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ABSTRACT 
In this paper we present a dorsal hand vein recognition method based on convolutional neural networks (CNN). 

We implemented and compared two CNNs trained from end-to-end to the most important state-of-the-art deep 

learning architectures (AlexNet, VGG, ResNet and SqueezeNet). We applied the transfer learning and fine-

tuning techniques for the purpose of dorsal hand vein-based identification. The experiments carried out studied 

the accuracy and training behaviour of these network architectures. The system was trained and evaluated on the 

best-known database in this field, the NCUT, which contains low resolution, low contrast images. Therefore, 

different pre-processing steps were required, leading us to investigate the influence of a series of image quality 

enhancement methods such as Gaussian smoothing, inhomogeneity correction, contrast limited adaptive 

histogram equalization, ordinal image encoding, and coarse vein segmentation based on geometrical 

considerations. The results show high recognition accuracy for almost every such CNN-based setup. 
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1 INTRODUCTION 
The increasing number of smart devices, cloud 

computing and home automation have made people 

more conscious of security and privacy. They have 

realised the importance of protecting their personal 

data stored in LAN or on servers in WAN networks.  

The credentials in access control systems must be a 

unique ID that a user knows or owns. Based on this 

the user is associated and authenticated and it is 

given access to the requested resource.  

Traditional identification and authentication methods 

are gradually losing ground because they can be 

easily hacked using a man-in-the-middle attack. The 

usual credentials such as tokens, passwords or ID-

cards are not sufficiently reliable, since they can be 

relatively easily intercepted or falsified. Tokens, 

passwords and other important data may be caught or 

lost, and reused afterwards serving as fake 

documents. Finally, knowledge-based information 

may be easily forgotten. Biometrics is one of the 

most secure and reliable means of personal 

identification or authentication methods. Biometrics 

makes use of unique, unforgeable characteristics 

based on body measurements or comportment that 

are difficult to copy or steal.  

The most important features used in biometric 

identification are the face, fiducial points, 

fingerprints, veins, palm and dorsal hand veins, 

finger veins, the iris, the retina, ears, the voice and 

the DNA. 

In recent years, biometrics based on patterns of the 

vascular system have gained increasing attention. 

Analysis of finger vein, palm vein and dorsal hand 

vein patterns are the most common vascular structure 

biometrics. Their advantages are uniqueness, 

stability, contactless acquisition and unforgeability. 

They are also typical of the living. 

In this paper, a dorsal hand vein identification system 

is presented which exploits the strength of 

convolutional neural network architectures.  

The rest of the paper is organized as follows: after a 

short review of dorsal hand vein detection and 

authentication systems in the literature (Section 2), 

the database used in the experimental setup is 

presented (Section 3). Section 4 summarises the fine-

tuned and retrained CNN architectures, followed by 

the detailed description of the approach proposed 

with two CNNs trained end-to-end (Section 5). 
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Finally, our experiments and results are presented in 

Section 6, followed by the conclusion and discussion 

(Section 7). 

2 RELATED WORK 
The blood circulation system of every creature is 

already formed in embryo state. The exact path and 

form of the veins, from the medical point of view, is 

not known in detail, and neither is the reason of the 

uniqueness of the vessel network. It is only known 

that the probability of finding two individuals with 

the same pattern of blood circulation system is quite 

low.  

Technically, dorsal hand vein detection is the easiest 

compared to finger vein, palm vein or other vein 

pattern acquisitions. The veins are under the skin and 

carry blood from the organs towards the heart. They 

are bluish in colour and can be detected by light 

reflecting the temperature difference between the 

warm blood flow and the surrounding cells. The 

acquisition of dorsal hand images is usually done by 

Near Infrared (NIR) or Far Infrared (FIR) cameras. 

The acquisition protocol is not standardized and 

differs from one database to the other. The resolution 

of the images obtained is usually very low, with low 

contrast and a restricted region of grayscale 

intensities. 

Vein-based approaches can be classified into two 

different types: shape-based methods and texture-

based methods. 

Shape-based methods use vascular structure 

information, extracting line or curve features and 

measuring different types of distances: the Hausdorff 

distance or the Line Segment Hausdorff distance or 

angles [1]. Here the geometric representation is 

obtained based on an approximation of segments by 

short vectors, bifurcation, endpoints and crossing 

points. These features are obtained after the vessel is 

detected and the skeleton of the vein structure is 

obtained. The segments of the skeleton can be 

approximated by line detection using Hough 

transform. In this case the veins are extracted by line 

tracking methods or local curvature extraction [2]. 

The disadvantage of these methods is the requirement 

for an aligned and registered skeleton structure.  

The registration and alignment of two binary skeleton 

images is usually done by considering local invariant 

feature points such as SIFT (Scale Invariant Feature 

Transform) [3], SURF (Speed-Up Robust 

Features) [4] and Hessian-Laplace interest points [5].  

Another approach capable of registering two vein 

skeleton images using a 3D rigid transformation that 

maximised the skeleton overlap was described in our 

previous article [6]. 

