
Prototyping a Game Engine Architecture as a Multi-Agent
System

Carlos Marin
Institute of New Imaging

Technologies
Universitat Jaume I

Spain, Castellón
cmarin@uji.es

Miguel Chover
Institute of New Imaging

Technologies
Universitat Jaume I

Spain, Castellón
chover@uji.es

Jose M. Sotoca
Institute of New Imaging

Technologies
Universitat Jaume I

Spain, Castellón
sotoca@uji.es

ABSTRACT
The game engines are one of the essential and daily used applications on the game development field. These ap-
plications are designed to assist in the creation of this type of contents. Nevertheless, their usage and development
are very complex. Moreover, there are not many research papers about the game engine architecture definition and
specification. In this sense, this work presents a methodology to specify a game engine defined as a multi-agent
system. In such a way, from a multi-agent approximation, a game engine architecture can be prototyped in a fast
way. Also, this implementation can be exported to a general programming language for maximum performance,
facilitating the definition and comprehension of the mechanisms of the game engine.

Keywords
Game engine architecture, game development, multi-agent system.

1 INTRODUCTION

The game engines are frameworks composed by tools
and interfaces that increase the abstraction level over
low-level tasks to develop a video game [Gre14]. They
are designed to simplify the creation of video games,
encouraging the reuse of components and by abstract-
ing the communication with the hardware and the oper-
ating system running the game [Nys14]. This method
reduces development times since it provides tools to
solve common issues on most of the games. Each game
engine has its own components organisation structure
known as architecture. This architecture determines the
organisation of the modules composing the engine and
the communications between them, the operating sys-
tem and the hardware drivers.

Even though its goal is to ease game development, these
applications are not easy to use. Game engine devel-
opment is a complex task despite the reduced num-
ber of academic papers on game engine architecture
[And08, Amp10]. The current literature deals with the
engine components, such as the behaviour specifica-
tion, the scene render or the networking. Nevertheless,
the game engine architecture connecting all these is a
subject that has been barely covered. In fact, [And08]
brings forward the lack of academic papers and re-
search lines on this matter. Some of these lines are the
identification of the software components common to
every kind of game, and the research of common el-
ements to every kind of game engine in order to de-
fine a genre-independent reference architecture and the

recognition of the best practices on game engine devel-
opment.
Multi-agent systems (MAS) are adapted to the dis-
tributed problem resolution, where multiple modules
work autonomously over a shared environment to
achieve a goal. In this sense, the primary objective of
this work is to demonstrate how MAS are capable to
easily specify the system’s components that define a
game engine architecture. For this purpose, a game
engine architecture prototype based on MAS has been
designed, with autonomous components, so that they
can perform specific tasks on the elements of the
game. The proposed game engine must be able to run
completely functional games from this agent-based
architecture. To this end, the prototype has been
developed on the MAS development platform NetLogo
[Tis04].
The remainder of the work is organised as it follows:
state of the art on game engine architecture and its re-
lationship with MAS is presented in section two. Sec-
tion three shows a summary of the principal MAS fea-
tures. Subsequently, the game engine architecture pro-
posed on this work is presented in section four. Finally,
in section five, the results are shown and subsequently
discussed in section six, and in section seven, the con-
clusions of this work are presented along with the future
research lines.

2 STATE OF THE ART
This section presents a compilation of technical
works that associate MAS with the game engine and

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

27 ISBN 978-80-86943-38-1https://doi.org/10.24132/CSRN.2019.2902.2.4

their appearance on academic papers. Game engine
architecture is defined as the organisation structure
of the engine’s components and their relationship
with its supporting drivers, hardware and operating
system [Gre14]. In a game engine, the components are
the subsystems responsible for running specific tasks
such as the rendering, the logic evaluation, the user
interaction or the physics evaluation. Some of these
subsystems can be considered as complete engines
by themselves due to its complexity. In fact, the
logic component is not easy to standardise due to its
inherent connection with the mechanics of each game
[Mil09, Lew02, Doh03, Amp10].

