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Abstract 

In this work we investigated sensemaking activities on different immersive platforms. We observed user s during a 
classification task on a very large wall-display system (experiment I) and in a modern Virtual Reality headset (experiment II). 
In experiment II, we also evaluated a condition with a VR headset with an extended field of view, through a sparse peripheral 
display. We evaluated the results across the two studies by analyzing quantitative and qualitative data, such as task 
completion time, number of classifications, followed strategies, and shape of clusters. The results showed differences in user 
behaviors between the different immersive platforms, i.e., the very large display wall and the VR headset. Even though 
quantitative data showed no significant differences, qualitatively, users used additional strategies on the wall-display, which 
hints at a deeper level of sensemaking compared to a VR Headset. The qualitative and quantitative results of the comparison 
between VR Headsets do not indicate that users perform differently with a VR Headset with an extended field of view. 
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1. Introduction 

1.1. Visual Analytics 
Visual analytics (VA) is a science-based activity supporting 
sensemaking for large, complex datasets through 
interactive visual data exploration [1]. In VA, users reason 
and make sense of the data through interaction with 
visualizations of the data. In the past, this concept gave rise 
to products such as Tableau, Microsoft Power BI, 
QlikView, and others. 
In most VA applications, users interact indirectly with data 
through widgets, such as sliders and menus, which control 
the visualization through modifying the underlying model 
parameters. In contrast, semantic interaction enables 
analysts to spatially interact with their visualizations 
directly within the visual metaphor, using interactions that 
derive from their analytic process [2]. Further, semantic 
interaction supports sensemaking better than indirect 
interaction [3]. In a spatial workspace, users can directly 
arrange documents spatially into clusters to convey 
similarity or relationships in the data [4]. Spatial 
workspaces also allow users to establish implicit 
relationships in large datasets [5]. 

The space limitations of normal desktop displays lead to a 
need to remove/reduce/hide (at least temporarily) existing 
visualizations to make room for new ones, requiring an 
additional cognitive effort from the users to remember the 
now invisible information. By radically increasing display 
size, this dynamic could change substantially and allow 
users to visually access more information at once. 
Comparisons can then be made visually and directly rather 
than relying on memory and imperfect mental models – 
which supports the usability principle of recognition over 
recall. With desktop monitors, we often face a tradeoff 
between the level of detail and the number of different 
objects that can be displayed. New forms of displays, such 
as large display surfaces or virtual reality environments, 
can thus potentially improve the efficiency of VA activities. 
On a large display, a flick of the eye or turn of the head is 
all that is required to consult a different data source [6]. 
Previous work has found that large, high-resolution 
displays (LHRDs) improve productivity over traditional 
desktop monitors  [6–8]. We can expect this to hold for VA 
applications on large displays as well. The exploration of 
different user interface technologies for data visualization 
applications has never been a core topic in information 
visualization [9]. 
The combination of Virtual Reality (VR) technologies, 3D 
user interfaces and VA systems is a new approach to 
analyzing large or complex datasets. This research field is 
nowadays described by the term Immersive Analytics 
[9,10]. Working with VR systems in a professional 
environment and using these for data visualization or as an 
immersive analytical workspace provides “an easy and 
natural path to collaborative data visualization and 
exploration” [11]] [p. 609] and shows possibilities to 
“maximize intrinsic human pattern recognition”. Previous 
research has already shown that VR can support insight 
discovery in (primarily) spatial application domains and in 
helping to more effectively investigate brain tumors [12], 
MRI results [13], shape perception [14], underground cave 
structure analysis [15], geo-scientific [16,17], or 
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paleontology questions [18]. Thus, we expect LHRDs and 
VR systems to improve VA activities. The work reported 
here aims to compare these two approaches through user 
studies. 

1.2. Sensemaking in Immersive Environments 
How analysts make sense of a given data set is a crucial 
part of their work. The way humans understand and process 
information in VA activities is well described by the 
Sensemaking Loop [19]. This sensemaking loop breaks the 
process down into several stages, as illustrated in figure 1. 
For Immersive Analytics, i.e., doing VA activities in 
immersive environments, previous research shows how 
each stage of the sensemaking loop might be improved or 
impaired by the capabilities or limitations of the system 
[20]. 

!  
Figure 1: The sensemaking loop [19]. 

As seen in figure 1, the sensemaking loop involves a series 
of iterative steps for creating and evaluating a model for 
the data. Creating a model (bottom-up) involves finding 
information, extracting meaning, schematizing and 
building a case, and subsequently communicating that 
information. On the other hand, evaluating the model (top-
down) involves re-evaluation, finding supporting evidence, 
finding relations in the information, or even finding basic 
information itself [19]. 
An integral part of the sensemaking process is foraging for 
information. To support such foraging, we could use 
represent data sources similarly to icons in an immersive 
environment, using either VR headsets or LHRDs. 
However in immersive environments, we can equip these 
representations with additional semantic meaning - such 
that the model of an engine might serve as a gateway for 
information about emissions, maintenance, power output, 
or other factors. One limitation of this approach is that 
there is much content that is not easily represented by 
icons, such as the cleaning budget for a department that 
sells cleaning products. 
The second part of the sensemaking process is about 
synthesizing information, formulating hypotheses, and 
arranging supporting and contradictory evidence. Display 
space can play an important role in this process and assist 
in task completion, e.g., through the use of larger amounts 
of space for organization [6]. Further, the larger space 
offered by immersive systems provides a physical 
instantiation of the mnemonic device ‘memory palace’. 

