertex are the probabilities of assignment
to each of the target mesh vertices. The generalization
of Convolutional Neural Networks (CNNs) to signals
sampled on non-Euclidean domains (in the most
general setting, graphs) can be achieved by defining
the convolution in the graph Fourier domain [Bro17a].
However, these spectral-domain approaches, e.g.
[Kip17a], are inadequate for processing meshes with
different topologies as the graph Fourier transform
differs for each mesh. Approaches applicable to shape
matching operate in the spatial domain by locally
mapping feature values in a neighborhood of each
vertex on the mesh surface to a Euclidean domain
on which a convolution kernel can be defined consis-
tently for all vertices. In [Mas15a, Bos16a, Mon17a]
these mappings target local geodesic polar coordinate
systems, while in [Ver18a] they are learnt from the
convolutional layer inputs.

The adaptation of the convolution operator in spatial-
domain graph-CNN approaches incurs additional com-
putations and increased memory requirements that limit
in practice the network depth. Based on the intuition
that deeper networks could provide better performance,
we propose a memory-optimized convolution scheme
that allows more convolutional layers to be included in
the network for the same memory budget.

3 TECHNICAL APPROACH
3.1 Problem and notations
We address the shape matching problem for input
meshes with N vertices by means of a spatial-domain
graph-CNN. For simplicity and without loss of gen-
erality, we assume minibatches to enclose the feature
descriptors of all the vertices of a mesh. We consider a
generic convolutional layer of the network with D input
channels, E output channels and convolution kernels of
size M. The learnable parameters for the layer are the
convolution weights wd,e

m with 1 ≤ d ≤ D, 1 ≤ e ≤ E
and 1≤ m≤M.

3.2 Patch operator
The convolution can be formulated using a "patch oper-
ator" [Mas15a, Bro17a] that interpolates a feature sig-
nal f sampled at vertex locations on the mesh surface to
consistent inputs to the convolution operator, based on
data available in local neighborhoods Γi of each vertex
Vi:

Dm(Vi) f = ∑
j∈Γi

cm[u(Vi,Vj)]. f (Vj). (1)

In this equation, m indexes the values of the convolution
kernel, u(Vi,Vj) is a local parameterization of the mesh

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

2

Figure 1: the patch operator maps vertices in a vertex neighbourhood Γi to a Euclidean polar coordinate system

Figure 2: the convolution kernel support is a uniformly
sampled grid in the (ρ,θ) space (black dots). The
feature value at each vertex neighbor Vj (red dots)
contributes only to the 4 neighboring grid points.

surface in Γi and the cm weights define the patch op-
erator. The Γi can be defined as geodesic, Euclidean
or ring neighborhoods. Their size Ki

def
= |Γi| is a di-

mensioning parameter for the memory footprint of the
convolutional layer. We denote by K the average of Ki
over the mesh. Following [Mas15a, Mon17a] we define
u(Vi,Vj) = (ρi j,θi j)

T as local polar intrinsic coordinate
systems where ρi j is the geodesic distance between Vi
and Vj and θi j the angle between the geodesic path at Vi
with a reference direction that we set to the maximum
curvature direction at Vi

1 (see Figure 1). For notational
simplicity we define ci jm

def
= cm[u(Vi,Vj)] and obtain the

eth output component of the convolution as

ge
i =

D

∑
d=1

∑
j∈Γi

M

∑
m=1

ci, j,mwd,e
m f d

j . (2)

In [Mas15a, Mon17a] the patch operator relies on a
mixture of Gaussian kernels :

cm(u) = exp[−1
2
(u−um)

T
(

σ2
ρ 0

0 σ2
θ

)−1

(u−um)]

(3)
with the difference that σρ , σθ and um are fixed in
[Mas15a] and learnt in [Mon17a]. [Ver18a] remove the
hand-crafted parameterization u(Vi,Vj) of the mesh sur-

1 [Mas15a] does not define a reference direction but computes
convolutions for Nθ possible rotations of the convolution filter
and retains the maximum value as the output.