Among all the methods trying to specify the game en-
gine components, the MAS is paradigmatic because it
relies upon autonomous entities communicating with
one another and performing tasks on a shared envi-
ronment, and so it can easily relate the game and the
behaviour specification elements [Nys14]. This coop-
erative distributed problem-solving fits perfectly with
the task distribution on a game engine. Furthermore,
the academic papers linking games and MAS becomes
evident the implicit connection between these interac-
tive systems and the agent-based systems in the fol-
lowing aspects: the game element’s and the agent’s
concepts and their interrelation, their communication
protocols and their cooperation mechanisms [Woo02,
Gla06, Pos07, Sil03].

In [Pon13], the authors propose an agent-based system
to control the game parameters according to the game
objectives. Besides, [Fin08] shows a system where the
agents learn autonomously to play games without hu-
man intervention, [Gra13] proposes a system to inte-
grate virtual worlds with a multi-agent interface and
[Jep10] proposes an agent creation framework for se-
rious games.

Furthermore, [Dig09] shows the relationship between
MAS and the game mechanics design, emphasising on
the industry tendency to associate the game mechan-
ics definition and the natural language on the game de-
velopment. Moreover, [Bec14] develops a MAS based
on the commercial game engine Unity, by doing a 3D
simulation of the behaviours related to the path-finding
methods for multiple agents on a passenger airport con-
text.

Additionally, on the multiuser issue, [Ado01] presents
a MAS to handle the multiuser mechanics on a tourna-
ment game, [Sac11] presents an intelligent agent-based
distribution to build multiplayer systems and [Ara08,
Ara12] introduces a MAS to conduct the design of Mul-
tiplayer Massive Online Games (MMOG), a specific
type of games where the priority is the real-time inter-
activity of several game agents.

Lastly, [Gar06, Gar07, Gar10] shows a virtual envi-
ronment where the agents are communicating with the

player like in a 3D chat and then [Rem15] introduces an
application specification for a 3D virtual fair as a MAS.

3 MAS FEATURES
According to the M. Wooldridge definition [Woo02], an
agent is a computer system that is situated in an envi-
ronment in order to meet its design objectives. Based
on the general definition for a MAS, it is necessary to
consider the following formal characteristics:

• The environment of the MAS can be in any of the
discrete states of a finite set E = [e0, e1, e2, ...] of
states.

• The agents in the system have a set of available ac-
tions with the capacity to transform their environ-
ment Ac = [α0 , α1 , α2 , ...].

• The run r of an agent on its environment is the inter-
layered sequence of actions and environment states
r: e0 →α0 e1 →α1 e2 →α2 ... eu−1 →αu−1 eu, where
R = [r, r′, ...] represents the set of all the possible
and finite sequences of E and Ac.

• The effect of the agent actions on an environment
comes determined by the transformation function τ:
RAC→℘(E) [Fag95], where RAC represents the sub-
set of R ending on an action, and RE represents the
subset of R ending on an environment state.

In this sense, the following definitions can be estab-
lished:

Definition 1: An environment Env is defined as a triple
Env = <E, e0, τ>, where E is a set of states, e0 ∈ E is the
initial state and τ is the state transformation function.

Definition 2: An agent Ag is defined as a function Ag:
RE → Ac establishing a correspondence between runs
and actions. It is assumed that these runs end on an
environment state [Rus95].

In this sense, an agent selects the action to perform
based on the system’s history that it has witnessed. It
is necessary to take into account that the environments
are implicitly non-deterministic, but the agents are de-
terministic. The set of all the agents Ag of a system is
represented as AG. The set of all the runs of an agent
Ag on an environment Env is R(Ag, Env).

Definition 3: A purely reactive agent [Gen87] is de-
fined as a function Ag: E → Ac, which indicates that
their decision-making process only with the current en-
vironment state.

Definition 4: An agent is considered as a perceptive
agent when it is composed of a perception function and
an action function. It is represented as Ag = <see, ac-
tion>, where see is a function see: E→ Per and action
is a function action: Per*→ Ac.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

28 ISBN 978-80-86943-38-1

4 ARCHITECTURE PROTOTYPE
In order to define the game engine architecture, this
study is focused on the engine’s components definition
and the behaviour specification for the game elements.
In this sense, the formal correspondences with a MAS
are established with the aim of proving that the agent-
based engine is capable of making games. On this ar-
chitecture, the MAS is the element that structures the
information distribution and communication between
the engine’s elements. The prototype design is oriented
towards the creation of 2D games, and it has been devel-
oped on the agent-based programming language NetL-
ogo [Tis04].