Thus, different parts of a complex model could be 
compartmentalized to different (virtual) spatial locations. 
Analysts can then use the space not only for their collected 
information but also to organize and structure their 
analytical workflow and thought processes [20]. In this 
paper we focus on this aspect of sensemaking. 
Some VA tasks require specific types of interaction 
methods, e.g., the method to select data during foraging 
might be different from that to express a hypothesis. Good 
user interfaces for immersive environments are subject to 
specific guidelines and concepts. Elmqvist’s fluid 
interaction concept distinguishes different interaction types 
for selection, filter, sort, navigation, reconfiguration and 
labeling and annotating in VA tasks [21]. For example, 
techniques such as mouse interaction are not appropriate in 
immersive environments where the user is standing and not 
sitting in front of a display. Gestural interaction, e.g., 
pointing to and circling one or more elements, could be 
used instead. For such interaction, designing comfortable 
gestures is necessary to minimize the strain on the user. 
As discussed above, there is great potential for integrating 
the VA process into immersive environments. Thus, we 
need to examine the specific components of the 
sensemaking process that can be enhanced by immersive 
technologies and use the advantages of such technologies 
to support the VA sensemaking process. Here we focus on 
the ability of the user to arrange the visualizations of data 
on a large display canvas. 
Grouping the information and generating clusters of related 
data is a part of sense-making in analytical tasks, which 
helps in the search for a way to encode data in a visual 
representation that helps to answer task-specific questions 
[22]. It takes place in the early, preparation stages of VA 
processes and its effectiveness can affect the efficiency of 
all following stages. 
A core inspiration for this study was Endert et al.’s work 
[23], which presented the concept of semantic interaction 
that seeks to enable analysts to spatially interact within 
their analytical workspace. Following their work, we also 
believe it is important to observe how users organize their 
information, unaided by any algorithm, as this reveals 
insights about the human ability to understand large 
amounts of information through an interactive system. 
Thus, we do not use algorithmic clustering.  

1.3. Large Display Systems 
Large display systems are both qualitatively and 
quantitatively different from traditional displays. Reda et 
al. presented the results of a small-scale study to 
understand how display size and resolution affect insight. 
Although their results verify the generally accepted 
benefits of large displays, they also provide mixed results 
for extant work and propose explanations by considering 
the cognitive and interaction costs associated with visual 
exploration [24]. Other studies suggest that users working 
with large displays became less reliant on wayfinding aids 
in acquiring spatial knowledge. For example, Ni et al.’s 
experimental findings demonstrated the advantages of 
increased size and resolution [25]. As a general guideline, a 
LHRD was the preferred choice for IRVE applications, 
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since it facilitates both spatial navigation and information 
gathering. 
Our research uses multiple immersive display systems. One 
of them is a LHRD system called V4-SPACE. We used it to 
investigate how LHRDs can support VA tasks for a single 
user (figure 2). During this experiment we observed how 
physical size, resolution, and content spatialization on the 
workspace affect user performance on LHRD in VA tasks. 
A detailed description of V4-SPACE is given in the next 
chapter. 

!  
Figure 2: A user operating V4-SPACE 

1.4. Head-Mounted Displays and Sparse 
Peripheral Displays 

Extending VA system to be used within Virtual Reality 
(VR) systems poses challenges and opportunities. On the 
one hand, VR opens up new possibilities for data 
visualization, as virtual environments fully surround the 
user and the interface of the Human Machine Interface can 
be perceived to be more natural and intuitive. Thus, content 
can be placed and worked on all around the user. However, 
immersive VR technologies suffer from some restrictions, 
such as limited resolution, limited field-of-view, motion 
sickness, issues with interaction and gesture recognition, 
and with positioning objects in 3D space [9]. Even though 
current research in Immersive Analytics focuses primarily 
on low-level challenges [9], the above-mentioned obstacles 
still affect our research. 
To address some of the above-mentioned issues of VR 
systems, we use a Sparse Peripheral Display HMD for our 
immersive VA study. The binocular field-of-view (FOV) of 
a standard VR HMD system is today about 84 degrees 
horizontal (110 degrees diagonal). By using a Sparse 
Peripheral Display (SPD), we can increase the field-of-
view much by showing (low-resolution) content in the 
periphery of an HMD [26]. Increasing the FOV increases 
the spatial awareness of the user and might potentially even 
reduce simulator sickness. 
A number of approaches and different systems to broaden 
the FOV through complex optical methods have been 
proposed. Fresnel lenses, such as the ones used in the 
StarVR and Wearality Sky, are challenging to manufacture 
and introduce optical distortions which are hard to mitigate 
[26]. Mirror based approaches [27] significantly increase 
the weight of their HMD devices. 
In our study, we rely on previous research on SPDs [26]
[28]. Xiao & Benko [26] presented a SPD that uses a 
lightweight, low-resolution and inexpensively produced 
array of LEDs, designed to surround the central high-
resolution display of a Oculus Rift DK2 HMD. Their SPD 
expands the available FOV up to 190° horizontal. This SPD 
nearly fills the whole human FOV, which can span up to 

210° giving the user a better perception of the virtual 
content that surrounds them (figure 3). Hashemian et al. 
[28] evaluated an improved SPD version in a HTC Vive 
setup, extending the Vives’ FOV to 180° horizontally. They 
evaluated the performance of the SPD HMD in a spatial 
navigation study that used a previously presented 
navigational search paradigm [29,30]. Their results show 
that SPDs can provide a more natural experience of human 
spatial locomotion in virtual environments. 

!  
Figure 3: HTC Vive with a Sparse Peripheral Display extending 
the FOV to 180°. 