The texture-based methods can be divided into two 

categories: global texture methods and local texture 

methods. The global methods, also called holistic 

methods, extract the features from the whole region 

of interest, characterising the texture and vein 

structure globally. For this purpose, Principal 

Component Analysis (PCA) was used by Wang et al. 

in [7], the Fisher Linear Discriminant was applied 

Liu et. al in [8] and Independent Component 

Analysis (ICA) by Yuksel et al. [9]. These methods 

rely on eigenvalue and eigenvector decomposition. 

The results in these cases were severely influenced 

by the variation of position, viewpoint, contrast, 

illumination changes, occlusion, distortion and 

misalignment of images. However, these methods are 

a good starting point in combination with local 

texture methods. 

The most important local texture-based approaches 

are different variants of locally binary patterns (LBP) 

or circular locally binary patterns (CLBP) [10] or 

Gabor texture descriptors [11]. Another type of local 

information extraction is based on local key point 

matching, for example SIFT (Scale Invariant Feature 

Transform) [12], Difference of Gaussian [13], 

Oriented Gradient Maps [14], Centroid-based 

Circular Key-point Grid (CCKG) [12].  

The results obtained by a single key-point extraction 

method are not good enough; therefore, Huang et. al 

[15] proposed a combination of LBP for local 

texture, binary coding for local shape extraction and 

graph matching for global shape characterisation.  

The most recent research field of convolutional 

neural networks is not widespread in the case of vein-

based identification. Hong et al. proposed a reduced 

complexity four-layered CNN for finger vein 

recognition [16] and Wan et al. [17] proposed a CNN 

based on VGG-19 [18] for dorsal hand vein 

recognition. 

3 THE DATABASE 
The proposed approach is evaluated on the NCUT 

(North China University of Technology) Part A [8] 

dorsal hand vein dataset. It is the largest publicly 

available database used for automatic dorsal hand 

vein image recognition systems. The NCUT database 

contains 2040 near infrared images of dorsal hands of 

102 individuals, and both hands have 10 samples 

each. Due to the low-cost acquisition equipment, this 

database contains low-quality images with a high 

noise level. All images were acquired by the same 

dorsal hand scanner, resulting in roughly aligned 

images. There are only small changes in translation, 

rotation and illumination between the images. We 

can observe more significant changes in viewpoint 

because of the hand rotating around the handle of the 

scanner, considered to be the Ox axis of the images. 

The NIR intensity is stable, but there is a circular 

variation in illumination from the centre to the 

margins because of a light source illuminating form 
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above. Thus, some veins near the margins are 

difficult to distinguish, and vein pixel intensities are 

sometimes similar to skin pixel intensities. The 

acquisition equipment through the NIR camera 

determined the low contrast with a resolution of 640 

×480 pixels on an 8-bit greyscale image. Moreover, 

the dorsal hand occupies only about half of the 

available area and there are only 80 integer 

intensities, which restricts the range of contrast into 

the [101, 180] interval. 

4 TRANSFER LEARNING 
Transfer learning is used to fine-tune the weights of a 

given CNN architecture to be suitable for new input 

data. It has been shown that architectures based on 

transfer learning obtain better results in accuracy and 

performance than retraining the same network 

structure from the beginning.  

In our experiments we created two networks built 

and trained from scratch, and fine-tuned four other 

well-known CNN architectures (AlexNet, VGG-16, 

ResNet and SqueezeNet) with pretrained weights. 

4.1 Alex Net 
AlexNet [19] was the winning architecture of the 

ImageNet [20] Challenge in 2012. It was the first 

architecture implementing parallelism in training the 

network. The original architecture has an input image 

size of 224224 and 3-channel RGB image. It 

consists of 5 convolutional layers, 3 overlapping 

max-pool layers and two fully-connected layers at the 

end. The activation functions in the conv-layers was 

the ReLU. The first conv-layer has a depth of 96 with 

a kernel size of 1111 and a stride of 4. The output of 

this layer is a 555596 response, which is reduced 

to 272796 by an overlapping max-pool layer of 

33 kernels and stride=2. The second conv-layer has 

a kernel size of 55, a depth of 256, a stride of 1 and 

a zero-padding of 2 pixels in each direction. LRN 

(Local Response Normalization) was applied to the 

responses of the previous convolutional layers, i.e., 

batch-norm was not known at that time. The output is 

resized to half in width and height to 1313256 

with the same type of max-pool as before. The 

following 3 convolutions have a kernel size of 33 

with a padding of 1, astride of 1 and a depth of 384, 

384 and 256, respectively. These 3 layers maintain 

the previous size of 1313256, which is reduced to 

half 66256=9216 afterwards. These responses are 

fed into 2 FC layers, each having 4096 activations. 

The final decision of predicting 1000 class layers is 

made by a softmax function.  

In our approach we refined the trained weights for 

ImageNet and replaced the final FC layer to be 

suitable for our problem of dorsal hand vein 

identification by changing the output layer to 204 

instead of 1000.  