Next, the elements of the game engine are presented
from a MAS point of view:

• The engine environment, or the space of coexistence
for every element of the game.

• The engine’s agents, the elements equivalent to the
engine components.

• The game’s agents, also known as game objects or
actors.

4.1 The engine environment
In this game engine, the environment Env represents
the conjunction by the agents representing the engine’s
components or engine’s agents and the game objects,
also known as actors. This environment Env is in charge
of storing the game’s states E through its properties.
Furthermore, starting from an initial state e0, the mod-
ules perform transformations τ on the general proper-
ties of the environment and on the actors with which
they have dependencies. The initial state e0 determines
the set of original properties present in the environment.
Among the properties that define the state of the engine,
there are the following categories:

• Basic properties: Properties related to the resolu-
tion of the output screen, the characteristics of the
camera and the sound of the game.

• Physic properties: Characteristics that control the
physical behaviour of the environment such as grav-
ity or air friction.

• Timers: Set of properties responsible for controlling
and providing information to the game elements on
execution times, time differentials and elapsed time.

• Lists: The lists are responsible for maintaining the
lists of actors used by each engine component, for
storing the input events that have occurred in the en-
gine and to manage the sounds queue.

The execution of the environment on the engine’s ar-
chitecture allows evaluating the processes related to the
correct functioning of the game. The execution of the
game R(AG, Env), represents the application of the set
AG for all agents of the engine respect to the environ-
ment Env. The process that relates the agents to the
elements of the game is known as the game loop: the
cycle of evaluation, updating and continuous execution
of the game. It is responsible for managing the interac-
tion between the engine’s agents and actors; that is, it is
the process through which the agents that represent the
engine components apply their behaviour rules on the
environment.
The engine agents’ communication with the environ-
ment is not the same for all elements that compose it.
Also, this engine agents work asynchronously and at
different frequencies, however its sequential implemen-
tation is absolutely valid. Figure 1 shows a diagram
describing the communications between the engine en-
vironment, the engine agents, and the actors, where the
processes of information transmission are determined.

Figure 1: Communications’ diagram between the com-
ponents of the game engine.

4.2 The engine’s agents
The engine agents that perform the role of the game en-
gine components are the Physics agent, the Input agent,
the Logic agent, the Audio agent and the Render agent
(see Figure 1). These agents represent autonomous
components that execute actions α on the environment
Env. An agent Ag is an element that acts from the en-
vironment state e and its internal state, including the
tasks assigned to it. In the designed architecture, en-
gine agents represent the components of the game en-
gine. Their behaviour is determined by predefined be-
haviour rules that evaluate the environment properties
and the game actors, and which determine the actions
to be taken. These agents are responsible for executing
the actions Ac on the environment Env.
The engine agents present a reactive behaviour since
they carry out their decision-making processes taking
into account the present state of the environment and
the environment’s history that they have witnessed.
Moreover, the Input agent and the Audio agent present
a perceptual behaviour, and some of their essential
functions are to wait until the perception function
registers events that they can interpret. The different
game engine agents are described below:

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

29 ISBN 978-80-86943-38-1

• Physics agent: Responsible for evaluating the ac-
tor’s physical behaviour according to the environ-
ment properties and its configuration. The execution
of this agent requires a high-frequency cyclic perfor-
mance due to the need to iterate the numerical inte-
gration of the equations repeatedly. Also, this agent
executes actions on the environment in charge of de-
tecting collisions, applying the response to the col-
lision, integrating the movement equations and up-
dating the position of the actors.

• Input agent: Manages the communication between
the engine and the user. It transforms input events
into interpretable information for the engine. It has
an asynchronous behaviour that stores its input data
into the event list of the engine.

• Logic agent: Observes the environment state and
runs the actor’s behaviours rules so that they fulfil
their tasks. It is a cyclic operation, with lower la-
tency than the physics agent one.

• Audio agent: Reproduces sounds asynchronously
while the sound queue is not empty.