2. A comparison of sense making behaviors in 
LHRD and HMDs 

Based on knowledge about SPDs [26,28], large display 
systems [6,8] and immersive environments [9–11], 
combined with results from research about sensemaking 
[19,22] and productivity in VA [6,8,11,31,32], we 
performed two experiments in immersive analytics using 
different platforms. In Experiment I, we used a LHRD 
System and in Experiment II a SPD HMD with or without 
the SPD switched on. 
To investigate sensemaking in each experiment and to 
compare how well both platforms used, we formulated the 
following hypotheses. We use the notation H1-II to signify 
the first hypothesis for the second experiment: 
H1-I: Users spatialize their content through clustering  
 information and exploit the advantages of a large  
 display space. 
H1-II: Users perform differently in a SPD HMD relative 
 to an off-the-shelf VR HMD, resulting  in  
 different qualitative and quantitative outcomes. 
H2-II: Users prefer a SPD over a standard VR  HMD  
 due to the larger FOV and thus a better sense of  
 orientation in the space. 
H3-II: SUS scores will show a higher sense of presence  
 in the immersive environment with an SPD. 
H1-C:  Users perform better with a LHRD relative to a  
 VR HMD, resulting in different qualitative and  
 quantitative outcomes.  

2.1. Global design decisions 
To enable us to compare the results of both experiments, 
we aimed to maintain consistent design decisions across 
both experiments. Thus, we used (almost) identical 
experimental designs, using the same tasks for each 
experiment. We also tried to match the technological 
aspects of the  HMD and the V4-Space as well as possible 
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by setting up the curvature and size of the virtual screen 
displayed in the HMD to be similar to the one of the 
physical V4-Space LHRD.  

2.1.1. Task 
In both experiments users were given a workspace 
populated with charts. Users could create new charts on the 
workspace, delete existing ones, resize as needed, and 
move them around freely. In both experiments, the 
participants’ objective was to solve a VA task in an 
immersive environment. Participants were asked to 
complete two tasks subsequently.  
In the first task, participants were asked to arrange the 
scatterplots into groups based on similarity. They were told 
that they could consider any similarity criterion and group 
according to their own perception of the data. We enforced 
a minimum of at least five (5) groups, but they could create 
more. Participants were required to group all the charts. 
After completion of the grouping, they were asked to 
explain their motivation behind the way they grouped the 
charts. The responses were recorded about all aspects they 
considered. 
In the second task, participants highlighted each dimension 
in turn through clicking on the data dimension in the left 
panel. When a data dimension on the data panel is clicked, 
each chart using this dimension in the visualization panel is 
highlighted. This feature let users see if their grouping 
criteria had a “common dimension”, i.e. charts having the 
same dimension in one of their axes are grouped. The task 
was to observe any patterns that might become apparent.  
We observed in pilots that the classification behavior of 
novice users was sometimes purely based on the chart type, 
which has no relation with the visualized data. To ensure 
that classification decisions were not affected by chart type, 
only a single data type (numerical) and a single chart type 
(scatterplots) were used in the studies. The dataset we used 
for experiment I and experiment II has been the same US 
Census dataset. However, to randomize the data over the 
conditions in the VR tasks, we used an additional second 
dataset in experiment II. 
We also observed in pilots that VR controllers/wands did 
not provide sufficient performance. Thus, we decided to 
use the same input device, a high-resolution gaming 
mouse, in both experiments. 

2.1.2. Experimental Design 
We used a convergent parallel mixed methods design for 
both experiments to collect both quantitative and 
qualitative data. We acquired quantitative data by 
measuring the number of groups created in the clustering. 
Additionally, to gain qualitative data and to get insights 
into the participants’ thoughts, we asked the participants to 
think aloud while they were performing the tasks. 
In experiment I, each participant performed primarily the 
first task. We collected qualitative data to gain an insight 
into the participants behavior and of the potential 
advantages of a large display space.  
In the second experiment, each participant was exposed to 
two conditions with the VR HMD: one with the SPD 
display on and another with the SPD switched off. This 

resulted in a  within-subject design. The task described 
above was the same for each condition. Accounting for the 
repeated exposure to the task in the second condition and to 
consider its implicit learning, we randomized the order of 
the SPD/Non-SPD condition for each participant to 
minimize the bias and ensure counterbalancing. Further, we 
used two different datasets which we randomized over the 
SPD/Non-SPD conditions. Additional quantitative data for 
Experiment II were acquired by measuring the completion 
time of the first task. 
Qualitative and quantitative data of both experiments were 
later used to investigate differences between the platforms. 
To avoid learning effects across both experiments, we used 
a between-subjects design to compare between the LHRD 
and SPD/Non-SPD HMD. 

2.1.3.Data Collected 
As part of the instruction phase for each experiment, 
participants filled in a questionnaire regarding their 
background and their knowledge of VA, VR and immersive 
environments like LHRD. Participants were asked to use 
the think-aloud protocol while performing the task and to 
share their thoughts about their clustering choices. 
Participants used the same protocol to share their 
observations about the highlighted dimensions in relation 
to their own grouping. 
During the tasks, users’ answers were recorded via free-
form text boxes and were stored in a survey system. Users’ 
clustering activity was tracked in two ways: First, we 
screen-recorded their activities. Second, we recorded the 
positions and information of each chart for each final 
participant’s grouping.  
To be able to better understand the raw screen recordings, 
we watched the user carefully at each step of the procedure 
and recorded observations, e.g., through jotting down signs 
of frustration at specific points in time, which further 
informs the analysis of the results. 
At the end of the study, we performed an audio-recorded 
post-study interview with each participant, taking typically 
less than 5 minutes. This interview was semi-structured. 
We asked participants a list of questions regarding the tasks 
they completed, the software tool, the system, what they 
liked, what was challenging and/or confusing, and whether 
they had any further feedback. 

