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ABSTRACT 
Adaptive undersampling is a method for accelerating the rendering process by replacing the calculation of a 

volume integral with an interpolation procedure for a number of pixels. In this paper, we propose a method for 

accelerating the volume integral calculation for the rest of the pixels, i.e. those pixels for which interpolation 

cannot be done with sufficient accuracy. This method requires two passes through the input data. On the first 

pass, rendering is done into a low-resolution texture. At this stage, the values of the volume integral on a set of 

intervals of a given length are calculated and saved into a special G-buffer alone with the pixel’s color. On the 

second pass, these values are used to determine colors of the pixels. For those pixels whose result is not precise 

enough, the volume integral is calculated on one or several intervals, rather than the whole ray. The proposed 

method allows one to accelerate adaptive undersampling by a factor of 1.5 on average, depending on the input 

data. 

Keywords 
Volume rendering, Ray casting, Adaptive sampling. 

1. INTRODUCTION 
The main visualization method for volumetric 

scientific data (e.g. medical data) is direct volume 

rendering, which calculates the value of the volume 

integral for each screen pixel. This approach uses 

scanning of the large volumes of data efficiently 

using various transfer functions, but this process is 

computationally expensive. Its running time is 

proportional to the number of pixels in the 

visualization window, so its optimization for high-

resolution screens and devices with low computing 

power is a relevant problem. Examples of such 

devices include mobile phones, laptops and PCs with 

slow video cards, as well as VR devices, which 

require a minimum of 60 FPS while rendering into 

two cameras at the same time. 

The method is usually implemented on GPUs in 

conjunction with various optimization techniques—

discarding regions on which the transfer function is 

zero [LCDP12], varying the integration step 

[CCF15], pre-integrated volume rendering [KE04], 

and adaptive undersampling (or screen 

undersampling) [KRHH11]. Adaptive undersampling 

makes use of the coherency of the scene in order to 

minimize the number of volume integrals to be 

calculated to determine the color of pixels in the 

image. This is achieved by an iterative procedure. On 

the first iteration, only part of the pixels is sampled 

(one for each n × n block), and then an attempt is 

made to recover the colors of the rest of the pixels 

with the information thus obtained (for example, by 

interpolating bilinearly between the colors of 

adjacent pixels). If this does not produce the required 

image quality, then the set of pixels being sampled is 

expanded. In practice, most input data sets (including 

medical data) have high levels of spatial coherence, 

which means that after the first iteration, only around 
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10% to 20% of the total number of pixels need to be 

sampled additionally. Unfortunately, when the 

algorithm is implemented on a GPU, additional 

calculations for some pixels lead to increase of the 

processing time for all pixels of the image, as if the 

optimization is completely absent. This is because 

the pixels are processed concurrently in groups, and 

the time it takes to process a group is equal to the 

maximum of the times to process each pixel. Thus, if 

at least one pixel in the group calls for the calculation 

of a volume integral, then the whole group will take 

exactly as much time to process as if every pixel’s 

volume integral had to be calculated. 

In this paper, we propose a two-pass algorithm which 

solves the problem by making the calculation of the 

volume integrals on the second pass much faster for 

pixels whose colors cannot be interpolated. To do 

this, on the first pass, the domain of integration for 

the volume integral is broken up into M pieces, and 

the values of the integral on each piece are saved into 

the G-buffer. On the second pass, the volume integral 

is calculated by summing its values on M pieces. 

These values are determined either by bilinearly 

interpolating the corresponding G-buffer values, or, 

if that is not possible, by integration. 

Below is an overview of related work (Section 2), 

followed by a discussion of what we consider to be 

our main contribution: a method for accelerating 

volume rendering by pre-computing the volume 

integrals on multiple intervals for part of the pixels 

(Section 3). We discuss the results in Section 4 and 

make conclusions in Section 5. 

2. RELATED WORK 
The most flexible and widespread method for direct 

volume rendering is raycasting. GPU-based 

raycasting was proposed in [KW03]. It uses cube 

proxy geometry (the bounding box of the dataset) to 

determine the starting and ending points of the way. 

However, the method is slow, as it requires the 

volume integral to be calculated for every pixel by 

going down the whole ray from start to end with 

some step. Adaptive sampling can be used for 

raycasting optimization. This allows to obtain the 

output image by calculating the volume integral for 

only part of the pixels. This was first proposed in 

[Lev90], in which the volume integral is calculated in 

the corners of equally sized blocks into which the 

image is partitioned. If the values in these corners do 

not differ significantly, then the colors of the interior 

pixels of the block are interpolated bilinearly. 

Otherwise, the block is partitioned into four parts, 

and the procedure is applied recursively to each part. 