4.2 VGG 
VGG was introduced by Simonyan and Zisserman 

[18] and was the winning architecture of the 

ImageNet competition in 2014. It is a much deeper 

model compared to AlexNet, containing 16 (VGG-

16) and 19 (VGG-19) layers, respectively. Their idea 

was to stack multiple convolutional layers, with each 

having a kernel size of 33 with stride 1. This kernel 

size reduced the number of parameters in the layer. It 

has been shown that two stacked 33 kernel layers 

have the same receptive fields as a single 55 one. 

Likewise, a stack of 3 conv-layers has the same 

receptive field as a single 77 kernel conv-layer. The 

VGG-16 has 13 conv-layers, 5 max-pooling layers 

and 3 fully connected layers at the end. The other 

novelty here was the doubling of filter depth after 

reducing the input image size to half in both height 

and width. This led to a parameter reduction of only 

1/2 instead of 1/4. The input image size of 

2242243 was reduced after two conv-layers with a 

depth of 64 (conv1_1, conv1_2) to 1/2 size using a 

max-pool layer with stride 2. , Two other conv-layers 

were applied on the 1/2 image size, with double 

depth 128 and a max-pooling resize of the output to 

1/4. Three conv-layers were stacked on the 1/4 size, 

each having a depth of 256. On the 1/8 and 1/16 

sizes, 3-3 stacked convolutional layers followed, 

each having a depth of 512. The output of the last 

layer, in this way, was 77512, and was fed into 

three FC layers of sizes 4096, 4096 and 1000. The 

last two FC layers were followed by dropout with a 

probability of 0.5, like in AlexNet. This architecture 

has about 138 million parameters and was extremely 

hard to train. The training was done in several stages, 

gradually adding the interior layers.  

In our approach we refined the initially trained 

weights for ImageNet and replaced the final FC layer 

in order to obtain 204 class scores. 

4.3 ResNet 
The main reason for introducing ResNet [21] was the 

observation of lower training performances, although 

the number of layers increased. Thus, CNNs with a 

high number of convolutional layers are more 

difficult to be optimized. Moreover, if the number of 

layers is above a certain limit between 20 and 30, the 

CNN will also have a higher training and test error. 

The convergence of such deep architectures is not 

reached. The authors of paper [21] solve the problem 

of mapping an input layer to an output layer by 

computing only the difference that must be added 

(subtracted in case negative values) to the input 

values. So, instead of determining Out(x) it 

determines the residual R(x), where R(x)=Out(x)-x. 

The shortcut connection, also called bypass, is the 

identity mapping (x) which adds the input to the 

residual and obtains the output. The residual is 
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determined by multiple (2 or 3) consecutive conv-

layers. In this way they are able introduce very large 

networks with 18, 34, 50, 101 and 152 layers. Every 

conv-layer is batch normalised and fed into ReLU 

activation.  

In our experiments we have used the ResNet50 

architecture. The input layer is the dimension used in 

ImageNet. The first layer is 7764 with stride 2. 

The next dimension is 112112 because of resizing 

by max-pooling. On this size, 3 consecutive conv-

layers are used to determine the residual (1164, 

3364, 11256), and these are repeated 3 times. 

The next feature map dimension is 5656. Here the 

residual is computed using another 3 conv-layers 

(11128, 33128, 11512), and these are 

repeated 4 times. The next input feature dimension is 

2828, and here the residual block consists of these 

three 11256, 33256, 111024 conv-layers. 

These layers are replicated 6 times. On the final 

dimension of 1414, the 3 layers are included in the 

residual block (11512, 33512,112048). The 

last layer is a fully-connected layer of 772048, 

mapping to 1000 class scores determined by softmax.  

In our experiments we have fine-tuned the pretrained 

weights of this architecture using the NCUT dataset, 

added data augmentation and adapted the weights 

and FC layers according to the dorsal hand 

identification problem.  

4.4 Squeeze Net 
The SqueeezeNet architecture introduced in [22] is a 

CNN with a drastically reduced number of 

parameters (of 1.2 million only), but with accuracy 

results in ImageNet object detection completion 

similar to AlexNet. Because of the lower number of 

parameters, it requires less memory in parallel 

training, and the model obtained can be easily loaded 

onto embedded systems or microchip-based 

intelligent systems with lower hardware resources. 

The main ideas of this network are the so-called fire 

modules along with the conservation of the activation 

maps by downsampling their spatial dimension later 

and fewer times in the network. The fire module 

consists of 3 components: a squeeze layer (of kernel 

11) to reduce the depth of the input filter-map 

(reducing the number of parameters) and two 

expansion layers of kernel 11 and 33 to transform 

the reduced layer back to its original size. s11 

squeeze-layers have the role of reducing its input size 

of whd to only wh s11. The squeeze layers are 

followed by ReLU activation and two consecutive 

expansion layers: the 11 conv-based returns to a 

higher dimensional space wh e11 and the 33 

conv-based reduces the number of weights compared 

to the previous layer. After the expansion the output 

layer is of size wh (e11+e33) and is followed by a 

ReLU activation. The SqeezeNet architecture is made 

up of a conv-layer, max-pool for downsampling, 

three fire modules, max-pool again, four fire 

modules, max-pool, a final conv-layer and average 

pooling at the end, meaning a total of 11 layers based 

on convolutions. The model trains faster not only 

because of the fire modules, but also due to using 

sparse weight matrixes and computation not with 

float numbers but 6- or 8-bit quantized integers [23]. 