2.2. Apparatus 
The most notable components of the apparatus for this 
study are a LHRD for the first experiment and a HMD 
with/without SPD for the second experiment. We further 
used a VA tool called DynSpace to carry out analytical 
tasks. DynSpace runs as a web application on a Node.js 
server with MongoDB running in the backend to support 
data collection during experiments [33]. We chose a web 
application because of its ubiquitous accessibility and 
flexibility in terms of both client and server side 
technologies and to ease for future expandability on large 
display screens. 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

72 ISBN 978-80-86943-38-1

https://paperpile.com/c/MEpoSV/zjUx


2.2.1. V4-Space 

V4-SPACE consists of a 1x7 array of large, tiled displays, 
each a vertically oriented 85” 4K Samsung Smart TV. The 
user sits in front of a desk at the center of the semi-circular 
arrangement of the TVs, see figure 2. We put an additional 
21” monitor for auxiliary tasks before the user, below the 
line of sight to the large display. The main display has 
15120 x 3840 pixels, which makes V4-SPACE a 58-
megapixel system with 52 PPI pixel density. While the 
aspect ratio of a single display is 9:16, the system ratio is 
63:16, about 4:1. The main display is 7.41 m by 1.88 m. In 
the 1x7 grid, there are no horizontal bezels and only 6 
vertical ones. 
V4-SPACE is controlled by a single computer with an Intel 
i7-6700K 4GHz processor with four PCI Express Gen 3 
slots. The displays are driven by two nVidia Quadro 
M5000 cards, which provide four 4K outputs each, 
hardware synchronized through an nVidia Quadro Sync 
card. The auxiliary desktop monitor (which was not used 
for VA activities, and solely served to display a 
questionnaire form) is connected via an nVidia Quadro 
K620 graphic card. V4-SPACE relies on the nVidia Mosaic 
driver functionality, which presents all seven large displays 
as a single display to the user. 
The system is designed for a single user who has a fixed 
position in front of the display system, about 3.3 m from 
each monitor. At this distance V4-SPACE is a “super-
retina” display[34]. The display system is arranged in a 
circular arc (approximately 131° horizontal field-of-view, 
FOV) such that each monitor is equidistant to the user. This 
avoids information legibility issues due to non-uniform 
distances. As a limited form of physical navigation, the 
user can simply rotate their head or rotate a swivel chair to 
look at different parts of V4-SPACE. 
Interaction is through keyboard and mouse. To support the 
high resolution of V4-SPACE, we use a Razer DeathAdder 
Chroma 10000 PPI optical gaming mouse, which permits 
the user to perform pixel-accurate pointing on the large 
display surface. 

2.2.2. SPD HMD 
For the HMD we used an off-the-shelf HTC Vive VR 
headset which was extended with a custom built Sparse 
Peripheral Display (SPD) to broaden the field-of-view of 
the virtual environment (figure 3). The SPD consists of 256 
RGB LEDs placed on a 2-layer flexible printed circuit 
board. The LEDs are set in a radial array and the flexible 
PCS is folded to tightly fit around the lenses of the headset. 
The LEDs themselves are controlled by two LED drivers 
(Texas Instrument TLC5951), which provide 12-bit PWM 
color control to each color of the LED RGB triplet (36 bits 
of color per LED). Its LED drivers are controlled by an 
Cortex-M3 microcontroller (Cypress CY8C5288 LTI-
LP090), which handles all communication with the 
computer through USB. The SPD update rate is set to 
100Hz and the horizontal display FOV consists of 
approximately 180° (see [28] for a similar setup). We 
switched the SPD on and off for the two conditions 
investigated in this experiment.  

2.2.3. Common software platform 

The VA tool DynSpace is a browser-based VA tool written 
in JavaScript. Its user interface consists of two two panels: 
a Data Panel on the left side showing data dimensions and 
the main visualization panel on the right. Users can select 
data dimensions in the left one and drag-and-drop them 
into charts in the main visualization panel for analysis. 
The visualization panel contains data charts that show 
relations between selected data dimensions. Each chart is 
contained in a rectangular sub-panel that a user can move, 
resize, add, or delete, and shows a 2D data plot. All plots 
are coordinated through brushing and linking. 
DynSpace was designed to aid analysis of complex datasets 
[34]. Initially it displays a number of charts, each generated 
automatically by picking random pairs of data dimensions. 
This set of initial charts uses about half of the workspace in 
either of the experiments. The initial display of charts is a 
simple array with no clustering. Enough free space is left 
for the user to arrange the spatial layout of the content as 
they wish, e.g., by moving charts and creating clusters. 
DynSpace uses a grid-based layout manager that enforces 
complete visibility of charts at all times by not allowing 
charts to partially or completely overlay one another. The 
available space is divided into invisible rows and columns 
so that the clusters always appear as an array. 

3. Experiment I 
The purpose of experiment I was to observe user behavior 
during a classification task in a LHRD. 

3.1. Methods 
The spatialization task used a simplified version of 
DynSpace to display 2D plots visualizing relations among 
a subset of the 2016 US Census Dataset. This study took 
place on the V4-SPACE display (figure 4). 

!  
Figure 4: The instance of DynSpace that spans the display space of 
our LHRD. Each square is a chart of a part of the data. 