face and directly learn the patch operator as a function
of the feature inputs to the current layer:

cm(fi, f j) ∝ exp[aT (fi− f j)+bm]. (4)

We opt for the baseline patch operator of [Mas15a] and
define the support of the convolution kernel to be a reg-
ular grid of Nρ ×Nθ points in the local polar geodesic
systems around each vertex. To reduce training times
we speed up the computation by bi-linearly interpolat-
ing the contribution of the feature value at each Vj to its
4 closest points on the grid (Figure 2). Subject to the
corresponding restrictions on |ρi j−ρm| and |θi j−θm|,
letting ∆ρ and ∆θ be the spacings between adjacent
grid points along each axis, our patch operator is de-
fined as

cm((ρi j,θi j)
T) =

(
1−
|ρm−ρi j|

∆ρ

)(
1−
|θm−θi j|

∆θ

)
(5)

We weight the contributions of vertex features f (Vj) in
to the patch operator (1) by a term that approximates
the Voronoi area of Vj, thereby giving more importance
to feature values that represent larger areas on the mesh
surface. Specifically, each triangle a vertex belongs to
contributes 1/3 of its area to the vertex weight. The
weight value is accumulated over all the triangles. Ex-
perimentally we found that this refinement stabilizes
the convergence of the training process and slightly im-
proves the registration accuracy.

3.3 Memory optimization
Implementing CNNs on non-Euclidean domains using
a patch operator (1) incurs extra complexity: a local
parameterization u(Vi,Vj) of the mesh surface around
each Vi is needed, and the convolution involves an ex-
tra summation level. We show below that this strongly
impacts memory consumption.

To obtain orders of magnitude on the memory foot-
prints of convolutional layers, we consider as a typi-
cal use case medium resolution meshes with N = 15000
vertices and an average vertex neighborhood size of K =
300 that corresponds to the optimum in our experiments
on face meshes. We further assume values of M = 32,

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

3

Figure 3: optimized memory management of variable-sized vertex neighborhoods.

D = 128, E = 256 that are typical of the experimental
setups used in [Mas15a, Mon17a, Ver18a].

The patch operators used in [Mas15a, Mon17a] and
in our approach depend on local polar coordinates
u(Vi,Vj) around each Vi on the mesh surface. This
information must be fed to the network for extracting
the convolution patches around each vertex through the
cm(u) coefficients and is used in each convolutional
layer. These coefficients represent in total NKM float-
ing point values for a minibatch of N vertices. In the
approach of [Ver18a] the geometrical data needed to
compute the patch operator are the indicator functions
of neighborhoods Γi, NK integer vertex indices whose
memory footprint is negligible.

Assuming a 4-byte floating point representation, NKM
values amount to 0.58 GB of data in our numerical
example. However, this estimation assumes neighbor-
hoods of fixed size K. In practice K is an average and
the count of vertices in each Γi varies as a function of
the sampling density on the mesh surface. In our exper-
iments the ratio Kmax/K of max to average neighbor-
hood vertex count lies between 2 and 4. We optimize
the memory management of our patch operator coef-
ficients ci, j,m

def
= cm(u) in two ways. First, we reduce

their memory footprint from NKM to 4NK values by
restricting the contribution of each feature at Vj to the
4 neighboring points on the convolution kernel grid, as
explained in section 3.2 (see figure 2). Second, to avoid
wasting space through padding because of the varying
vertex neighborhood size, we map patch extraction co-
efficients to 1D tensors of 4Npairs values, where Npairs
is the total number of (Vi,Vj) pairs on the mesh. Each
tensor element represents one of the 4 patch extraction
coefficients for one such pair. As illustrated on figure 3,
the input feature values f d

j are mapped to this represen-
tation using gather operations, and after multiplying the
features elementwise with the ci, j,m the result is scat-
tered to an (N,M,D) tensor. Note that the scatter oper-
ation accumulates the contributions of the (Vi,Vj) pairs

at each patch location m and consequently performs the
summation over j indices.