• Render agent: Draws the environment state on the
screen in a repeatedly with sufficient latency to meet
the threshold of human vision.

The communication between engine agents
Next, a brief description of how the communication is
established between the agents of the engine with the
environment and the game actors:

• The Physics agent must access the properties of the
actors to apply the transformations resulting from
the evaluation of their physical behaviour. For these
evaluations, it is relying on the physical set-up of the
game, stored within its properties.

• The Input agent obtains the information from the
events that are given from the operating system. It
notifies the engine, with the aim that other engine
agents, such as the Logic agent, can access this in-
formation.

• The Logic agent is the only agent with the ability
to read and write both in the environment properties
and in the general properties of the actors. This fea-
ture is necessary in order to set and to get all the nec-
essary information for any required game mechan-
ics.

• The Audio agent works on its reproduction queue.
This queue is loaded by the Logic agent when it is
required to play a sound.

• The Render agent, for its correct operation, requires
information about the environment with the resolu-
tion of the screen or the properties of the camera as
well as the actors, with their textures, dimensions
and transformations.

4.3 The game’s agents
The game actors are the agents that make up the games:
characters, scenarios and props; and are in charge of
performing the game mechanics. All of them have com-
mon characteristics and include a set of properties that
determine their appearance and behaviour. The actors
have the following types of properties:

• Basic properties: These properties are related to the
position, rotation and scale of the actors.

• Rendering properties: The properties connected to
the image representing the game actor and its visu-
alisation. Also, it can display text defined by a font,
a size, a colour and a style property.

• Physics properties: Properties that allow defining
the physical characteristics of the actors such as
speed, angular velocity, material properties (density,
friction, restitution).

• New properties: Also, the actors can define new
properties that expand their property list.

The Logic agent controls the actor’s behaviour. Each
game mechanic is determined by a set of behaviour
rules stored in the actors. These behaviour rules are
defined by logic statements, which in this case, are tak-
ing the form of a script. In the NetLogo case, they are
implemented as functions.

5 THE USE CASE AND RESULTS
After the definition of the architecture, a use case is
presented below to test the capabilities of the engine.
The implementation is based on the classic arcade game
Arkanoid, where the user must manage a paddle to con-
trol the bounces of the ball and destroy the most sig-
nificant number of bricks without letting the ball col-
liding with the lower limit of the screen. The selec-
tion of this game as a demonstrator is because it in-
cludes features that require all engine components. The
implementation of this example requires engine agents
controlling the execution of the game and actor agents
to perform the mechanics of the game. Nevertheless,
the following behaviour algorithms are adapted to the
case of use in order to simplify the presentation. Addi-
tionally, as stated above, there is only one type of actor
agent: all the Arkanoid game elements are actors with
configured properties and behaviour rules to fulfil their
specific tasks.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

30 ISBN 978-80-86943-38-1

For the game development, a Paddle actor, a Ball actor
and four sets of fourteen Brick actors have been created.
Also, there is an additional actor whose task is only to
store and to show the game score as a new property.
Initially, the Brick actors are distributed in a grid at the
top of the screen, the Ball actor is initialised over the
Paddle with a constant speed on the y-coordinate and
a random velocity on the x-coordinate, and the Paddle
actor is centred on the bottom. A capture of this layout
is represented in Figure 2.

Figure 2: Capture of the Arkanoid game implemented
with the prototyped engine.

Algorithm 1: Declaration of the environment prop-
erties, engine agents and actors agents in NetLogo.

globals [delta-time previous-time current-time]
physic-own [physic-list gravity-x gravity-y
air-friction]

input-own [event-list]
logic-own [logic-list]
audio-own [sound-list]
render-own [render-list resolution-x resolution-y
camera-x camera-y camera-rotation camera-zoom]

actors-own [velocity-x velocity-y restitution
active-physics? active-logic? active-audio?
active-render? static?]

The declaration of these properties is presented in Al-
gorithm 1, along with the engine agents properties and
the actor agent properties. This property set can accept
new properties depending on the game requirements.
Moreover, during the game cycle execution, each en-
gine agent evaluates the state of the environment and
executes its actions according to the tasks it has pro-
grammed (see Algorithm 2).