3.1.1. Participants 

There were nine participants, P0 to P8, four of whom were 
male. Ages ranged from 18 to over 40. Some were 
undergraduate students participating for course credit, 
others were volunteers with at least a bachelor’s degree. 
Through pilot studies, we ensured that all users could read 
the text on the displays from the default chair position 
without problems. 
Participants were asked about their familiarity with seven 
VA terms and concepts in the pre-study survey. On average, 
they were familiar with 4.4 of those.  
Since the study did not require specific domain knowledge, 
we were able to use mostly novice users for this study. 5 
participants out of 9 did not have any VA experience. One 
reported less than a year of experience and three reported 1 
to 3 years of experience. Seven of them had never used any 
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visualization or VA tools, whereas one had used D3.JS and 
another used R in a statistics course for a term.  
In a pre-study survey we asked users whether they could 
interpret data from scatter plots. They ranked their ability 
of interpreting data correctly from a scatter plot on a scale 
from 1 to 5. The results were 3x “Sometimes”, 4x “Mostly” 
and 2x “Yes, always” answers; which respectively stood for 
3, 4 and 5 on the scale used.  

3.1.2. Procedure 
We first instructed participants that they could rotate/swivel 
the chair to see the full display, but that the chair had to 
remain in the same location until the end of the experiment, 
to retain the same distance to all displays in the system. 
Leaning back and forward was permitted, as desired. Next, 
we trained them in basic, yet frequent operations on V4-
Space: keeping track of the cursor, how to find it when they 
lost track of it, and switching between the LHRD and the 
auxiliary monitor. Then, users were introduced to 
DynSpace along with some practical tips regarding the 
usage. We assured users that they could ask questions 
during the experiment and that they should communicate 
their thoughts around the tasks or whenever they 
experienced issues. We recorded any direct or indirect 
feedback from the users during the tasks through note-
taking. 

3.2. Results 
Reporting the results for experiment I, we use the notation 
P3-I to signify participant three from the first experiment. 

3.2.1. Clustering 
Three participants created only the minimum allowed five 
groups and four clustered their plots into 6 groups. The 
other two participants created 8 and 16 groups respectively. 
The participants used one of the following three equally 
prevalent strategies when clustering: Similar visual 
appearance (P1-I, P2-I, P7-I), commonality in labels (P0, 
P4-I, P5-I), or common topics (P3-I, P6-I, P8-I). When 
building clusters, charts were either arranged horizontally 
or vertically (P0-I, P1-I, P4-I, P5-I), roughly circular (P6-I, 
P8-I), or in a mixed arrangement (P2-I, P3-I, P7-I).  
For some users, there was no perceptible relation between 
different clusters in the workspace (P0-I, P1-I, P4-I, P5-I). 
For P3-I, cluster shapes were determined by cluster types. 
For the rest (P2-I, P6-I, P7-I, P8-I), the  distance between 
clusters decreased as the similarity between clusters 
increased. For these participants, relations between clusters 
were reflected by cluster separation. For some participants, 
there was either no (P0-I, P1-I) or only a minimal (P3-I, 
P5-I, P8-I) distance between clusters. For some participants 
(P4-I, P6-I) the bezels strongly influenced the cluster 
arrangement. For a few users (P2-I, P7-I), the distance 
between clusters varied depending on the inter-cluster 
relations. 

3.2.2. Space Usage 
Out of nine participants, seven used the entire width 
display provided by the system. If a user runs out of free 
space, DynSpace permits vertical scrolling via the mouse 

wheel (but not horizontal scrolling). Surprisingly, P0-I and 
P1-I used only about 2/7 and 3/7 of the space, respectively, 
and relied heavily on vertical scrolling.  

3.2.3. Navigation Techniques 
Six of the participants used physical navigation frequently 
during the tasks, i.e., they rotated their head and/or body 
back and forth to “access” all parts of the LHRD visually. 
The others kept their gaze mostly focused on a subset of 
the displays.  

4. Experiment II 
The purpose of Experiment II was to observe sensemaking 
in a VR environment and investigate whether an increased 
field of view in VR via a SPD has an effect on VA tasks. 

4.1. Methods 
We used a HTC Vive with a SPD to show the virtual 
environment through Unity 3D. The VR environment 
consisted of a curved display surface, as seen in figure 5. 

!  
Figure 5: Curved screen surface in the virtual environment 
showing the scatterplots. 

We duplicated several desktop windows into the virtual 
environment and displayed different web applications, 
including DynSpace, using the Awesomeium plugin for 
Unity 5. We also redirected mouse and keyboard events to 
enable interaction with the content of these windows. We 
displayed more than a single window to make sure that 
participants could not get lost in the virtual environment. 
The largest window was placed in front of the user and 
showed DynSpace with 64 scatter plots on the VR surface 
to perform the VA task. Participants used a computer 
mouse to interact with the DynSpace user interface which 
was placed on a table in front of the participants. We used a 
screen-capture software to record the participants’ 
interactions with the system and to collect the task data. 

4.1.1. Procedure 
Prior to the study, participants were instructed in the 
specifics of VR, SPD and VA systems and were asked to 
give informed consent. They were further asked to agree to 
screen capturing and audio recording while taking part in 
the study. Participants were verbally instructed on the 
procedure for the experiment and exposed to a short 
training session prior to the actual task. A researcher was 
always present to collect observations, provide instruction, 
and for technical support, if needed. 
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Participants sat on a chair located in the middle of a lab 
environment, with a little table in front of them to use the 
computer mouse. The surrounding area was emptied so 
they could not touch or bump into anything while being 
immersed to the virtual world.  
After each condition, each participant completed a Slater-
Usoh-Steed questionnaire to account for their perception of 
presence. This has been additional collected data compared 
to experiment I. 

4.1.2. Participants 

In total, 7 (new) subjects (5 female; mean age was 21.28 ± 
2.05 years) participated. Subjects were students of the local 
university and recruited from a local subject pool. The 
participants were unaware of the purpose of the study. The 
experiment was approved by the ethics committee of the 
university. 
A pre-study survey indicated that the participants had little 
experience in VA tasks (3x “None”, 3x “less than a year”, 
1x “1-3 years”) and have been uniformly familiar with VR 
Headsets (3x “Yes”, 4x “No”). 