The computation of the convolution as defined by
equation (2) involves a 3-level summation over tensors
{ci jm} of shape (N,K,M), {wd,e

m } of shape (M,D,E)
and { f d

j } of shape (N,D). In practice, the values of the
f d

j have to be duplicated for each Γi to compute the
convolution, resulting in a tensor of shape (N,K,D).
The 3 reduction operations in (2) must be performed
one after the other2, generating intermediate tensors
among which the output of the first reduction is the
largest. Thus, the ordering of the summations impacts
memory usage. There are three options:

• over j first: ∑ j∈Γi ci, j,m f d
j has shape (N,M,D)

• over m first: ∑
M
m=1 ci, j,mwd,e

m has shape (N,K,D,E)

• over d first: ∑
D
d=1 wd,e

m f d
j has shape (N,K,M,E)

Summing over j first allows considerable memory sav-
ings as it outputs an order 3 tensor while the other op-
tions generate intermediate tensors of order 4. A nu-
merical evaluation on our typical use case illustrates
how important the summation order is:

• j first: N×M×D≈ 61.4 106, or 246 MB

• m first: N×K×D×E ≈ 147 109, or 590 GB

• d first: N×K×M×E ≈ 36.9 109, or 147 GB.

Using today’s GPU hardware, any option other than
summing over j first precludes the implementation of
a large number of convolutional layers in mesh regis-
tration networks.

2 Deep learning frameworks offer the possibility of combining
several reduction operations using an Einstein summation, but
experiments on TensorFlow and PyTorch show that the under-
lying implementations compute the sums sequentially without
optimizing their order for memory consumption.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

4

Figure 4: architecture of our single-resolution deep mesh registration network.

Figure 5: architecture of our multi-resolution deep mesh registration network. Arrow blocks represent pooling
and unpooling layers, C blocks concatenation.

3.4 Baseline network architecture
The architecture of our baseline network is shown on
figure 4. The network is fed with minibatches of SHOT
descriptors [Sal14a] for all the vertices of the processed
mesh. The registration task is cast as a labeling prob-
lem: for each source mesh vertex, the network outputs
the probabilities of assignment to each target mesh ver-
tex, and its correpondence is computed as the argmax
of this vector. The network core consists of memory-
optimized geodesic convolutional layers, as described
above, each of depth 64. Each pair is set-up as a resid-
ual block [HeK16a] by-passed by a skip connection.
The number of such blocks is maximized to fit into the
available hardware memory.

3.5 Multi-resolution network architecture
In a spatial graph-CNN each vertex is processed in-
dependently from its neighbors at inference time. A
multi-resolution network as proposed in [Ver18a] in-
troduces some amount of spatial regularization on the
outputs, and was shown to improve mesh registration
performance on the FAUST dataset. We base our multi-
resolution network on the same U-Net architecture but
replace the convolutional layers by residual blocks of
our memory-optimized layers (figure 5), resulting in a
deeper netwrk.

The pooling approach in [Ver18a] is generic for all
types of graphs. Following [Ran18a], we specialize it to
benefit from the spatial vertex layout information avail-
able on a mesh. Pooling in our multi-resolution network

relies on the edge collapsing scheme of [Gar97a]. Col-
lapsing an edge maps its two end vertices to one vertex
in the decimated mesh, thereby halving the number of
vertices. We choose as decimated vertex the edge end
that has the smaller collapsing cost.

A pooling layer in our network generates a feature value
for each decimated mesh vertex by copying the fea-
ture value of the corresponding vertex in the original
mesh. Letting Norig be the vertex count of the orig-
inal mesh, a pooling layer is implemented as a fixed
sparse Norig/2×Norig matrix that is precomputed from
the mesh decimation results. Each row has a unique
non-zero value equal to 1 at the location of the collapsed
vertex index in the original mesh.

In the same way, the unpooling layer is implemented as
a precomputed sparse Norig×Norig/2 matrix. Each row
represents a vertex in the upsampled mesh and holds a
unique non-zero value equal to 1 at the location of the
corresponding vertex in the decimated mesh, computed
as the closest vertex.