The authors present three variants of the 

SqueeezeNet: the vanilla architecture, the 

SqueezeNet with bypass connections and bypass with 

convolutions.  

In our application we used the vanilla SqueeezeNet 

without bypasses retrained the original network and 

adapted the last FC layer to the purpose of dorsal 

hand vein identification. Thus, instead of 1000 class 

scores we had to obtain only 204. 

5 OUR APPROACH 
The goal of this research is the evaluation of two 

novel CNN network architectures proposed and 

trained for dorsal hand vein recognition. Their 

identification accuracy and training and testing 

performances are compared to well-known CNN 

architectures such as AlexNet, VGG-16, ResNet-50 

and SqueezeNet, summarised above.  

The first network proposed and trained from scratch 

is a 6-layered CNN made up of 4 convolutional and 2 

fully connected layers. The input image was 

redimensioned and centre-cropped to the same 

dimension as required for the other types of 

networks, i.e., to 2242243. The original image is 

only grayscale, but the depth of 1 was converted by 

replication to a depth of 3.  

The NCUT dataset has only 10 different image 

samples of both hands for every subject. This number 

of training images is very small for proper end-to-end 

training of convolutional neural networks  

In order to enlarge the training dataset available, we 

have applied classic data augmentation methods to 

generate, instead of 10, thousand similar images 

during the training process. There are several types of 

augmentation techniques. We have used centre-crop 

based on a binary mask to consider only the hand, 

followed by a resize to the standard input size of all 

networks. We applied random rotation of the images 

by ±10. Finally, the images were normalized with Z-

score normalisation using the mean and standard 

deviation of the image set.  

In this study, our goal was to create a simple CNN 

model which is easily trained and has only a few 

parameters, but obtains reasonable identification 

accuracy compared to other state-of-the-art 

pretrained CNNs with initial weights fine-tuned for 

the ImageNet Challenge, these are much harder to be 

trained. 
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 Layer type No. of 

filters 

Size of input 

feature map 

Size of output 

feature map 

Size of 

kernel 

No. of 

stride 

No. of 

padding 

Dimension 

224224 

Conv1_1 32 2242243 22422432 33 11 11 

Conv1_2 32 22422432 22422432 33 11 11 

Batch norm 432 

Max-pool 1  22422432 11211232  22 00 

Dropout p=0.25 

Dimension 

112112 

Conv2_1 64 11211232 11211264 33 11 11 

Conv2_2 64 11211264 11211264 33 11 11 

Batch norm 464 

Avg-pool 2  11211264 565664  22 00 

Dropout p=0.25 

 FC1  565664 512    

 Dropout p=0.25 

 FC2  512 204    

Table 1: 4conv-2FC architecture 

To this end, we have first built a CNN with 4 

convolutional layers, called 4conv-2FC (Figure 1). 

The convolutional filter in each case was a 33 

convolution. The 33 filter is a reasonable dimension 

to extract a patch of the image. If the filter is larger, 

the number of weights between two layers will be 

higher, implying the growth of the final number of 

parameters. If the input has a depth of D and the filter 

ffdf, the number of weights between the particular 

input and the filters output will be (wfhfdf+1)D. 

The 1 constant represents the bias term. In the 

literature [18], it has been shown that a 55 kernel 

response can be obtained as a stack of two conv-

layers with a kernel of 33. It is obvious that 

2(33d+1)D is 40% less than (55df+1)D. 

Every convolutional layer output is fed into a ReLU 

activation function. The rectifying linear unit 

ReLU(x)=max(0,x) is preferred instead of other 

activations because the its derivate is easier to 

compute. The hyperbolic tangent and sigmoid 

activations are rarely used in CNNs because they 

quickly saturate, and their derivate in that case is 0. 

Every conv-layer is normalized using batch 

normalization. Batch normalization (BN) learns the 

mean and standard deviation of a given layer and 

preserves them even if the input weights are 

changing. It makes the learning of subsequent layers 

easier and has a regularisation effect as well. For 

every depth (d), the BN learns the   (scale) and () 

shift parameters of the normalized outputs of a given 

layer. For the normalisation of the values, it 

computes the mean and standard deviation of the 

layer; therefore, the number of parameters in this 

case is 4d. We use a dropout with a probability of 

0.25 and 0.5 after the second and fourth conv-layer. 

The convolutional layers maintain the same feature 

map size in width and height by using a zero-padding 

of p=1 and stride s=1 for every 33 convolutional 

kernel. Only the depth of the feature maps changes. 

The output width (wO) and height (hO) can be 

calculated based on the input feature maps size wIhI, 

the filter size wfhf and the padding p and stride s, 

according to the formula: wO=((wI-fI)+2*p)/s+1.  

