
Exhibition and Evaluation of Two Schemes for Determining
Hypersurface Curvature in Volumetric Data

Jacob D. Hauenstein
The University of Alabama in Huntsville

301 Sparkman Drive
Huntsville, AL 35899
hauensj1@uah.edu

Timothy S. Newman
The University of Alabama in Huntsville

301 Sparkman Drive
Huntsville, AL 35899

tnewman@cs.uah.edu

ABSTRACT
Advancements in methodologies for determining 3-dimensional manifold (hypersurface) curvature in volumetric
data are presented. Such determinations are requisite in certain shape-based visualization and analysis tasks. The
methods explored here are convolution-based approaches. In addition to motivating and describing these methods,
an evaluation of their (1) accuracy and (2) computational performance is also presented. That evaluation includes
benchmarking on both noise-free and noisy volumetric data.
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1 INTRODUCTION
Curvature and related quantities have been found to be
useful attributes for certain computer-based tasks utiliz-
ing range images (henceforth images), point clouds, or
volumetric data (henceforth volumes or volume data).
Application areas include computer graphics and vi-
sualization, healthcare, seismology, computational ar-
chaeology [Du18], etc. For example, curvature has
been used in segmentation, object recognition, geo-
metric modeling, and analysis of images and volumes
[Bib16, Bes86, Bel12, Bag16, Lef18, Sou16], to per-
form reconstruction in images [Lef17], for biometrics
[Sya17], for computer vision-based quality control in
manufacturing [Kot18], etc. Other examples include
emphasizing features in renderings of meshes [AR18]
and images [Hau18], mesh parameterization [Vin17],
highlighting shapes in volume renderings [Kin03], and
visualization of medical data [Pre16]. In summary, cur-
vature has been quite useful in computer graphics, vi-
sualization, and computer vision.

In fact, there is a rich literature that focuses on the
use of curvature of 1-dimensional (1D) curves or 2-
dimensional (2D) surfaces, including all of the works
in the prior paragraph and [Lan07]. The works using
curvature of conventional surfaces in 3-space are said,
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more formally, to operate on 2D manifolds (commonly
simply called surfaces). In such domains, the maxi-
mum and minimum curvatures (known as the principal
curvatures and denoted κ1 and κ2, respectively) can be
valuable since they describe surface shape properties.
These surfaces, despite existing in a 3D space, are 2D
manifolds and thus have two principal curvatures.
Curvature of 3D manifolds (here called hypersurfaces,
following the terminology used previously by Monga
and Benayoun [Mon92]) also can be a useful descriptor
for certain tasks, such as tasks operating on volumet-
ric regions of data rather than on surface structures. For
such tasks, the three principal curvatures, κ1, κ2, and κ3
(ordered such that κ1 > κ2 > κ3), can be of value. Some
exploration of such curvatures in volume data has pre-
viously been described [Mon92, Ham94]. Recently, a
number of works have reported use of these 3D man-
ifold curvatures in medical assessment / segmentation,
seismic data visualization, and surface reconstruction
(e.g., [Ald14, Suz18, Pap07]). A previous work has
also presented a framework capable of detecting crease
surfaces in d-dimensional hypersurfaces [Yos12].
Another use for hypersurface curvatures is classifi-
cation of volume data points based on the relative,
relative absolute, and average values of these three
curvature values [Hir01]. A table of all possible
curvature classifications at each point has previously
been presented (reproduced in part in Fig. 1), and has
been used previously for visualization of volume shape
[Hir01] and categorization of lung tumors [Hir18]. An
example application of these curvature classifications
and ensuing visualization (using the scheme from
[Hir01]) on a CT scan of a phantom (CT scan obtained
from http://www.santec.lu/project/optimage/samples)
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No. Simple Absolute Average
1 κ1>κ2>κ3>0 |κ1|>|κ2|>|κ3|> 0 κ1+κ2+κ3>0
2 κ1>κ2>κ3=0 |κ1|>|κ2|>|κ3|= 0 κ1+κ2+κ3>0
3 κ1>κ2=κ3>0 |κ1|>|κ2|=|κ3|> 0 κ1+κ2+κ3>0
4 κ1>κ2=κ3=0 |κ1|>|κ2|=|κ3|= 0 κ1+κ2+κ3>0
5 κ1=κ2>κ3>0 |κ1|=|κ2|>|κ3|> 0 κ1+κ2+κ3>0
6 κ1=κ2>κ3=0 |κ1|=|κ2|>|κ3|= 0 κ1+κ2+κ3>0
7 κ1=κ2=κ3>0 |κ1|=|κ2|=|κ3|> 0 κ1+κ2+κ3>0
8 κ1=κ2=κ3=0 |κ1|=|κ2|=|κ3|= 0 κ1+κ2+κ3=0
9 κ1>κ2>0>κ3 |κ1|>|κ2|>|κ3|> 0 κ1+κ2+κ3>0
...