Kratz et al. [KRHH11] present a variation of Levoy’s 

approach for GPU-based rendering. They replaced 

the comparisons of the integrals at the blocks’ 

corners with a more sophisticated technique based on 

finite element methods (FEM) to achieve explicit 

error control. In their implementation, raycasting was 

done on the GPU, while the hierarchical data 

structures of the blocks (quadtree) were stored on the 

CPU. [KSK*16] and [BSSS18] examine methods for 

excluding artifacts which arise due to the fact that 

volume integrals are not calculated for all pixels. 

On a GPU, recursive division leads to multi-pass 

algorithms which turn out inefficient due to the 

architecture of a GPU. Thus, [L15] uses a two-pass 

algorithm, in which the colors of interior pixels are 

calculated either via bilinear interpolation or by 

calculating the volume integral. The two-pass 

algorithm is also used in [BFE16] in order to 

optimize raytracing on mobile devices. 

In [BSM18] the second rendering pass is accelerated 

by saving (on the first pass) volume integral values in 

the ray intervals, where the transfer function value is 

not zero. Unfortunately, this algorithm is effective 

only when number of intervals is relatively small. 

3. ALGORITHM 

3.1. Overview 
The volume integral for each pixel gives the fraction 

of light passing through the volume along the pixel’s 

view ray. The discrete form of this integral can be 

efficiently computed via compositing, which replaces 

a Riemann sum with a recurrence relation: 

 Ci+1 = Ci + (1 – Ai) ∙ ai ∙ ci. (1) 

 Ai+1 = Ai + (1 – Ai) ∙ ai. 

In the above equations, Ci is the composited color on 

the i’th step along the ray, Ai is the composited 

transparency, and ai and ci are, respectively, the 

transparency and color in the given sample. 

The proposed algorithm is based on two-pass 

adaptive undersampling. The set of pixels is 

partitioned into n × n blocks, and on the first pass one 

pixel from each block is processed. However, unlike 

the method above, our algorithm divides the interval 

of integration into M equal pieces, and the values of 

the integral over these pieces are saved into the G-

buffer along with the color of the pixel. 

More details concerning M value will be explained in 

section 4. In Figure 1, which depicts the 

 

  

Figure 1: The G-buffer contains the color (C) of the 

pixel and the values (Ii) of the volume integral on a 

set of equal length intervals. 
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case n = 2, the pixels being processed are marked 

with an A. The volume integral over the i’th interval 

is denoted with Ii (i < M). C and Ii are 4-component 

vectors, containing the colors Сi and transparencies 

Ai. Colors Сi contain three components: red, green, 

blue. 

The rest of the pixels are processed on the second 

pass. If the colors of their adjacent pixels are 

sufficiently close, then the color CP of the current 

pixel is interpolated bilinearly. Otherwise, it is 

calculated with the following recurrence relation, 

according to [HLSR09]: 

 CP
i+1 = CP

i + (1 – AP
i) ∙ Ai

*
 ∙ Ci

*
. (2) 

 AP
i+1 = AP

i + (1 – AP
i) ∙ Ai

*,    0 ≤ i ≤ M – 1. 

In the above equations, Ai
* and Ci

* are interpolated 

bilinearly from the values of Ai and Ci in the adjacent 

pixels if those values are close enough and are 

calculated from the volume integral otherwise. Thus, 

on the second pass the volume integral is only 

calculated over the part of the ray in the worst case, 

which significantly accelerates the generation of the 

whole image.  

 

Figure 2: The volume integral only needs to be 

calculated on the red interval. 

 

Figure 3: Left: the resulting image. Right: the pixels 

whose volume integrals were interpolated bilinearly 

are shown in green (91.7%); those for which the 

volume integral had to be calculated over one 

interval are shown in blue (5.7%); over two intervals, 

in white (2.1%); over three intervals, in yellow 

(0.1%); and more than three intervals in red (0.4%). 

The algorithm accelerates rendering by reducing the 

length of the interval of integration. In Figure 2 

(drawn in two dimensions for simplicity), an example 

is shown for the second pass of the algorithm for the 

case M = 3, where r1 and r2 denote the rays passing 

through pixels processed on the first pass. The 

integrals Ii
1 and Ii

2 have been calculated and are 

stored in the G-buffer. The current pixel being 

processed is on the ray r. The values of Ai
* and Ci

* 

for i = 0, 2 are interpolated from Ii
1 and Ii

2, while A1
* 

and C1
* are calculated via the volume integral I1

* on 

the given interval. Figure 3 shows the number of 

pixels in a real dataset for which the volume integral 

needs to be calculated on the second pass, and the 

number of intervals on which it must be calculated. 

The pixels whose volume integrals were interpolated 

bilinearly are shown in green. Those for which the 

volume integral had to be calculated are colored 

based on how many intervals it had to be calculated 

on: blue for 1, white for 2, yellow for 3 and red for 

more than 3. As can be seen from the figure 3, in 

most cases the integral only needed to be calculated 

over one interval, which is what makes the algorithm 

so efficient. The following is a detailed description of 

the algorithm. 