 
Figure 1: 4conv-2FC Architecture Trained from Scratch 
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The depths of the feature maps gradually increase by 

a factor of 2 when their width and height is reduced 

by 2. This operation reduces the number of 

activations between layers by a factor of only 2 

instead of a factor of 4. The smaller size of the 

feature maps is obtained by max-pooling layers of 

22 with a stride of 2. This means that the feature 

map is reduced to half its size by keeping the 

maximum value in every block of 22 pixels. The 

last pooling layer in our network is global average 

pooling in blocks of 22, with the role of minimising 

the overfitting before the first dense layer. The 

convolutional layers are followed by 2 fully 

connected layers. The last fully connected layer is fed 

into a softmax function. The softmax converts the 

class scores obtained into probability distributions, 

representing the probability of the input image to be 

considered in class i, where i is the number of 

subjects in the database 2 (left/right land), in our 

case 2102=204.  

Our first CNN architecture 4conv-2FC (Figure 1, 

Table 1) considers two dimensions of the original 

image: the full size (224244 feature map) and the 

half-size feature map (112112). For each 

dimension, two convolutional layers are considered. 

The first layer has an input of 2242443 and 

produces an output of 22424432 followed by 

another similar layer. These layers are obtained using 

3332 filters with s=1 and p=1. After these two 

layers, the feature map is reduced to half its size, and 

two conv-layers are computed again. The third has an 

input of 11211232 and an output of 11211264 

fed into the forth, obtaining an output of 

11211264. Before the dense layers, the output is 

again reduced to 565664 (=200704). Thus, the first 

fully connected layer creates a mapping between 

200704 and 512. The last FC layer has a number of 

outputs equal to the number of classes, i.e., 204. The 

parameters of this CNN architecture are summarized 

in Table 1.  

Our second CNN architecture 6conv-2FC (Figure 2, 

Table 2) considers the dimensions of the original 

image: the full size, the half-size feature map 

(112112) and the 1/4 size one (5656). For each 

dimension, two convolutional layers are added. The 

first four conv-layers are similar to the first approach, 

but there is another pair of conv-layers at the 5656 

size. The fifth layer has an input of 565664 and 

obtains an output of 5656128, while the sixth layer 

is a replica of this, obtaining once more an output of 

5656128. 

Before the dense layers, the output is again reduced 

to 2828128 (100352). Thus, the first fully 

connected layer makes a mapping between 100352 

and 1000. The last FC layer must have 204 

responses, considering the number of classes. The 

parameters of this CNN architecture are summarised 

in Table 2.  

6 RESULTS AND EXPERIMENTS 
In this section we describe our experiments related to 

dorsal hand vein recognition with different 

convolutional network architectures. We compare the 

effect of several preprocessing steps on the 

recognition performance of the trained networks.  

The databased used in our approach is the NCUT 

database described in detail in Section 3. 

The block diagram of our system is depicted in 

Figure 3. The flowchart of our approach has the 

database as the input, followed by a ROI detection, 

based on a binary mask, different preprocessing 

steps, and Z-score normalization with a mean of 0 

and a standard deviation of 1. The main part of the 

system is the implemented and trained CNN 

architecture used for dorsal hand vein identification 

purposes.  

The hardware used for carrying out our experiments 

was a Windows 10 64bit operating system with 

32GB of memory and an NVIDIA Geforce GTX 

Graphics Card with 11 GB of memory using the 

Python and Pytorch framework.  

In our experiments we considered different types of 

settings. In the first settings we compared our 

proposed two different CNN architectures trained 

from scratch. These two architectures considered the 

same original dataset. We have split the dataset 

randomly into 6 samples per person for training and 4 

for testing and out of these 2 for validation. In both 

cases, we considered the same number of training 

epochs (400) and the same hyperparameters 

(optimization of Stochastic Gradient Descent with a 

learning rate of 0.01).  

The number of parameters in these two cases are 

approximately the same 103M (4conv-2FC) or 100M 

(6conv-2FC). The training and the validation curves 

in Figure 4 show a better dropdown of the training 

curve and a better stabilization of the validation 

curves for the CNN architecture with 6 conv-layers. 

The accuracy of the networks is 92% and 95%. 

(Figure 9 and Table 3).  

In the next stage, we compared the training and 

testing performance versus the number of epochs, the 

learning rate and the optimization criterion only on 

6conv-2FC.  

A total number of iterations of about 400-500 was 

enough in the case of the two networks trained from 

scratch, and only 200-250 iterations run were enough 

for the pretrained and fine-tuned networks.  