4.2. Results 
For the results of experiment II, we use the notation P4-II 
to signify participant four from the second experiment. 

4.2.1. Completion Time 

Figure 6: Boxplots showing the time needed to complete the 
subtasks in either the SPD or the no-SPD condition. 

No participant exceeded the 60 minute limit of the study. 
Completion time of each task varied from 5 to 20 minutes 
in the No-SPD condition (M = 12.85, SD = 6.12) and from 
8 to 23 minutes (M = 14.28, SD = 5.40) in the SPD-
condition (see figure 6). 
A Shapiro-Wilk test showed a normal distribution for both, 
the No-SPD and the SPD condition. Variance homogeneity 
between conditions exists. An ANOVA showed no 
significant results of the condition on the working time 
(F(1,6) = 3.614, p = 0.105, η2 = 0.018). 
Participant P7-II created by far the biggest number of 
groups (SPD: 15, No SPD: 17). The participant noted 
afterwards, that they wanted to solve the task as soon as 
possible. Since the participant only relied on the 

commonality of labels, they performed merely a pattern 
recognition task on the naming of the plots, rather than 
truly making sense of the data.  
In contrast, participant P3-II solved the task very carefully 
and even changed their grouping strategy in the second 
condition. They took about 20 minutes for grouping 
through “commonality in labels” (No SPD) and 23 min. for 
grouping by similar visual appearance (SPD). 

4.2.2. Number of Clusters 
The number of groups (figure 7) created in each condition 
varied from 6 to 17 in the No-SPD condition (M = 9.42, 
SD = 3.69) and 6 to 15 in the SPD condition (M = 8.42, SD 
= 3.20). A Shapiro-Wilk test showed a normal distribution 
for the No-SPD condition and not for the SPD condition. 
Variance homogeneity between conditions exists. We 
performed a parametric test since it is adequate robust to 
possible violations of the normality assumption [35]. The 
ANOVA identifies a significant difference between 
conditions for the number of groups created (F(1,6) = 
7.000, p = 0.0382, η2 = 0.024). 

Figure 7: Boxplots showing the number of clusters in each  
subtask in either the SPD or the no-SPD condition. 

4.2.3. Clustering Strategy 
Participants used two different strategies for grouping plots 
in experiment II. The first strategy was to group by a 
commonality in labels. The second one was to group by a 
similar visual appearance of the scatterplots shown, e.g., 
(broadly) increasing plots vs. plots with no visible trends. 
While we expected that participants would use the latter 
strategy more frequently, the first one was used more 
widely. We could not identify a considerable difference of 
the clustering strategy between the SPD and No-SPD 
conditions. 
However, we observed a shift in strategy, from an initial 
grouping by commonality in labels to a grouping by similar 
visual appearance (illustrated in figure 8). This shift seems 
to be because of the succeeding subtasks. After the first 
subtask, one participant (P3-II) mentioned that they 
expected the visual appearance of the scatterplots to be 
more important for making sense of the data, rather than 
just ordering them by a commonality in axis labels. Thus, 
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this participant grouped the graphs in the second condition 
according to the visual appearance of the scatterplots.Figure 

8: Barcharts showing the strategy used for clustering in V4-
SPACE and VR setups (for both experiments). 

4.2.4. Cluster Shapes 
We observed three different kinds of arrangements 
participants used to classify the data: horizontally and 
vertically arranged, roughly circular, or a mixed 
arrangement (see figure 9). This classification is similar to 
arrangements observed in experiment I 

Figure 9: Barcharts showing the shape of the clusters used for 
clustering in V4-SPACE and VR setup 

Interestingly, the arrangement of clusters seems to directly 
correspond to the used clustering strategy. When grouping 
by commonality in labels, the arrangement of the clusters 
was horizontal or vertical. The strategy to use similar visual 
appearances changed the arrangement of the cluster shapes 
to a more “prototypical” arrangement of clusters with 
roughly circular shapes. Participant (P3-II) even 
commented that this seemed to be „more intuitive“. This 
indicates that the arrangement of clusters may be directly 
related to the clustering strategy 

4.2.5. Advantages and Disadvantages of Sparse 
Peripheral Displays 

Asking the Participants what HMD condition they 
preferred, the outcomes reveal the same equal level of 
preference for “No SPD preferred”, “No difference 
experienced” or “SPD preferred” (see figure 10). One 
participant (P1-II) noted that they did not notice the SPD 
change between the tasks. 
Those participants who did not like the SPD condition 
mentioned that they perceived the SPD display to be too 
bright and thus as distracting while solving the VA task. 
One participant (P7-II) felt that the SPD impaired 
perception and that it actually “took away” from the 
experience. The same participant mentioned that the SPD 
was “some sort of separately perceived reality” to them.  
When asked about the SPD experience without a focus on 
solving a VA task, the SPD was preferred by a majority of 
participants, potentially due to the perception of less or no 
motion sickness. This result is contrary to the results of 
[28], where they observed an increase in motion sickness in 
using a SPD. Further, one participant (P3-II) mentioned 
that the SPD gave him a better sense of orientation. This 
helped him to navigate better between the content in the 
second subtask (the highlighting of the dimensions). 

Figure 10: Preferences of the participants regarding the SPD 
headset. 