The first step on the game loop is carried out by the
Physics agent (see Algorithm 3). The execution of its
functions begins with the collision-detection function,
which is responsible for detecting collisions between

Algorithm 2: The game engine’s game loop.

to go
physic [run-physic]
input [run-input]
logic [run-logic]
audio [run-audio]
render [run-render]

end

actors. Next, the collision-response function is respon-
sible for resolving the collision between two actors,
which applies only to the actors with the active-physics
property active. If any of these actors have a static phys-
ical behaviour, the response to the collision will not af-
fect them. Finally, the motion-integration function is in
charge of applying the motion equations to the actors.
These movements are determined by the initial speed
settings, the effect of gravity, friction with the air and
the results of collisions. Its scope is about the actors
with physical properties, as long as they are not static.

Algorithm 3: Physics agent behaviour loop.

to collision-detection
ask actors [

if (distance ("ballID")) < size [set colliding true
]
]

end
to collision-response

ask actors [
if (colliding and active-physics? and (not

static?)) [
set velocity-y (velocity-y * -1 * restitution)]

]
]

end
to motion-integration

ask actors [
if (active-physics? and (not static?)) [

set velocity-x (velocity-x + gravity-x *
delta-time)

set velocity-y (velocity-y + gravity-y *
delta-time)

set xcor (xcor + velocity-x)
set ycor (ycor + velocity-y)

]
]

end

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

31 ISBN 978-80-86943-38-1

Upon the Physic agent completion, the Input agent be-
haviour for this use case is presented in Algorithm 4.
This behaviour is based on the event-management func-
tion, the function responsible for managing the proce-
dures that determine if an input event has occurred in
the engine. When an occurrence is detected, the list
of events of the environment properties is modified to
communicate that information to the rest of the envi-
ronmental elements.

Algorithm 4: Input agent behaviour loop.

to event-management
if left-key [set left-key-event true]
if right-key [set right-key-event true]

end

Next, the environment is evaluated by the Logic agent.
In the general case, this procedure is responsible for
evaluating the logic of each actor agent in terms of
game mechanics. For this use case, two rules are
presented to demonstrate the running of its behaviour.
Algorithm 5 shows two rules based on the function
evaluate-actors.

The first function controls the behaviour of the Brick
actor. After the detection of a collision event involving
the Ball actor and a Brick actor, the Ball actor gives
the response to the collision to simulate the rebound,
and the Brick actor in question is eliminated from the
game. Additionally, the property points of the Score
actor is increased by one, and a sound is added to the
playback queue. Conversely, the second function sets
the movement of the Paddle actor after the user inputs.
Keyboard events control the movement of the Paddle
actor: it applies a shift to the left and a shift to the right
with the A and Z keys respectively. This displacement
will occur as long as it does not reach the limits of the
screen.

After adding a sound to the playlist, the Audio agent is
responsible for its reproduction. The Audio agent be-
haviour cycle is presented in Algorithm 6, where the
play-sounds function sets the audio playback based on
the reproduction list information.

Finally, the last step on the game loop is performed by
the Render agent. This agent executes the procedures of
drawing the scene on the group of visible actors. Nev-
ertheless, the rendering functions in NetLogo are mini-
mal. For this example, the function draw-actors is com-
posed just by a refresh call with the native function tick.

On a separate issue, the end of the game is reached
when the Ball actor has no more Brick actors left to de-
stroy or when he reaches the lower limit of the screen,
that is when the player handling the Paddle actor is not
able to return the Ball actor to the Bricks zone.

Algorithm 5: Logic agent behaviour loop.

; behaviour rule for the Brick actor
to evaluate-actors

ask actors [
ifelse (static? and colliding) [die] [set points

points + 1]
]

end
; behaviour rule for the Paddle actor
to evaluate-actors

if left-key-pressed [
ask (actor "paddleID") [

if xcor > min-pxcor + size [
ask actor "paddleID" [set xcor xcor - size]

]
]

]
if right-key-pressed [

ask (actor "paddleID") [
if xcor < max-pxcor - size [

ask actor "paddleID" [set xcor xcor + size]
]

]
]

end

Algorithm 6: Audio agent behaviour loop.