A low learning rate of 0.001 led to a very slow 

convergence and a higher learning rate of 0.1 showed 

an oscillating behaviour in the training loss.  
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Layer type No. of 

filters 

Size of input 

feature map 

Size of output 

feature map 

Size of 

kernel 

No. of 

stride 

No. of 

padding 

Dimension 

224224 

Conv1_1 32 2242243 22422432 33 11 11 

Conv1_2 32 22422432 22422432 33 11 11 

Batch norm 432 

Max-pool 1  22422432 11211232  22 00 

 Dropout p=0.25 

Dimension 

112112 

Conv2_1 64 11211232 11211264 33 11 11 

Conv2_2 64 11211264 11211264 33 11 11 

Batch norm 464 

Max-pool 2  11211264 565664  22 00 

Dropout p=0.25 

Dimension 

5656 

Conv3_1 128 565664 5656128 33 11 11 

Conv3_2 128 5656128 5656128 33 11 11 

Batch norm 4128 

Avg-pool 3  5656128 2828128  22 00 

Dropout p=0.25 

 FC1  2828128 1000    

 Dropout p=0.5 

 FC2  1000 204    

Table 3: 6conv-2FC architecture 

 

Thus, the most adequate value for the learning rate in 

our case was 0.01. We also compared two different 

weight update methods, simple SGD with lr=0.01 as 

well as SGD with momentum (lr=0.01, =0.9) and 

RMSProp updates. RMSProp update led to an 

oscillating behaviour, and simple SGD worked 

slightly better when training the two new networks; 

at the same time, SGD with momentum worked well 

in transfer learning.  

We also proposed to compare different types of 

known networks and fine-tuned them by modifying 

their weights and final decision layer tailored to the 

problem of dorsal hand vein identification. Here we 

compared the training and test performances of the 

state-of-the-art networks described in Section 4. 

Figure 5 compares the training behaviour. Here we 

can observe that the ResNet-50 network obtains the 

best training loss (with 50 conv+FC-layers), our 

6conv-2FC (6+2 layers) and 4conv-2FC (4+2 layers) 

network is slightly worse, but their performance is 

similar to VGG-16 (13+3 layers) in this case.  

 
Figure 2: 6conv-2FC Architecture Trained from Scratch 

 
Figure 3: The Proposed System 
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The training loss of these four networks drops from 

the early epochs. AlexNet and SqueezeNet training 

losses drop in a relatively late epoch compared to the 

other four networks mentioned above. 

 

The 33 filters computed in the case of 6conv-2FC 

are shown in Figure 6. In fact, the kernel filters 

represent the most common 33 image patches in a 

given layer.  

 

The layer-wise heatmap obtained from GradCam 

[24] visualizations shows (Figure 7) the most 

activated regions of the dorsal hand layer by layer, 

from layer 1 to 4.  

 

The activation is gradually concentrating on the 

upper part of the hand, where the main longitudinal 

veins fork into diagonal veins going into the fingers. 

This is the most representative part of the hand vessel 

system from the perspective of identification.  

Our next experiment analysed the effect of the 

various preprocessing steps applied to the original 

image before the training of different CNN 

architectures. In our previous paper [6] we proposed 

a geometry-based vein extraction algorithm.  

The process started with some image preprocessing 

steps followed by segmentation, which allowed 

extracting the skeleton of the detected veins. These 

preprocessing steps are image inhomogeneity 

correction, contrast limited adaptive histogram 

equalization and codification of the veins with an 

ordinal measure.  

The preprocessing steps mentioned (Figure 3) are 

applied using a binary mask representing the ROI of 

the hand. Its boundary is determined by the contour 

of the black background and the non-black 

foreground. The next step (a) is the noise filtering 

(Figure 8a) of the masked image. Here we used a 2D 

Gaussian kernel of 33 with =0 and =0.5. This 

eliminated the blurriness of the images. In addition, 

we noticed that the illumination of the images is not 

uniform. The intensity of the central part is much 

higher than at the margins. An inhomogeneity 

correction filter can reduce the variation in 

illumination. The variation in intensities can be 

modelled using a bias image (step b) (Figure 8b), 

which is a smooth multiplicative field over the 

filtered image. Thus, we solved this artefact by 

adapting the N3 inhomogeneity correction (step c) 

algorithm [25] to the given images (Figure 8c). 

Another important step (d) is contrast limited 

adaptive histogram equalization (CLAHE) (Figure 

8d), which ensures the image quality and contrast 

enhancement required for better segmentation or 

identification. The parameters used in this case are a 

block size of 7 and 127 for the contrast-limiting 

threshold. 

Finally, the images are segmented based on an 

ordinal image encoding (step e) procedure by 

comparing the successive pixel intensities along a 

horizontal line. Pixels with decreasing intensities 

along the line are coded black (0), pixels with 

increasing intensities are coded white (255), and 

pixels with almost constant intensities are coded grey 

(128) (Figure 8e). This encoding creates images that 

are a sort of relief-like representation of the veins. 

The threshold (T) which determines increasing, 

decreasing or constant behaviour is a parameter 

imposed by the width of the veins detected. A value 

of 0.5 for this threshold and a minimum region 

around the minimum point larger than 4 pixels is 

considered to be a vein centre. By applying this 

segmentation procedure (step f) we obtain coarse 

vein segmentations (Figure 8f).  

The presented CNN networks were trained and tested 

on the original images, on the inhomogeneity-

corrected and CLAHE images, on the coded and on 

the segmented images as well. The results for each 

type of image are summarized in Table 3 and Figure 

 

Figure 4: Training and Validation Losses for 

4conv-2FC and 6conv-2FC 

 

Figure 5: Training Loss in Transfer Learning  

 
Figure 6: 33 conv-filters 

 
a) Layer1 b) Layer2  c) Layer3 d) Layer4 

Figure 7: Heatmap of Layers 1-4 
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9. We can observe that the best identification results 

are obtained on preprocessed images with steps a, b, 

c and d (column InhCLAHE).  