4 EXPERIMENTAL DATASETS
We validate our approach on two complementary
datasets with very different features.

4.1 FAUST [Bog14a]
We experiment with the low-resolution version of the
MPI FAUST dataset, built from 100 human body scans
with varying poses and morphology. The meshes have
6890 vertices each and are completely free of geometri-
cal artefacts. All meshes have been pre-registered using

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

5

Figure 6: example FAUST mesh after up-sampling to
15K vertices (detail)

landmark annotations on the bodies to provide accurate
ground-truth correspondence. We follow the protocol
of [Mon17a] and split the dataset into 80 meshes for
training and 20 for testing. The first mesh in the train-
ing dataset is used as the registration target.

To experiment with memory limitations, we generate
a higher-resolution version FAUST-15K of the dataset
by upsampling the meshes to 15000 vertices (Figure 6).
To this purpose we fit a cubic surface patch around each
vertex following the algorithm of [Gol04a] and interpo-
late on this patch the locations of the centroids on each
triangle adjacent to the vertex. The centroid for each
triangle is computed as the average of these locations.
We add centroids to a reference original mesh in the
FAUST dataset up to the desired target vertex count, in
decreasing order of triangle area. We then select the
same set of centroids for all other meshes in order to
preserve the ground-truth per-vertex correspondence of
the original dataset.

4.2 Bosphorus [Sav08a]
We also validate our approach on Bosphorus, a dataset
of higher-resolution, noisy expressive facial scans that
is more representative of the 3D data processed in
the industry. The scans come as point clouds with
holes and sometimes noticeable artifacts, which we
pre-process as shown on Figure 7. After removing
background points by depth thresholding, the point
clouds are meshed using 2D Delaunay triangulation in
a plane perpendicular to the scanning axis (Figure 7b).
Next, we fill holes and remove small connected
components (Figure 7c). Finally, we apply quadric
edge decimation to downsample all meshes to 15K
vertices (Figure 7d). The target mesh is set to a neutral
expression scan that belongs neither to the training set
nor to the test set, and is pre-processed in the same
way. Ground truth correspondences to this target are
obtained using the deformation transfer algorithm
of [Sum04a], leveraging the landmark annotations
provided with the Bosphorus dataset. We validate the
excellent registration quality of this method through
high-resolution texture transfer. 150 scans are selected
for training and 50 for testing.

5 EXPERIMENTAL RESULTS
5.1 Methodology
We assess the performance of our registration ap-
proach using the Princeton benchmark protocol
[Kim11a], and compare it with two recent approaches
[Mon17a, Ver18a] for which the authors provide
their code. The registration accuracy is plotted as
the proportion of correct correspondences over the
test set (vertical axis) as a function of the tolerance
on the geodesic error (horizontal axis), expressed
as a ratio of the mesh diameter. To allow for a fair
comparison we optimize the network and training
parameters separately for all approaches given a fixed
GPU memory budget. We run all our experiments on
an NVidia Tesla P100 GPU with 16 GB memory. We
use as network inputs for all datasets 352-dimensional
SHOT descriptors [Sal14a]. Minibatches consist of the
descriptors for all the vertices of a mesh, except for
[Mon17a] where they are restricted to mesh regions
to avoid running out of memory. In this case the
processing of sub-meshes is managed in the authors
code.
Besides the number of convolutional layers in the net-
work, the parameters most impacting the memory re-
quirements are the geometrical extent ρmax of the ver-
tex neighborhoods and the size M of the convolution
kernel. In our approach, kernels are sampled on 8 by 8
regular grids in the local geodesic polar systems around
each vertex, hence M is set to 64. For [Mon17a, Ver18a]
we use the values of M advocated in the papers. For
each approach we optimize the remaining parameters
by performing a grid search, selecting the values that
yield the best registration accuracy while not running
out of memory. These parameters are ρmax for [Ver18a],
ρmax and the count of vertices in each minibatch for
[Mon17a], and for our approach ρmax and the number
of convolutional layers.
The network is trained by minimizing the standard
cross-entropy loss by means of an Adam optimizer,
with an initial learning rate of 10−4 and over 800
epochs. We use batch normalization but no dropout.