4.2.6. Presence Questionnaire 
The overall Slater-Usoh-Steed (SUS) score for each subject 
was quite high, resulting in a high prevalence of 
participants being present in the virtual environment in 
general (figure 11). An ANOVA identified no significant 
results of the condition on the SUS score (F(1,12) = 0.025, 
p = 0.878, η2 = 0.0021). Thus, our data disconfirm 
hypothesis H3-II. 
Only a single participant (P7-II) gave the SPD condition a 
conspicuously higher SUS score than the no-SPD 
condition. The participant is the same who identified the 
SPD to be some sort of separately perceived reality (see 
section 4.2.5). Interestingly, the same participant also 
mentioned the SPD to be less preferable than the No-SPD 
condition, which contradicts their SUS rating. 
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P3-II identified the SPD condition as more preferable and 
that it gave them a broader sense of orientation during the 
task. Looking at the participants’ SUS scores, there was no 
significant difference between the conditions though. 
Overall, the SUS scores of P3-II were notably lower than 
any other participants’ scores. 

Figure 11: Results of the Slater-Usoh-Steed questionnaire for each 
participant and each HMD condition. 

4.2.7. Highlighting of Dimensions 
The highlighting of the dimensions was a solely qualitative 
task. For those participants who grouped the plots by a 
commonality in labels, any highlighting of the dimensions 
directly matched the arranged groups. It is interesting to 
see that even though the participants did not know the 
requirements of the second subtask at the beginning, they 
arranged the groups by the dimensions in the first subtask. 
This was helpful for the (future) second subtask. Yet, no 
participant discovered and mentioned this. Most of the 
participants did not identify any reasons as to why some 
dimensions matched their groupings and why some did not. 
Not surprisingly, the participants who grouped according to 
similar visual appearance tried to make sense of their 
arrangement far more often than the participants who 
grouped by the commonality in labels. Their groups were 
arranged more likely by different dimensions and matched 
the highlighting less well. Participant (P5-II) mentioned it 
might have been better for the second subtask to arrange 
the graphs by the commonality in labels as opposed to 
arranging the clusters in a roughly circular manner. Using 
the think-aloud protocol, most participants who grouped by 
similar visual appearance mentioned the potential utility of 
cross references between the arranged groups according to 
the dimensions. Participant (P6-II) arranged the graphs by 
commonality in labels. However, faced with the second 
subtask, the participant tried to explain the dimensional 
matching only based on the scatterplot appearance and did 
not rely on the labels. However, the participant was still not 
able to come up with a reason as to why some plots where 
in different groups in their arrangement. 
Overall, most of the participants found the second subtask 
of making sense of the data and highlighting the 

dimensions challenging. One potential explanation is the 
relative lack of experience with VA in our participants. 

5. Discussion 

We can confirm Hypothesis H1-I, that users 
spatialize their content through clustering 
information and exploit the advantages of a large 
display space, through the observations of the users’ 
clustering behaviour in experiment I. Instead of 
treating the plots as a single group of data, they 
classified the plots through various strategies and 
used the full display space during sensemaking to 
create different clusters of data plots. 
Our second experiment, does not support any of the 
hypotheses H1-II, H2-II or H3-II, as we did not find any 
significant results that users perform differently in a SPD 
HMD compared to a common VR Headset. 
Combining the quantitative results for completion time and 
number of clusters with the qualitative data of clustering 
strategy and cluster shapes, we are unable to discern a clear 
picture if users perform differently in a SPD HMD relative 
to an off-the-shelf VR HMD. Thus, our hypothesis H1-II is 
not supported. 
We see no support for hypothesis H2-II, since we are 
unable to reach a clear conclusion on whether the SPD 
condition was preferred by the users while solving a VA 
task. The (low-resolution) larger field-of-view did not seem 
to have had a strong effect on the outcome. Finally, we 
observed no difference on the Slater-Usoh-Steed 
questionnaire, resulting in an unmet hypothesis H3-II. 
Using a between-subjects design we compared the results 
of experiment I and experiment II to investigate differences 
in sensemaking between the LHRD system and the VR 
HMD with and without the SPD. As seen in figure 8, 12 
and 9, there are several differences between the results of 
experiment I and experiment II. 

As we did not record the completion time in the first 
Experiment, we were not able to compare times between 
the experiments. We thus analyzed quantitative data in 
terms of the number of created clusters to compare both 
experiments. A Shapiro-Wilk test showed a normal 
distribution for the No-SPD condition, but not for the SPD 
and the LHRD. Variance homogeneity between the three 
exists. Since parametric tests are robust to the violation of 
the normality assumption [35], we performed an ANOVA 
over V4-SPACE and HMD results (V4-Space: M = 7.0, SD 
= 3.5; No-SPD condition: M = 9.42, SD = 3.69; SPD 
condition: M = 8.42, SD = 3.20). The results showed no 
significant difference between the number of created 
cluster in V4-Space and the no-SPD HMD (F(1,12) = 
1.257, p = 0.284, η2 = 0.095) and the V4-SPACE and the 
SPD HMD (F(1,12) = 0.449, p = 0.515 η2 = 0.036). 
Thus, we may disconfirm hypothesis H1-C and can only 
state that users do not seem to perform differently in an 
HMD relative to a LHRD. Users did not perform better in a 
LHRD relative to a VR HMD according to our 
investigations. 
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Figure 12: Number of clusters generated in V4-SPACE and  the 
VR setups. 