...
...

...
39 0>κ1>κ2>κ3 |κ3|>|κ2|>|κ1|> 0 κ1+κ2+κ3<0
40 0>κ1>κ2=κ3 |κ2|=|κ3|>|κ1|> 0 κ1+κ2+κ3<0
41 0>κ1=κ2>κ3 |κ3|>|κ2|=|κ1|> 0 κ1+κ2+κ3<0
42 0>κ1=κ2=κ3 |κ1|=|κ2|=|κ1|> 0 κ1+κ2+κ3<0

Figure 1: A subset of the 42 possible classes of κ1, κ2,
and κ3 (adapted from [Hir01]).

is shown in Fig. 2. In the figure, a grayscale encoding
of the classes is used, with class 1 mapped to black and
with brightness increasing linearly to class 42, which is
mapped to white.

However, to use hypersurface curvatures on sensed
data, there needs to be some way to determine them.
Here, we describe two methods for their determination.
Since no comparative evaluation of hypersurface
curvature determination methods has previously been
performed, here we also present an evaluation of these
two methods. Our study considers both the accuracy
and run times of the methods, thereby providing insight
into inaccuracies from and relative limitations in 3D
manifold curvature determinations.

This paper is organized as follows. Section 2 provides
background information on hypersurface curvature and
some related surface curvature details. Section 3 de-
scribes the two hypersurface curvature determination
methods we propose for volume data. Section 4 de-
tails our experimental procedures and results. Section 5
presents visualizations of curvature values in sensed
data using one of the methods described. Section 6 con-
cludes the work.

2 BACKGROUND AND PREVIOUS
WORK

Here, we first provide an overview of the mathemat-
ics for determining curvature of hypersurfaces within
volumetric data. Readers looking for a more detailed
presentation may wish to see [Mon92] or [Ham94].
Then, we describe two methods for determining con-
ventional surface curvature in volumetric datasets. (The
two hypersurface curvature determination methods we
describe later in this paper are inspired by these meth-
ods.)

The notation we use is as follows. (u,v,w) denotes
a grid (or sample) point within the volume, where

0≤u<Nu, 0≤v<Nv, 0≤w<Nw for a volume of size
Nu×Nv×Nw. The value at point (u,v,w) is denoted
f (u,v,w); f represents the underlying function that
generates the volume. Consequently, fu represents the
partial derivative of f in the u direction.

2.1 Hypersurface Curvature Mathemat-
ics

The hypersurface’s three principal curvatures (i.e., of f )
are the eigenvalues of the matrix:

1
l

 fuu fuv fuw
fuv fvv fvw
fuw fvw fww

1+ f 2
u fu fv fu fw

fu fv 1+ f 2
v fv fw

fu fw fv fw 1+ f 2
w

−1

,

(1)

where

l =
√

1+ f 2
u + f 2

v + f 2
w. (2)

Thus, computation of κ1, κ2, and κ3 requires knowl-
edge of the first and second derivatives of f . For many
curvature-based tasks on volumetric datasets, the con-
tinuous form of f is unknown because the data is sensed
(i.e., acquired via a sensor). In such cases, the first and
second derivatives must be estimated in order to deter-
mine κ1, κ2, and κ3 based on evaluation of Eqn. 1. The
two hypersurface curvature determination methods dis-
cussed later in this work both operate by estimating the
necessary derivatives and using them in Eqn. 1.

2.2 Related Comparisons of Curvature
Determination Methods

While we are not aware of any studies comparatively
evaluating hypersurface curvature determination meth-
ods, some studies exist for related domains, for exam-
ple of methods to determine surface curvature in range
data [Bes86, Hau18]. In range data, many curvature
determination methods exist, but those studies [Bes86,
Hau18] found that no one method is uniformly best
across all types of input. Method accuracy was found
to vary depending on data type (e.g., noise-free syn-
thetic or noisy sensed data) and surface shape. A pre-
vious study of surface curvature determination methods
in volume data [Hau14] similarly concluded that no one
method is best for all input data types.