 

The accuracy is 2-3% better than that for the 

normalized original images without applying 

inhomogeneity correction and CLAHE (column 

Orig.). The codification based on the ordinal measure 

did not bring any advantages to the training of the 

system or to testing accuracy. It is obvious from the 

results that the segmented black and white images 

with very few white (information) pixels and a lot of 

background (black) ones make the final identification 

performance much worse. This behaviour is because 

of the many background pixels contributing to a 

vanishing gradient most of the time.  

Comparing the recognition accuracies of CNNs fine-

tuned for the NCUT dataset and using the pretrained 

weights via transfer learning, we can observe that the 

ResNet-50 network has almost perfect 99% results 

for the test set, followed by VGG-16’s 97-98%. 

AlexNet has similar results to our 6conv-2FC 

network, 95-96% and 94-95%, respectively. The 

worst recognition results were obtained by the 

SqueezeNet network. We can see that by combining 

any two networks as a decision ensemble and joining 

their softmax probability responses, 99-100% 

accuracy can be obtained.  

CNN Orig InhCLAHE Coded Segment 

4conv2FC 0.9195 0.9265 0.9142 0.8456 

6conv2FC 0.9485 0.9583 0.9412 0.8775 

alexnet 0.9650 0.9608 0.9510 0.9167 

vgg 0.9722 0.9804 0.9706 0.8946 

resnet  0.9951 0.9951 0.9951 0.9804 

squeezenet 0.9069 0.9118 0.8824 0.7598 

Table 3. Identification Accuracy on the Test Set 

Our approach and results can be compared to the 

most recent state-of-the-art papers using CNN 

architectures. Paper [17] presents a variation of 

RCNN with self-growth strategy. They report a 95% 

recognition rate on the training and 91.25% on the 

test set. However, the database used in that case is 

unknown, i.e. not publicly available. Thus, the 

accuracy results are not referring to the same dataset. 

The results of the other article [26] presenting dorsal 

hand vein recognition by CNNs is much more 

comparable to our experiments. They work with the 

same NCUT database and create a system with five 

parallel SqueezeNets. The accuracy obtained by 

majority voting of these parallel networks is 99.52%. 

This architecture which needs a five-times as much 

training and 5 times as many parameters, as our 

networks. Yet we demonstrated that by combining 

the outputs of any two of our trained networks a 

result of 99-100% can be easily achieved.  

 

7 CONCLUSION AND DISCUSSION 
In this paper, two different CNN architectures are 

proposed for dorsal hand vein-based identification. 

These CNNs are compared to existing state-of-the-art 

deep learning approaches. The training process based 

on the fine-tuning of the final layers and the 

parameter transfer on the rest of the pretrained 

weights lead to better identification performances, 

especially in the case of the VGG and ResNet 

architectures, compared to the end-to-end trained 

proposed CNNs (4conv-2FC and 6conv-2FC). The 

number of layers and the number of parameters for 

our CNNs is much smaller than in the other two 

better architectures. Therefore, they are more 

adequate in systems with lower hardware resources. 

However, the experiments show superior 

performance of deep learning training compared to 

other dorsal hand vein identification systems based 

on feature extraction.[12, 14, 15] In addition, we 

have found that different kinds of preprocessing 

steps, especially inhomogeneity correction of the 

images, gains a 2-3% increase in accuracy.  

To generalise the identification process, a more 

complex database with much more subjects and 

image samples would be required for real-life 

validation and everyday use. Therefore, in the future 

we propose to enlarge the training dataset using 

several augmentation methods, and extend the NCUT 

database. Moreover, we intend to validate the 

proposed architecture not only for dorsal hand veins, 

but for palm veins and finger vein recognition also.  

 
b) Noise filtered  b) Bias  c) Inhom. filtered 

 
d) CLAHE  e) Coded  f) Segmented 

Figure 8: Preprocessed Images 

 

Figure 9: Identification Accuracy on Test Set  

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

4conv-2FC 6conv-2FC alexnet vgg resnet squeezenet

Test Accuracy

Orig InhomCLAHE Coded Segmented

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

59 ISBN 978-80-86943-38-1



8 ACKNOWLEDGMENTS 
The work of L. Lefkovits was partially supported by 

a grant from the Sapientia KPI, the research carried 

out was facilitated by Domus Hungarica Scholarship. 

L. Szilágyi is János Bolyai Fellow of the Hungarian 

Academy of Sciences. 

9 REFERENCES 
[1] M. M. Pal and R. W. Jasutkar, “Implementation 

of hand vein structure authentication based 

system,” Int. Conf. on Communication Systems 

and Network Technologies, pp. 114–118, 2012. 

[2] K. Chatfield, V. S. Lempitsky, A. Vedaldi, and 

A. Zisserman, “The devil is in the details: an 

evaluation of recent feature encoding methods.”, 

British Machine Vision Conf., vol. 2, no. 4, 2011 

[3] D. G. Lowe, “Distinctive image features from 

scale-invariant keypoints,” Int. Jour.of Computer 

Vision, vol. 60: no.2, pp. 91–110, 2004. 