Clustering Strategy 
In terms of the clustering strategy, in the second 
experiment a subset of users relied on grouping based on 
the commonality of labels. Yet, as the participants 
progressed through the experiment, we observed a 
transition towards a strategy based on similar visual 
appearance of scatterplots in some participants. This could 
be considered to be a more reflective way of grouping the 
plots. We hypothesize that grouping by similar visual 
appearance corresponds to a higher-level sensemaking 
activity, since it involves more active reflection about the 
data. In the first experiment, we observed an additional, 
third strategy. While about a third of the participants based 
their strategy on the visual appearance of the scatterplots 
and another third based it on the commonality of axis 
labels, the remaining third adopted a clustering approach 
based on common topics of plots. This strategy is more 
complex and reveals that some were actively trying to 
make sense of the data.  
Using this strategy, participants neither clustered according 
to a pattern recognition/visual matching strategy, regardless 
of what the data presents; instead, they aimed to bring 
charts together based on what the data might be about. 
Even if the axis labels were different, users thought about 
the concepts and what those concepts are about and 
clustered the plots so that each went into a corresponding 
category of topics.  
Cluster Shape 
We also compared the shape of the clusters the participants 
generated. In the first experiment the participants’ 
rearrangement efforts resulted mostly in simple shapes, 
either highly rectangular (aspect ratio substantially 
different from 1) or roughly circular (aspect ratio around 
1). Classifying cluster shapes by aspect ratio (large ratio: 
horizontal; small: vertical) yields the following grouping 
(with examples shown in figure 13): 

- Horizontal: 1 participant. 
- Vertical: 3 participants. 
- Roughly circular: 5 participants. 

For several participants, no clear pattern of cluster 
arrangement could be identified. P0-I and P1-I did not have 
any space between clusters arranged in a random order. For 

P4-I and P5-I, clusters were separated by some distance. 
However, the spacing seemed uniform and clusters 
appeared similar. In contrast, other participants used cluster 
position to convey meaning. As an example, P3-I used the 
cluster shape to indicate what the clusters represented. 
While P3-I categorized groups looked somewhat similar, 
their group of uncategorized plots looked different from 
other clusters in terms of shape and the distance from other 
clusters. 
We observed similarities in cluster shapes in experiment II 
as well. Participants’ cluster shapes were defined similarly 
to the first experiment (horizontal or vertical, roughly 
circular, mixed arrangement). As in experiment I, 
horizontal or vertical arrangement was used by participants 
that did not seem to think deeply about their clustering 
strategy.  
When users appeared to make more sense of the data, they 
started to create more traditional “roughly circular” clusters 
and used shape and space as a tool for sensemaking within 
the available workspace.  

!  
Figure 13: Variation in aspect ratios used by participants. P6-I used 
a roughly circular arrangement (aspect ratio ~1, top left) while P4-
I used a vertically-oriented layout (aspect ratio <<1, top right) and 
P5-I a more horizontal organization (aspect ratio >> 1, bottom). 

5.1. Summary 
We conducted two sensemaking studies in immersive 
environments, one on a large high-resolution display 
(LHRD) called V4-SPACE and one using a HMD-based 
VR system with a sparse peripheral display option that we 
turned on and off. Using equivalent tasks, we observed 
users’ behaviors in those environments and compared the 
outcomes within the same environment and the two 
separate display environments to each other.  
The first exploratory study aimed to identify challenges 
and yielded qualitative observations for VA tasks in a 
LHRD environment. We obtained new empirical 
information about users’ approaches when asked to prepare 
a large volume of data for analytical tasks on large 
displays. Even though all users started with the same state, 
the results of experiment I suggest that different users 
follow varying classification and spatial organization 
strategies. We observed clear distinctions in terms of 
clustering strategies, space usage, and preferred navigation 
techniques. 
In the second experiment, we investigated the utility of a 
sparse peripheral display condition on a VR HMD. The 
presence of the SPD yielded mixed responses. While some 
users found it ‘too bright’, ‘distractive’ or thought that it 
reduces the immersion; others thought it causes less or no 
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motion sickness or that it supported a better sense of 
orientation. Quantitative analysis yielded a significant 
larger number of clusters created in the SPD than in a 
common VR HMD. 
The comparison of both experiments showed no significant 
difference of the performed quantitative data in V4-SPACE 
and the VR SPD HMD. A comparison of the qualitative 
data yielded an additional strategy used in V4-SPACE and 
a slightly varying distribution of cluster shapes. The results 
show initial tendency that users perform different in both 
immersive environments, leaving the possibility for future 
research. 

5.2. Limitations 
A limitation we have to consider is the small sample size of 
n = 9 in experiment I and n = 7 of experiment II. While this 
limits the strengths of the insights we can derive, we point 
out that the effort to run the studies was high (and the SPD 
broke during the second experiment for the eight 
participant).Further, our participants were university 
students with limited VA experience. We observed that 
some participants in experiment II could not tell what was 
happening when highlighting dimension. We believe the 
lack of VA experience might have impacted how much 
sense the participants were able to extract from the data.  
We tried to carefully match experimental conditions for 
both environments through using the same input device, 
apparent size of the workspace, amount of information 
displayed and the tasks that participants had to perform. 
Yet, there were also technological limits to this, such as the 
maximum resolution of the available VR headset system 
being far inferior to what is available on a LHRD.  
Since the participants could terminate the task whenever 
they wanted, the duration to solve the task mostly 
depended on their motivation and their clustering and 
sensemaking strategies for the data. Further, since there 
was no single correct solution for the task, each participant 
used a different classification strategy with their own 
criteria. This limitation introduces noise into the main goal 
of comparing sensemaking in HMD and LHRD 
technologies and makes it more difficult to draw strong 
conclusions. In future work, it would be interesting to 
repeat the experiment on a conventional computer 
environment as a reference baseline. 
A limitation for the second experiment in specific is using a 
computer mouse as an input device for the VR HMD. Yet, 
as mentioned above, we found that a VR controller was not 
sufficiently accurate to enable users to interact with the 
details of the charts. Since a mouse is not a typical HMD 
input device, it might make its interaction with the system 
unnatural. While participants could not see the physical 
mouse they were using while being immersed in the HMD, 
none of the participants reported any issues with this. 
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