2.3 Related Methods for Surface Curva-
ture in Volumes

The two methods for determining hypersurface curva-
ture proposed in this paper, described later, are volu-
metric analogues of two methods for determining sur-
face curvature in volume data. Here, we describe those
existing methods. Those methods determine surface
curvature by (1) estimating derivatives at every point
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Figure 2: A slice from a CT scan of a phantom (left), the resulting data point-by-data point classifications of
hypersurface curvatures according to Fig. 1 (middle), and zoomed-in detail (right). The classes are visualized (in
middle and right) using a grayscale mapping.

in the volume and then (2) computing the curvature at
every point in the volume using the estimated deriva-
tives. We focus on these two existing methods because
one of them was previously found to perform well on
noise-free data, and one of them was previously found
to perform well on noise-added and real data [Hau14],
thus the volumetric analogues presented are based on
two methods that, together, perform well across many
types of input data.

2.3.1 Taylor Expansion
The first of those surface curvature methods was de-
scribed by Kindlmann et al. [Kin03]. It uses separable
convolution filters developed according to the frame-
work of Möller et al. [Möl98]. Such filters are based
on the Taylor Expansion and allow for a given accuracy
and continuity.
The Kindlmann et al. method uses these first and sec-
ond derivative filters at every data point in the volume
to estimate the derivatives of f required for compu-
tation of surface curvature. Then, these estimates of
f ’s derivatives are used to determine gradients, Hes-
sians, and, finally, curvatures. Previous studies [Kin03,
Hau14] have found a Taylor Expansion-based strategy
to be very fast and accurate for surface curvature deter-
mination on synthetic, noise-free data.

2.3.2 Orthogonal Polynomials
The second of those surface curvature methods for de-
termining surface curvature in volumes was described
by Hauenstein and Newman [Hau14]. It was motivated
by a method for determining surface curvature in range
images described by Besl and Jain [Bes86] based on a
locally fit surface model [Fly89]. To estimate deriva-
tives, it uses separable convolution filters sampled from
orthogonal polynomials. Such filters implicitly perform
a least squares fitting [Fly89].
Like the previously discussed Taylor Expansion-based
method for determining surface curvature, the Hauen-
stein and Newman method uses convolution to esti-
mate first and second derivatives and then uses these

derivative estimates to determine curvature. A previ-
ous study [Hau14] found this orthogonal polynomials-
based method to be relatively accurate and fast for sur-
face curvature determination on noise-added synthetic
volumes as well as sensed volumes.

3 HYPERSURFACE CURVATURE DE-
TERMINATION METHODS

Here, we describe in detail our proposed methods for
determining hypersurface curvature within volume
data.

3.1 Taylor Expansion Filters (TEF)
The first hypersurface curvature method we describe,
denoted TEF, uses convolution filters derived from the
Taylor Expansion. It is a hypersurface analogue of the
Kindlmann et al. [Kin03] surface curvature determi-
nation approach. The method determines hypersurface
curvatures by first performing a series of convolutions
along each axis. These convolutions provide estimates
for first and second directional derivatives. Once these
derivatives are known, the three principal curvatures are
computed as the eigenvalues of Eq. 1.

The method’s filters are devised according to the Möller
et al. framework [Möl98]. The filters have accuracy
and continuity parameters, and the chosen accuracy and
continuity parameters also impact the size of the result-
ing convolution filters. Here, we use filters with C3

continuity and fourth order accuracy, and they thus al-
low for exact reconstruction of functions of degree 3 or
lower. The first derivative filter is:

{− 1.0
12.0

,
2.0
3.0

,0.0,−2.0
3.0

,
1.0
12.0
}. (3)

The second derivative filter is:

{− 1.0
24.0

,
1.0
6.0

,
17.0
24.0

,−5.0
3.0

,
17.0
24.0

,
1.0
6.0

,− 1.0
24.0
}. (4)

Convolving the appropriate filters in the appropriate di-
rections allows these filters to estimate all necessary
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first, second, and mixed partial derivatives. Specifically,
fi is found by convolving the first derivative filter in
the i direction. Other first derivatives are found analo-
gously. fi j is found by convolving the first derivative
filter in both the i and j directions. Other mixed partials
are found analogously. fii is found by convolving the
second derivative filter in the i direction. Other second
derivatives are found analogously.

These filters were previously found by Kindlmann et
al. [Kin03] to perform well in determination of con-
ventional surface curvature in volumes. Thus, we were
motivated to extend them to hypersurface curvature.