5.2 Single-resolution performance
Figure 8 shows the compared accuracy of our approach
against MoNet [Mon17a] and the single resolution ver-
sion of FeaStNet [Ver18a]. For completeness we also
plot the performance curves of older shape matching
approaches on FAUST, reproduced from [Lit17a] and
[Mas15a].
Our scheme outperforms all previous single-resolution
approaches on the 3 considered datasets. Unsurpris-
ingly, the accuracy on Bosphorus for all methods is
considerably less than on FAUST, a consequence of the
large amount of geometrical noise of this dataset. How-
ever, for the same quality of geometry (FAUST and

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

6

Figure 7: Pre-processing pipeline of the Bosphorus dataset point clouds

Algo - Database Num conv. layers ρmax M Batch size

[Mon17a] - FAUST 3 0.60 IOD 80 75 vertices
[Mon17a] - FAUST 15K 3 0.30 IOD 80 150 vertices
[Mon17a] - Bosphorus 3 0.06 IOD 80 150 vertices
[Ver18a] - FAUST 3 1-ring 32 1 mesh
[Ver18a] - FAUST 15K 3 1-ring 32 1 mesh
[Ver18a] - Bosphorus 3 1-ring 32 1 mesh
Ours single-res - FAUST 30 1.20 IOD 64 1 mesh
Ours single-res - FAUST 15K 30 1.20 IOD 64 1 mesh
Ours single-res - Bosphorus 14 0.25 IOD 64 1 mesh
Ours 2 res levels - FAUST 10+10+10 1.20 IOD 64 1 mesh
Ours 2 res levels - FAUST 15K 10+10+10 0.90 IOD 64 1 mesh
Ours 2 res levels - Bosphorus 10+10+10 0.18 IOD 64 1 mesh

Table 1: Optimal experimental settings of memory-dimensioning parameters (IOD: Inter-Ocular Distance)

FAUST-15K), our approach maintains its performance
level when the vertex count is increased, while the ac-
curacy of [Mon17a] and [Ver18a] drops significantly.
Figure 9 a) and b) demonstrates the improvement of
the registration accuracy as more convolutional layers
are added to the network. On Bosphorus performance
keeps improving up to the depth limit set by the hard-
ware memory capacity.

5.3 Multi-resolution performance
Table 2 summarizes the performance of our multi-
resolution network on the FAUST and FAUST-15K
datasets. Our architecture has 2 resolution levels
and 10 convolutional layers in each of the sections
delimited by the pooling and unpooling layers. Adding
more layers again improves performance, but the gain
becomes less significant as our registration scores
approach perfection. On FAUST our performance is
superior to the results reported in [Ver18a], the only
point of comparison in this case.
On Bosphorus the multi-resolution accuracy improves
with network depth but remains lower than using a
single-resolution network (Figure 9 c). We hypothe-
size that the noisier geometry on this dataset hinders the
convergence of the network towards stable vertex cor-
respondence patterns and thereby cancels the benefits
of the multi-resolution analysis of the meshes.

Database [Ver18a] Ours(10+10+10)

FAUST 0.9860 0.99997
FAUST 15K N/A 0.9984

Table 2: multi-resolution registration accuracy at zero
geodesic error for [Ver18a] and the optimal

configuration of our multi-resolution network)

5.4 Qualitative experimental results
Figure 11 shows qualitative registration results on
samples from the FAUST and Bosphorus datasets.
Geodesic registration errors are translated into cm
assuming an interocular distance of 6.3 cm.

On FAUST most of the registration errors are localized
on the torso, which lacks distinctive geometrical fea-
tures for shape matching. For the same reason, the
largest registration errors on Bosphorus occur on the
peripheral areas of the meshes, away from the main fa-
cial features. The approach of [Ver18a] tends to map
neighboring source vertices to the same target location,
creating colocated vertices that give the morphed mesh
a lower-resolution appearance.