[4] M. Pan and W. Kang, “Palm vein recognition 

based on three local invariant feature extraction 

algorithms,” Chinese Conference on Biometric 

Recognition. Springer, pp.116–124, 2011. 

[5] K. Mikolajczyk and C. Schmid, “An affine 

invariant interest point detector,” Computer 

Vision ECCV 2002, pp. 128–142, 2002. 

[6] S. Lefkovits, S. Emerich, and L. Szilágyi, 

“Biometric system based on registration of 

dorsal hand vein configurations,” Pacific-Rim 

Symposium on Image and Video Technology. 

Springer, pp. 17–29, 2017. 

[7] L. Wang, G. Leedham, and D. S.-Y. Cho, 

“Minutiae feature analysis for infrared hand vein 

pattern biometrics,” Pattern recognition, vol. 41, 

no. 3, pp. 920–929, 2008. 

[8] Y. Wang, K. Li, and J. Cui, “Hand-dorsa vein 

recognition based on partition local binary 

pattern,” in Int. Conf. on Signal Processing 

(ICSP), 10th . IEEE, pp. 1671–1674, 2010. 

[9] A. Yuksel, L. Akarun, and B. Sankur, “Hand 

vein biometry based on geometry and 

appearance methods,” IET Computer Vision, 

vol. 5, no. 6, pp. 398–406, 2011. 

[10] T. Ojala, M. Pietikäinen, and T. Mäenpää, 

“Multiresolution gray-scale and rotation 

invariant texture classification with local binary 

patterns,” IEEE PAMI no.7, pp.971–987, 2002. 

[11] O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei, 

“Object-centric spatial pooling for image 

classification,” European Conference on 

Computer Vision. Springer, pp. 1–15, 2012. 

[12] D. Huang, R. Zhang, Y. Yin, Y. Wang, and 

Y. Wang, “Local feature approach to dorsal hand 

vein recognition by centroid-based circular key-

point grid and fine-grained matching,” Image & 

Vision Computing, vol. 58, pp. 266–277, 2017. 

[13] Y. Wang, Y. Fan, W. Liao, K. Li, L.-K. Shark, 

and M. R. Varley, “Hand vein recognition based 

on multiple keypoints sets,” in IAPR Int. Conf. 

on Biometrics (ICB). IEEE, pp. 367–371, 2012. 

[14] D. Huang, W. B. Soltana, M. Ardabilian, 

Y. Wang, and L. Chen, “Textured 3d face 

recognition using biological vision-based facial 

representation and optimized weighted sum 

fusion,” in CVPR. IEEE, pp. 1–8, 2011. 

[15] D. Huang, X. Zhu, Y. Wang, and D. Zhang, 

“Dorsal hand vein recognition via hierarchical 

combination of texture and shape clues,” 

Neurocomputing, vol. 214, pp. 815–828, 2016. 

[16] H. Hong, M. Lee,K. Park, “Convolutional neural 

network-based finger-vein recognition using 

NIR image sensors” Sensors,17:6, p. 1297, 2017. 

[17] J. Wang and G. Wang, “Hand-dorsa vein 

recognition with structure growing guided cnn,” 

Optik, vol. 149, pp. 469–477, 2017. 

[18] K. Simonyan and A. Zisserman, “Very deep 

convolutional networks for large-scale image 

recognition,” preprint arXiv:1409.1556, 2014. 

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

“Imagenet classification with deep convolutional 

neural networks”Advances in Neural Information 

Processing Systems, pp. 1097–1105, 2012. 

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and 

L. Fei-Fei, “Imagenet: A large-scale hierarchical 

image database,” 2009. 

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep 

residual learning for image recognition,” in 

IEEE CVPR, pp. 770–778, 2016. 

[22] F. N. Iandola, S. Han, M. W. Moskewicz, 

K. Ashraf, W. J. Dally, and K. Keutzer, 

“Squeezenet: Alexnet-level accuracy with 50x 

fewer parameters and< 0.5 mb model size,” 

preprint arXiv:1602.07360, 2016. 

[23] S. Han, H. Mao, and W. J. Dally, “Deep 

compression: Compressing deep neural networks 

with pruning, trained quantization and huffman 

coding,” preprint arXiv:1510.00149, 2015. 

[24] R. R. Selvaraju, A. Das, R. Vedantam, et al., 

“Grad-cam: Why did you say that? visual 

explanations from deep networks via gradient-

based localization,”CoRR,abs/1610.02391, 2016. 

[25] N. Tustison, B. Avants, P. Cook et. al, “N4itk: 

Improved n3 bias correction”IEEE Trans 

Medical Imaging,29:6,pp.1310–1320,2010. 

[26] H. Wan, L. Chen, H. Song, and J. Yang, “Dorsal 

hand vein recognition based on convolutional 

neural networks. BIBM pp. 1215-1221, 2017. 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

60 ISBN 978-80-86943-38-1