3.2 Orthogonal Polynomials Filters
(OPF)

The second hypersurface curvature method we
describe, denoted OPF, also uses a series of 1D convo-
lutions to determine directional derivatives. And, like
TEF, OPF uses these estimated derivatives to compute
the three principal curvatures as the eigenvalues of
Eq. 1. Unlike TEF, the convolution filters for OPF are
derived from orthogonal polynomials. Such filters im-
plicitly perform a least squares fitting [Bes86, Fly89],
and the derivatives estimated via this method are thus
identical to those of a local surface that well-fits that
neighborhood (i.e., via linear regression).

In OPF, derivative estimation filters of odd size N are
used. These filters are generated by sampling orthogo-
nal polynomials, b0, b1, b2, at N locations (more details
about these polynomials are in [Bes86]):

b0(θ) =
1
N

, (5)

b1(θ) =
3

M(M+1)(2M+1)
θ , (6)

b2(θ) =
1

P(M)
(θ 2− M(M+1)

3
), (7)

where M = N−1
2 , P(M) is given by:

P(M) =
8
45

M5 +
4
9

M4 +
2
9

M3− 1
9

M2− 1
15

M, (8)

and θ denotes the locations at which each polynomial
is sampled, with θ ∈ {−N−1

2 , ...,−1,0,1, ..., N−1
2 }. Ap-

plying the b0 filter performs smoothing. Applying the
b1 filter generates estimates of the first derivative. Ap-
plying the b2 filter generates estimates of the second
derivative.

Using these kernels, estimated partial and mixed par-
tial derivatives of f are found. Specifically, to find fi,
i ∈ {u,v,w}, we (1) convolve in the i direction with the
discrete filter resulting from sampling b1 and (2) con-
volve in each of the other two directions with the dis-
crete filter resulting from sampling b0. Moreover, to
find fi j, i, j ∈ {u,v,w} and i 6= j, we (1) convolve in

Figure 3: An isosurface at 10000 from the Spheres
dataset (left), and an isosurface at 0 from the ML dataset
(right).

the i and j directions with the discrete filter resulting
from sampling b1 and (2) convolve in the other direc-
tion with the discrete filter resulting from sampling b0.
Lastly, to find fii, i ∈ {u,v,w}, we (1) convolve in the
i direction with the b2 filter sampling and (2) convolve
in the other directions with the b0 filter sampling. Once
all necessary derivatives are estimated through this pro-
cess, the hypersurface curvatures are calculated as the
eigenvalues of Eq. 1.

We have used a filter size, N, of 7 for our applications
here, since a prior work [Hau14] found N = 7 to be
appropriate for surface curvature within volumes.

4 EXPERIMENTS AND RESULTS
In this section, we describe the experiments in and re-
sults of our comparative evaluation of the TEF and
OPF hypersurface curvature methods. The experiments
involve both accuracy and run time tests. Synthetic vol-
ume datasets are used in these tests. We next describe
those datasets.

4.1 Synthetic Datasets
Noise-free and noise-added versions of two synthetic
volumes were used. Each was sampled from a con-
tinuous volume. Since the continuous form of these
volumes are known, the three principal curvatures of
the continuous forms can be computed exactly. Our ex-
periments evaluate accuracy by comparing these known
curvatures to the curvatures determined by the methods.

The first dataset, called Spheres, is generated using the
function:

f (u,v,w) = (u2 + v2 +w2). (9)

The formula was sampled on a 256× 256× 256 grid
with each axis in the range [0,255], resulting in a
volume containing values ranging from 0 to 195075.
Our experiments consider this volume with and without
added Gaussian noise (µ = 0, σ = 0.001). A rendering
of a level surface of this dataset is shown in Fig. 3
(left).
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Figure 4: Per-slice average error in κ1, κ2, and κ3 for noise-free Spheres.
κ1 Avg. Abs. Err. κ1 Std. Err. κ2 Avg. Abs. Err. κ2 Std. Err. κ3 Avg. Abs. Err. κ3 Std. Err.

TEF 3.74 ·10−10 2.21 ·10−13 3.74 ·10−10 2.21 ·10−13 2.01 ·10−15 8.46 ·10−19

OPF 4.09 ·10−10 2.32 ·10−13 4.09 ·10−10 2.32 ·10−13 2.18 ·10−15 8.73 ·10−19

Figure 5: Global absolute average errors and standard errors for noise-free Spheres.