The morphs of the source meshes to the geometry of
the target mesh on Figure 11 should be interpreted with
care. Most conspicuous in these morphs are the large

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

7

(a) (b) (c)
Figure 8: registration accuracy benchmark on FAUST (a), FAUST 15K (b) and Bosphorus (c) datasets

(a) (b) (c)
Figure 9: influence of the number of convolutional layers on registration accuracy

(a) Faust single-resolution, (b) Bosphorus single-resolution, (c) Bosphorus multi-resolution

FAUST Bosphorus
Figure 10: FAUST and Bosphorus registration targets.

triangles resulting from often isolated wrong vertex cor-
respondences. It should be borne in mind that such tri-
angles account only for a small proportion of the regis-
tration errors, as evidenced by the color encoding rep-
resentations.

6 CONCLUSION
When processing 3D meshes using deep networks, in-
creased memory requirements resulting from the gen-
eralization of convolution operators to non-Euclidean
domains set a limit to the number of convolutional lay-
ers that can be placed in the network. The memory-
friendly convolution scheme we propose mitigates this
issue and allows deeper networks to be implemented for
a given memory budget. On the mesh registration task
we showed that deeper network architectures result in
substantial performance gains.

Using a multi-resolution network featuring pooling and
unpooling operators specialized for 3D mesh process-
ing, we obtain close to perfect registration scores on the
FAUST dataset. However, on noisy Bosphorus meshes
the registration quality leaves much room for improve-
ment. We believe FAUST is a toy dataset that has been
useful for benchmarking mesh registration results so
far, but should now been abandoned in favor of col-
lections of meshes that are more representative of the
noisy and higher-resolution scans used in the indus-
try. In this respect, Bosphorus is arguably a worst case.
The progress of 3D capture technology and photogram-
metry in recent years should allow the constitution of
datasets of better geometrical quality.

Further issues remain with the proposed registration
scheme. First, like all competing approaches it takes
as inputs meshes with different topologies and regis-
ters them to a common template. In practical use cases
the reverse correspondence is needed to transfer the ref-
erence topology in a source mesh to a set of captured
scans. Second, the local intrinsic mapping of vertex
neighborhoods on the mesh surface to Euclidean convo-
lution patches incurs heavy pre-processing as geodesic
paths need to be computed in every vertex neighbor-
hood. Simplifying this mapping would be desirable in
order to better benefit from the efficiency of deep learn-
ing inference on GPU hardware.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

8

s1

m1

s2

m2

s3

m3

Algorithm [Mon17a] [Ver18a] Ours (single-res) Ours (multi-res)

Figure 11: per-vertex registration errors for FAUST (s1) and Bosphorus (s2, s3) samples.
Rows s1, s2, s3 display a color encoding of the geodesic correspondence errors on the source meshes.

Rows m1, m2, m3 show the morphs of the source meshes to the target, based on correspondence results.
Best viewed in color.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

9

7 REFERENCES
[Amb07a] Amberg, B., Romdhani, S. and Vetter, T.,

Optimal Step Nonrigid ICP Algorithms for Sur-
face Registration, in Conf. Proc. CVPR’07, 2007.

[Bog14a] Bogo, F., Romero, J., Loper, M., and Black,
M.; FAUST: dataset and evaluation for 3D mesh
registration, in Conf. Proc. CVPR’14, 2014.

[Bos16a] Boscaini, D., Masci, J., Rodola, E., and
Bronstein, M., Learning shape correspondence
with anisotropic convolutional neural networks,
in Conf. Proc. NIPS’16, 2016.

[Bro17a] Bronstein, M., Bruna, J., LeCun, Y., Szlam,
A., and Vandergheynst, P., Geometric deep learn-
ing: going beyond Euclidean data, IEEE Sig.
Proc. Magazine, vol. 34, no. 4, pp. 18-42, 2017.

[Gar97a] Garland, M., and Heckbert, P.S., Surface
Simplification Using Quadric Error Metrics, in
Conf. Proc. SIGGRAPH’97, 1997.

[Gol04a] Goldfeather, J., and Interrante, V., A Novel
Cubic-Order Algorithm for Approximating Prin-
cipal Direction Vectors, ACM Trans. on Graphics
Vol.23, No.1, pp.45-63, 2004.