to play-sound
ask actors [

if empty? sound-list [
sound:play-note "Gunshot" 60 64 0.25

]
]

end

It can be seen that the programming language for MAS
NetLogo is not prepared to make aesthetically attrac-
tive games. For example, it is not possible to add new
images or new sounds to agents; it only works with pre-
defined elements. Also, it is not possible to scale these
forms in a single direction, which significantly limits
the possibilities to the game aesthetics. In any case, it
easily allows creating a game engine prototype that can
be implemented on a more suitable programming lan-
guage.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

32 ISBN 978-80-86943-38-1

6 CONCLUSIONS AND FUTURE
WORK

The design of the game engine architecture presents
a methodology to specify a game engine defined as a
MAS but also has some characteristics that are interest-
ing to analyse. In the first place, it should be noted that
the autonomous behaviour of the engine components
over a shared space makes possible the resolution of
many problems inherent in the development of games.
Since each of them has autonomous tasks that could be
done without external intervention. Besides, the engine
is enriched with the essential characteristics to create a
wide variety of games, where some fancy features are
no longer necessary for the conventional 2D game en-
gine.

Conversely, it should be noted that games are played
with a single type of actor agent and, there are no hier-
archical relationships between them. All the elements
that define a game: the markers, the player, the NPC;
they have the same properties and the same behaviour
rules system. Furthermore, it is not necessary to define
a scene graph, which simplifies the internal architecture
of the engine and the design of the games. There are no
complex data structures such as vectors or matrices that
are not necessary for the creation of most arcade games.

In summary, the objective of this work aims to define a
simple architecture prototype that is capable of running
a game. It starts from the formal definition of the MAS
with the end of leading a definition of its essential el-
ements. Besides, the study of game engines and their
relationship with MAS has allowed to generate a broad
knowledge about the architecture of commercial game
engines and to establish a game engine specification in-
tuitively and closer to the way of describing systems
with natural language. The engine is the environment
of the MAS, while the components are the agents of
the engine and the actors are the agents of the game.
From the environment state, agents can perceive infor-
mation and react to certain states based on their prede-
fined tasks. The behaviour associated with the tasks is
determined by behaviour rules and a pre-established set
of actions.

About the future works, this prototype has led to the
creation of a game engine following the architecture de-
signed on this work. It is being built over the program-
ming language JavaScript in order to execute games on
web browsers.

7 ACKNOWLEDGMENTS
This work has been supported by the Ministry of Sci-
ence and Technology (TIN2016- 75866-C3-1-R) and
the Universitat Jaume I research project (UJI-B2018-
56).

8 REFERENCES
[Gre14] Gregory, J. (2014). Game engine architecture.

AK Peters/CRC Press.
[Nys14] Nystrom, R. (2014). Game programming pat-

terns. Genever Benning.
[And08] Anderson, E. F., Engel, S., McLoughlin, L.,

Comninos, P. (2008). The case for research in
game engine architecture.

[Amp10] Ampatzoglou, A., Stamelos, I. (2010). Soft-
ware engineering research for computer games:
A systematic review. Information and Software
Technology, 52(9), 888-901.

[Tis04] Tisue, S., Wilensky, U. (2004, May). Netlogo:
A simple environment for modeling complexity.
In International conference on complex systems
(Vol. 21, pp. 16-21).

[Mil09] Millington, I., Funge, J. (2009). Artificial
intelligence for games. CRC Press.

[Lew02] Lewis, M., Jacobson, J. (2002). Game en-
gines. Communications of the ACM, 45(1), 27.

[Doh03] Doherty, M. (2003). A software architecture
for games. University of the Pacific Department of
Computer Science Research and Project Journal
(RAPJ), 1(1).

[Woo02] Wooldridge, M. (2002). An introduction to
multiagent systems. John Wiley Sons.

[Gla06] Glavic, M. (2006). Agents and multi-agent
systems: a short introduction for power engineers.

[Pos07] Poslad, S. (2007). Specifying protocols for
multi-agent systems interaction. ACM Trans-
actions on Autonomous and Adaptive Systems
(TAAS), 2(4), 15.

[Sil03] Silva, C. T., Castro, J., Tedesco, P. A. (2003).
Requirements for Multi-Agent Systems. WER,
2003, 198-212.