The second dataset, called ML, is generated from a
function originally defined by Marschner and Lobb
[Mar94]. This function is of particular interest because
it is known to be band-limited but demanding on
reconstruction tasks [Mar94]. The ML function has the
form:

f (u,v,w) (10)

=
(1− sin(πw/2)+β (1+ρ(

√
u2 + v2)))

2(1+β )
−0.5,

where ρ is the function given by:

ρ(r) = cos(2π fMcos(
πr
2
)). (11)

In the experiments we report here, we used β = 0.25
with fM = 6, which Marschner and Lobb chose be-
cause it placed a significant amount of the function’s
energy near the Nyquist frequency when sampled on
a 40× 40× 40 grid in the range [−1.0,1.0] [Mar94].
For our experiments, we sampled the function on a
256× 256× 256 grid in the range [−1.0,1.0], result-
ing in a volume containing values ranging from −0.5
to 0.5. Our experiments consider this volume with and
without added Gaussian noise (µ = 0, σ = 0.001). A
rendering of a level surface from this volume is shown
in Fig. 3 (right).

4.2 Accuracy Results
Accuracy experiment results (for the two methods) on
the noise-free Spheres dataset are shown in Fig. 4. The
figure shows the average absolute errors along a subset
of Z slices. We note that since the methods exhibit very
large error at edges of the dataset due to the convolution
filters extending beyond the edges of the dataset, these
plots exclude points within 10 units from the edges; the

plots are representative of the typical errors when the
filters have support. Fig. 5 presents a table of the aver-
age global errors (again only in locations with support)
and standard errors.

For this simple noise-free dataset, both TEF and OPF
produce results with very low error, with similar error
levels for κ1 and κ2 and smaller error levels for κ3. This
outcome is not unexpected since κ1 and κ2 are equal for
this dataset and κ3 is much smaller. For all three curva-
tures, the TEF method exhibits slightly lower error.

Accuracy results for the noise-added Spheres dataset
are shown in Fig. 6 and Fig. 7. In this case, Gaussian
noise was added to the dataset prior to determining cur-
vatures. In this noise-added case, despite the relatively
small amount of noise, the TEF method exhibits more
error than the OPF method. (A similar difference in
error was noted for use of a Taylor Expansion-based
strategy to determine conventional surface curvatures
in volume data [Hau14].)

The average absolute errors for the noise-free ML
dataset are shown in Fig. 8 and Fig. 9. Unlike Spheres,
which can be exactly locally fit with a polynomial, this
sinusoidal dataset cannot be exactly locally fit with
a polynomial. Consequently, it is not surprising that
TEF yielded more accurate curvatures since it employs
higher degree polynomials (compared to OPF).

The average absolute errors for the noise-added ML
are shown in Fig. 10 and Fig. 11. While in the noise-
free case TEF exhibited much lower error compared
to OPF, in this noise-added case OPF has much lower
error. This is most likely due to the smoothing that im-
plicitly occurs as a part of convolution with orthogonal
polynomials.
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Figure 6: Per-slice average error in κ1, κ2, and κ3 for noise-added Spheres.
κ1 Avg. Abs. Err. κ1 Std. Err. κ2 Avg. Abs. Err. κ2 Std. Err. κ3 Avg. Abs. Err. κ3 Std. Err.

TEF 4.04 ·10−06 1.04 ·10−09 4.04 ·10−06 1.04 ·10−09 3.88 ·10−11 7.23 ·10−14

OPF 5.97 ·10−08 1.49 ·10−11 5.97 ·10−08 1.49 ·10−11 5.00 ·10−13 8.76 ·10−16

Figure 7: Global absolute average errors and standard errors for noise-added Spheres.
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Figure 8: Per-slice average error in κ1, κ2, and κ3 for noise-free ML.
κ1 Avg. Abs. Err. κ1 Std. Err. κ2 Avg. Abs. Err. κ2 Std. Err. κ3 Avg. Abs. Err. κ3 Std. Err.

TEF 5.09 ·10−06 2.31 ·10−09 2.09 ·10−07 1.23 ·10−10 5.24 ·10−06 2.39 ·10−09

OPF 9.34 ·10−04 3.74 ·10−07 5.66 ·10−05 2.08 ·10−08 9.42 ·10−04 3.75 ·10−07

Figure 9: Global absolute average errors and standard errors for noise-free ML.
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Figure 10: Per-slice average error in κ1, κ2, and κ3 for noise-added ML.
κ1 Avg. Abs. Err. κ1 Std. Err. κ2 Avg. Abs. Err. κ2 Std. Err. κ3 Avg. Abs. Err. κ3 Std. Err.