[HeK16a] He, K., Zhang, X., Ren, S., and Sun, J.,
Deep Residual Learning for Image Recognition,
in Conf. Proc. CVPR’16, 2016.

[Kai04a] van Kaick, O., Zhang, H., Hamarneh G.,
and Cohen-Or D., A Survey on Shape Correspon-
dence, Computer Graphics Forum, Vol.30, No.6,
p.1681-1707, 2011.

[Kim11a] Kim, V., Lipman, Y., and Funkhouser, T.,
Blended Intrinsic Maps, ACM Trans. on Graphics
Vol.30, No.4, pp.79:1-79:12, 2011.

[Kip17a] Kipf, T., and Welling, M., Semi-Supervised
Classification with Graph Convolution Networks,
in Conf. Proc. ICLR’17, 2017.

[Lit17a] Litany, O., Remez, T., Rodola, T. and Bron-
stein, A., Deep Functional Maps: Structured Pre-
diction for Dense Shape Correspondence, in Conf.
Proc. ICCV’17, 2017.

[Mas15a] Masci, J., Boscaini, D., Bronstein, M., and
Vandergheynst, P., Geodesic Convolutional Neu-
ral Networks on Riemaniann Manifolds, in Conf.
Proc. ICCV’15 Workshop, 2015.

[Mon17a] Monti, P., Boscaini, D., Masci, J., Rodola,
E., Svoboda, J., and Bronstein, M., Geometric
deep learning on graphs and manifolds using mix-
ture model CNNs, in Conf. Proc. CVPR’17, 2017.

[Ovs12a] Ovsjanikov, M., Ben-Chen, M., Solomon, J.,
Butscher, A. and Guibas, L., Functional Maps: a
Flexible Representation of Maps between Shapes,
ACM Trans. on Graphics, Vol.31, No.4, 2012.

[Ran18a] Ranjan, A., Bolkart, T., Sanyal, S., and
Black, M.J., Generating 3D Faces using Con-

volutional Mesh Autoencoders, in Conf. Proc.
ECCV’18, 2018.

[Rod14a] Rodolà, E., Bulo, S., Windheuser, T., Vest-
ner, M. and Cremers, D., Dense Non-rigid Shape
Correspondence using Random Forests, in Conf.
Proc. CVPR’14, 2014.

[Sal14a] Salti, S., Tombari, F., and Di Stefano, L.,
SHOT: Unique Signatures of Histograms for Sur-
face and Texture Description, Comp. Vis. and Im.
Underst., Vol 125, pp.251-264, 2014.

[Sav08a] Savran, N., Alyüz, N., Dibeklioglu, H., Ce-
liktutan, O., Gökberk, B., Sankur, B., and Akarun,
L., Bosphorus Database for 3D Face Analysis, in
Conf. Proc. COST 2101 Workshop on Biometrics
and Identity Management (BIOID 2008), 2008.

[Sum04a] Sumner, R., and Popovic, J., Deformation
Transfer for Triangle Meshes, ACM Trans. on
Graphics Vol.23, No.3, pp.339-405, 2004.

[Ver18a] Verma, N., Boyer, E., and Verbeek, J., FeaSt-
Net: Feature-Steered Graph Convolutions for 3D
Shape Analysis, in Conf. Proc. CVPR’18, 2018.

[Wei16a] Wei, L., Huang, Q., Ceylan, D., Vouga E.,
and Li, H., Dense Human Body Correspondences
using Convolutional Networks, in Conf. Proc.
CVPR’16, 2016.

[Zel13a] Zell E., and Botsch, M., ElastiFace: Match-
ing and Blending Texture Faces, in Conf. Proc.
ACM Symposium on Non-Photorealistic Anima-
tion and Rendering, 2013.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3001

WSCG2020 Proceedings

10

	2020-Full-Temp-6 1
	2020-Full-Temp-6 2
	2020-Full-Temp-6 3
	2020-Full-Temp-6 4
	2020-Full-Temp-6 5
	2020-Full-Temp-6 6
	2020-Full-Temp-6 7
	2020-Full-Temp-6 8
	2020-Full-Temp-6 9
	2020-Full-Temp-6 10