[Pon13] Pons, L., Bernon, C. (2013, October). A
Multi-Agent System for Autonomous Control of
Game Parameters. In Systems, Man, and Cyber-
netics (SMC), 2013 IEEE International Confer-
ence on (pp. 583-588). IEEE.

[Fin08] Finnsson, H., Bjornsson, Y. (2008, July).
Simulation-Based Approach to General Game
Playing. In Aaai (Vol. 8, pp. 259-264).

[Gra13] Grant, M., Sandeep, V., Fuhua, L. (2013,
November). Integrating Multiagent Systems into
Virtual Worlds. In 3rd International Conference
on Multimedia Technology (ICMT-13). Atlantis
Press.

[Jep10] P. Jepp, M. Fradinho and J. M. Pereira, "An
Agent Framework for a Modular Serious Game,"
2010 Second International Conference on Games
and Virtual Worlds for Serious Applications,
Braga, 2010, pp. 19-26.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

33 ISBN 978-80-86943-38-1

[Dig09] Dignum, F., Westra, J., van Doesburg, W. A.,
Harbers, M. (2009). Games and agents: Design-
ing intelligent gameplay. International Journal of
Computer Games Technology, 2009.

[Bec14] Becker-Asano, C., Ruzzoli, F., Holscher, C.,
Nebel, B. (2014). A multi-agent system based
on unity 4 for virtual perception and wayfinding.
Transportation Research Procedia, 2, 452-455.

[Ado01] Adobbati, R., Marshall, A. N., Scholer, A.,
Tejada, S., Kaminka, G. A., Schaffer, S., Sollitto,
C. (2001, May). Gamebots: A 3d virtual world
test-bed for multi-agent research. In Proceedings
of the second international workshop on Infras-
tructure for Agents, MAS, and Scalable MAS
(Vol. 5, p. 6). Montreal, Canada.

[Sac11] Sacerdotianu, G., Ilie, S., Badica, C. (2011,
September). Software Framework for Agent-
Based Games and Simulations. In 2011 13th
International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (pp.
381-388). IEEE.

[Ara08] Aranda, G., Carrascosa, C., Botti, V. (2008,
September). Characterizing massively multi-
player online games as multi-agent systems. In
International Workshop on Hybrid Artificial Intel-
ligence Systems (pp. 507-514). Springer, Berlin,
Heidelberg.

[Ara12] Aranda, G., Trescak, T., Esteva, M., Ro-
driguez, I., Carrascosa, C. (2012). Massively
multiplayer online games developed with agents.
In Transactions on Edutainment VII (pp. 129-
138). Springer, Berlin, Heidelberg.

[Gar06] Garces, A., Quiros, R., Chover, M., Cama-
hort, E. (2006). Implementing moderately open
agent-based systems. In IADIS International Con-
ference WWW/Internet 2006 (pp. 360-369).

[Gar07] Garces, A., Quiros, R., Chover, M., Huerta,
J., Camahort, E. (2007, February). A develop-
ment methodology for moderately open multi-
agent systems. In Proceedings of the 25th confer-
ence on IASTED International Multi-Conference:
Software Engineering, SE (Vol. 7, pp. 37-42).

[Gar10] Garces, A., Quiros, R., Chover, M., Cama-
hort, E. (2010). Implementing virtual agents: a
HABA-based approach. Int J Multimed Appl, 2,
1-15.

[Rem15] Remolar, I., Garces, A., Rebollo, C., Chover,
M., Quiros, R., Gumbau, J. (2015). Develop-
ing a virtual trade fair using an agent-oriented
approach. Multimedia Tools and Applications,
74(13), 4561-4582.

[Fag95] Fagin, R., Halpern, J. Y., Moses, Y., Vardi,
M. Y. (1995). Reasoning about knowledge MIT
Press. Cambridge, MA, London, England.

[Rus95] Russell, S. J., Subramanian, D. (1994). Prov-
ably bounded-optimal agents. Journal of Artificial
Intelligence Research, 2, 575-609.

[Gen87] Genesereth, M. R., Nilsson, N. J. (1987).
Logical foundations of artificial. Intelligence.
Morgan Kaufmann, 2.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part II

34 ISBN 978-80-86943-38-1