TEF 1.68 ·10−03 3.50 ·10−07 1.63 ·10−03 3.40 ·10−07 1.69 ·10−03 3.50 ·10−07

OPF 9.40 ·10−04 3.73 ·10−07 6.87 ·10−05 1.89 ·10−08 9.48 ·10−04 3.74 ·10−07

Figure 11: Global absolute average errors and standard errors for noise-added ML.
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Noise-Free Spheres Noise-Added Spheres Noise-Free ML Noise-Added ML
TEF 58.30 64.32 57.60 64.98
OPF 103.30 106.84 103.10 106.72

Figure 12: Average run times (seconds).

Figure 13: An isosurface of a CT scan of the Stanford Bunny colored using a grayscale mapping of hypersurface
curvature classes.

4.3 Run Time Results
Next, we report on computational performance of the
methods on the four 256× 256× 256 datasets. Both
methods were implemented in single-threaded C++
with the Armadillo library used for linear algebra
operations. Testing was done on a machine running
GNU/Linux equipped with 16GB of DDR3 RAM and
an Intel i5-2310 processor. All code was compiled with
g++. Run time (computational performance) results for
each method on each dataset are reported in Fig. 12.
These times represent the trimmed means of 10 runs
with the fastest and slowest runs excluded.
TEF is substantially faster than OPF. Since both meth-
ods use the same linear algebra library, the time varia-
tion between the two is due only to the convolution step.
While OPF convolves along all three axes at each point,
even when measuring a derivative in only one direction,
TEF only convolves along axes on which derivatives
are being estimated. As a result, fewer convolutions

are performed in the TEF method, and it exhibits much
faster run time.

5 VISUAL RESULTS
The superior resilience of OPF in the presence of noise
motivates the selection of it when utilizing hypersurface
curvatures on real data, and for that reason we have used
its curvatures to produce the curvature classifications
shown previously in Fig. 2, and we have additionally
used it in related curvature classification visualization
tasks utilizing sensed data. We describe those visual-
ization tasks and their results next.

First, we consider a CT scan of the Stanford bunny (ob-
tained from http://graphics.stanford.edu/data/voldata/
voldata.html). In Fig. 13, we present a rendering of
an isosurface of the bunny. This isosurface is colored
using a grayscale mapping of hypersurface curvature
classifications. The rendering thus presents a 2D
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Figure 14: An isosurface rendering of a CT scan of a human foot (left), the resulting data point-by-data point
classifications of hypersurface curvatures according to Fig. 1 (middle) for one slice, and zoomed-in detail (right)
for that slice. The classes are visualized (in middle and right) using a grayscale mapping.

manifold (the isosurface) colored using the curvature
values of the 3D manifold present at each isosurface
point. The grayscale mapping used is identical to the
one used in the middle and right of Fig. 2. As this
is sensed data, some noise is clearly present in the
classification results (e.g., a notable stair-stepping can
be seen on the face and ears of the bunny), however,
many features are also clearly indicated from changes
in hypersurface curvature classification, including the
bunny’s whiskers, eye socket, and toes.
Second, we consider a CT scan of a human foot (ob-
tained from http://volvis.org). An isosurface rendering
of the foot is shown in the left part of Fig. 14. In the
middle of that figure, grayscale mapped hypersurface
curvature classifications of z-slice 127 (located on the
index toe next to the big toe) of the dataset are shown
(again using the same mapping as in Fig. 2). The green
box shown in the middle of the figure represents the lo-
cation of the zoomed-in region shown in the right of the
figure. This CT scan exhibits much noise, as can be
seen in both the isosurface rendering and the hypersur-
face curvature classifications. Consequently, it is diffi-
cult to visually locate fine features within the slice.

6 CONCLUSION
In this paper we have exhibited two methods for
determining hypersurface curvature within volume
datasets. Both of these methods use convolution to
estimate derivatives and then these estimated deriva-
tives are used to determine the three hypersurface
curvatures. One method, TEF, uses convolution with
filters based on the Taylor Expansion. The other, OPF,
uses convolution with filters sampled from orthogonal
polynomials. We have additionally comparatively
evaluated both these methods in terms of (1) accuracy
and (2) run time.
In summary, in our tests we found that TEF exhibits rel-
atively low error levels when no noise is present. How-
ever, when (even relatively low level) noise is present,

OPF generally exhibits much lower error levels than
TEF. However, TEF exhibits much faster run times
than OPF in both noise-free and noise-added cases.
Thus, if time is critical or no noise is present in the
dataset, TEF is the preferable choice. If noise is present
and accuracy is critical, OPF is a better choice.
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