3.2. Algorithm details 
In the first pass, the algorithm fills the M parallel 

textures (in the G-buffer) which have a resolution n 

times less than the viewport (along each side). 

Algorithm 1 shows a pseudocode for each ray 

calculation. The function GetDistanceForStart(s, f) 

called in line 1 finds the distance from the starting 

point s of the ray to the point v where it first meets 

the domain where the transfer function is not zero 

(Figure 4). Here, f is a final point on ray, both s, f are 

3D vectors, step initialization is explained below. 

 

Figure 4: No integration is done over r1. Over r2 and 

r3 integration begins at the points marked with v. 
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Figure 5: On the left, I1
0 ≠ I2

0; on the right, I1
0 = I2

0. 

Condition (A < 1) in line 18 means that total opacity 

has not reached 1, i.e. integration process along ray 

has not stopped at this point. Important detail: last 

integration calculation has another “lastStep”, not 

equal to “step” and will be explained in detail below. 

VolumeIntegral(v, step) is a function, calculating the 

partial sum along a ray, starting from point v with 

“step” length. We find the point v for two reasons. 

First, the probability that the first integrals I0 coincide 

on adjacent rays increases (see figure 5). Second, this 

helps remove ”woodgrain” artifacts, especially in 

cases where the derivative of the opacity function is 

high in a neighborhood of v. This is explained in 

more detail in [LJKY13]. If v is not found, the 

function returns −1 and the algorithm halts (as in the 

case of the ray r1 in Figure 4). Otherwise, the 

algorithm calculates the color of the pixel and the 

volume integral over intervals of equal length (r2). 

All calculations are done in the texture space of the 

3D texture which stores the data to be visualized. All 

samples are contained in a cube with sides equal to 1, 

so the longest ray in the texture space has length √3 

(the diagonal of the cube). This value is used to 

calculate the interval length in line 6, where M is the 

user-selected maximum number of intervals. The 

integrals are calculated in line 12 and are stored in 

the G-buffer; the integration itself can be done using 

any known method. The color of the pixel is stored in 

G[0].rgb in line 13. As can be seen from Figure 4, the 

last interval of integration can be shorter than the 

rest; this interval is processed in lines 18–21. 

On the second pass, the colors are calculated for 

those pixels which were not processed on the first 

pass. Shown below is the Algorithm 2 that does this. 

It uses data from the G-buffer which was created on 

the first pass for the four neighboring pixels. In 

line 2, the current pixel’s color is interpolated 

bilinearly if the neighbors’ colors are sufficiently 

close. 

Index i in Gi means neighborhood texel, calculated 

on the first pass. Index i can be in range [0…3], due 

to four neighborhood texel for current ray, calculated 

during second pass. Condition for simple bilinear 

interpolation is based on comparison maximum color 

difference for neighborhood pixels with some 

parameter delta. 

Algorithm 1 The first pass algorithm 

1: G[0].a = GetDistanceForStart(s, f); 

2: if G[0].a ≤ 0 then 

3:  G[0].rgb = BackgroundColor; 

4: else 

5:  G = 0, i = 0, C = 0, A = 0; 

6:  step = √3 / M; 

7:  imax = floor(length(f − s) / step); 

8:  lastStep = length(f − s) − step ∗ imax; 

9:  r = normalize(f − s); 

10:  v = s + G[0].a ∙ r; 

11:  while A < 1 and i ≤ imax do 

12:   G[i + 1] = VolumeIntegral(v, step); 

13:   C = C + (1 − A) ∙ G[i + 1].rgb × 

    × G[i + 1].a; 

14:   A = A + (1 − A) ∙ G[i + 1].a; 

15:   v = v + step ∙ r; 

16:   i = i + 1; 

17:  end while 

18:  if A < 1 then 

19:   G[imax + 1] = VolumeIntegral(v, lastStep); 

20:   C = C + (1 − A) ∙ G[imax + 1].rgb × 

    × G[imax + 1].a; 

21:  end if 

22:  G[0].rgb = C; 

23: end if 

 

 

Algorithm 2 The second pass algorithm 

1: if for all i, 

   maxj||Gj[0].rgb|−|Gi[0].rgb|| < delta then 

2:  C = BilinearInterpolation(Gi.rgb); 

3: else 

4:  A = 0, C = 0; 

5:  t = r ∙ min{Gi[0].a}; 

6:  v = s + r ∙ GetDistanceForStart(s + t, f); 

7:  for k = 1 … M do 

8:   if for all i, 

     maxj||Gj[k].rgb|−|Gi[k].rgb|| < delta/M then 

9:    I = BilinearInterpolation(Gi); 

10:   else 

11:    if k = M then 

12:     Length = step; 

13:    else 

14:     Length = lastStep; 

15:    end if 

16:    I = VolumeIntegral(v, Length); 

17:   end if 

18:   C = C + (1 − A) ∙ I.rgb ∙ I.a; 

19:   A = A + (1 − A) ∙ I.a; 

20:   v = v + step ∙ r; 

21:  end for 

22: end if 
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Figure 6: Calculating the starting point for 

integration. 

In line 6, the algorithm finds the first point along the 

ray where the transfer function is not zero. This uses 

the same GetDistanceForStart function as in the first 

pass, but in order to accelerate its execution the ray is 

cast from s + r ∙ min{Gi[0].a}, rather than from s (see 

Figure 6). The loop (lines 7–21) implements the 

recurrence relations in formula 2. The integral 

calculation function in line 16 coincides with the 

function used in the first pass. 

4. RESULTS AND DISCUSSION 
All tests were performed on a 3.4GHz Intel Core i7 

2600 PC with 4.0GB of main memory with NVidia 

GForce GTX 780 Ti graphics hardware with 

3072MB of texture memory and implemented using 

Unity3D, using OpenGL ES 3.1. Three CT data sets 

were used as testing data; their characteristics and 

screenshots are given in Figure 7. 

Table 1 contains the framerate achieved in 

visualizing the data sets. The volume integrals were 

calculated using the standard method [KW03] with ¼ 

of the voxel size as the step size. The bounding 

volume was chosen to be a box. The viewport was 

1200×900 pixels. The value of M was chosen as 8, 

which is the maximum possible size of the G-buffer 

on the video card used. The value of delta (see 

Algorithm 2) was chosen as 0.05. 

 

(a) Transparent head 

 

 

(b) Head with bones 

 

(c) Transparent lungs 

 

 

(d) Lungs with bones 

 

(e) Detailed lungs 

 

 

(f) Detailed lungs 

Figure 7: Data sets; resolution is 256×256×256 for 

(a)–(d) and 512×512×136 for (e)–(f). 

 

 

 

Data Set 
OpenGL ES 3.1 FPS 

B/A C/A C/B 
A B C 

(a) 32 72 118 2.25 3.69 1.64 

(b) 48 92 116 1.92 2.42 1.26 

(c) 34 68 112 2.00 3.29 1.65 

(d) 40 66 74 1.65 1.85 1.12 

(e) 18 32 50 1.78 2.78 1.56 

(f) 20 42 74 2.10 3.70 1.76 

Table 1: The framerate achieved in visualizing the data sets. 
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Figure 8: The number of intervals of integration per pixel for delta = 0.05, 0.01, 0.005 (left to right). Color key: 

green = 0 (bilinear interpolation), blue = 1, white = 2, yellow = 3, red = more than 3. 

 

 

Figure 9: left: The acceleration factor as a function of delta; right: The acceleration factor as a function of M. 

 

Table 1 is organized as follows: the first column lists 

the reference to the dataset from Figure 7, the 

columns labeled A, B, C contain the framerates 

obtained with the following optimization methods: 

A. No optimization. 

B. Two-pass adaptive screen sampling. 

C. Two-pass adaptive screen sampling plus 

partitioning the interval of integration into 

M = 8 pieces. 

The next two columns contain the acceleration 

factors achieved using, respectively, two-pass 

adaptive screen sampling and the proposed 

algorithm. The last column contains the acceleration 

factors achieved only by using the proposed 

algorithm. 

You can note from the last column of the Table 1 that 

proposed method, by itself, increases FPS by a factor 

of 1.5 on the data sets used. This factor becomes 

smaller if a significant number of rays end early (for 

example, for the bones see Figure 7 in screenshots 

(b) and (d)). The reason for this is that most intervals 

of integration are short and are harder to partition 

into smaller ones. 

The efficiency of the method also depends on how 

coherent the dataset is. The less coherent it is, the 

more pixels need to be processed on the second pass. 

This can happen if the value of delta is lowered. 

Thus, to a first-order approximation, the dependence 

on the data sets’ coherence can be replaced with a 

dependence on delta. Figure 8 shows the pixels 

processed on the second pass in visualizing data set 3 

with delta values 0.05, 0.01 and 0.002. (Blue pixels 

are those for which the integral had to be computed 

over one interval; white, over two; yellow, over 

three; and red, over more than three.) 

Figure 9 (left) shows the acceleration factor (relative 

to standard adaptive undersampling) as a function of 

delta. It can be seen from the graph that the 

efficiency of our method is at its maximum for 

medium levels of coherence. The reason for the 

decrease in performance on low coherence is that 

volume integrals need to be calculated for more 

pixels (red pixels in Figure 8). The decrease in 
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