
Porting A Visual Inertial SLAM Algorithm
To Android Devices

Jannis Möller
Technische Hochschule Köln

Steinmüllerallee 1
51643, Gummersbach,

Germany
jmoeller@th-koeln.de

Benjamin Meyer
Technische Hochschule Köln

Steinmüllerallee 1
51643, Gummersbach,

Germany
benjamin.meyer@th-koeln.de

Martin Eisemann
Technische Hochschule Köln

Steinmüllerallee 1
51643, Gummersbach,

Germany
martin.eisemann@th-koeln.de

ABSTRACT
Simultaneous Localization and Mapping aims to identify the current position of an agent and to map his sur-
roundings at the same time. Visual inertial SLAM algorithms use input from visual and motion sensors for this
task. Since modern smartphones are equipped with both needed sensors, using VI-SLAM applications becomes
feasible, with Augmented Reality being one of the most promising application areas. Android, having the largest
market share of all mobile operating systems, is of special interest as the target platform. For iOS there already
exists a high-quality open source implementation for VI-SLAM: The framework VINS-Mobile. In this work we
discuss what steps are necessary for porting it to the Android operating system. We provide a practical guide to
the main challenge: The correct calibration of device specific parameters for any Android smartphone. We present
our results using the Samsung Galaxy S7 and show further improvement possibilities.

Keywords
Augmented Reality; Visual Inertial SLAM; Smartphones; Camera calibration

1 INTRODUCTION
Visual inertial SLAM describes a class of algorithms
that use both visual and inertial measurements to build
a map of the environment and at the same time locate an
agent in it. Besides the research field of robotics, they
also are of interest for Augmented Reality (AR) appli-
cations. In this application context, the goal is the per-
spectively correct rendering of virtual 3D content for
a given viewing position, either using see-through de-
vices like the Microsoft HoloLens or on top of a live
recorded camera image.

Recently, computing hardware has been getting more
and more powerful. The smartphone market in partic-
ular is developing very fast. This rapid progress makes
algorithms that required powerful desktop hardware a
few years ago now suitable for use on mobile devices.

In order to enable a robust and therefore immersive aug-
mented reality experience on the users’ devices, three-
dimensional localization within the environment is re-
quired. However, most freely available augmented real-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ity frameworks only offer tracking of specific markers.
Since all popular smartphones are equipped with a cam-
era and an inertial measurement unit (IMU) these days,
visual inertial odometry and SLAM poses a suitable so-
lution for this problem. To utilize these algorithms a set
of device specific parameters has to be known before-
hand.

The intention behind this work is to give a simple ex-
planation of the steps that are required to port an ex-
isting framework to Android. We focus especially on
providing a comprehensible and practical guide for de-
termining these parameters. Less relevant parts, like
translating the code base, are omitted for the sake of
clarity as they are highly depended on the individual
framework. The procedures are exemplarily explained
on the basis of the framework VINS Mobile [LQH∗17],
which is originally only available for iOS and has been
ported to Android in the course of this work. However,
the procedure of porting and calibrating the parameters
are of relevance for other algorithms or frameworks as
well.

This work is divided into six sections:
Section 2 gives an overview over the recent develop-
ment in the field of Augmented Reality frameworks as
well as the research field of visual inertial SLAM al-
gorithms. It also provides a brief introduction into the
algorithm behind the VINS-Mobile framework. In Sec-
tion 3 we show the different steps that are required to
calibrate the device specific parameters. Section 4 ex-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

9 ISBN 978-80-86943-38-1https://doi.org/10.24132/CSRN.2019.2902.2.2



plains the main problems we encountered in regards to
Android hard- and software. We present and analyze
the results of our quantitative and qualitative tests in
Section 5. Finally, in Section 6 we list options of fur-
ther improvements for future work.

2 RELATED WORK
There are many different ready-to-use solutions in the
field of augmented reality applications and frameworks.
The favored open source candidate for arbitrary AR-
projects seems to be the AR framework ARToolKit
[ARTa]. Its compatibility with Unity and the capabil-
ity to develop a single application for multiple plat-
forms simultaneously surpass the capabilities of most
other open source frameworks. In the current version,
however, it offers no possibility to recognize or track a
3D environment using feature matching. It is limited
exclusively to 2D images or markers. Future versions
of this framework are said to improve feature tracking
and add area recognition. But the official development
seems to have come to a standstill, after it was bought
by DAQRI. In the future, development is planned to be
continued as the new project artoolkitX [ARTb] by the
open source community. Compared to this framework
other open source solutions are even more limited in
scope and function; some offer nothing more than a
simple abstraction layer around the image processing
library OpenCV [OPE].

Furthermore, some proprietary solutions are available,
but they are not completely open-sourced and often
come at a high financial price in later use. Some of these
are Vuforia [VUF], Kudan [KUD], MAXST [MAX] and
Wikitude [WIK], as well as the free to use ARKit [ARK]
from Apple and ARCore [ARC] from Google. It has to
be mentioned that recent advancements in these propri-
etary frameworks included the implementation of more
complex localization and tracking algorithms. These
features are often called markerless tracking, or just
motion tracking. In addition, some of the frameworks
like ARKit and ARCore also support basic understand-
ing of the scene through plane detection. Even though
being rich in features, the fact that they are either very
costly or not completely open-source is a knockout cri-
terion for when adaptability is a high priority like in a
research context.

In the general field of visual inertial odometry and
SLAM algorithms, there are many approaches often
coming with open source implementations. They
can be categorized into filter-based approaches, such
as [LM13, HKBR14,BOHS15] and optimization-based
approaches such as [IWKD13, SMK15, LLB∗15].
Filter-based ones usually need less computational
resources and optimization-based ones might provide
greater accuracy. However, most of these are designed
or implemented for other platforms with different

hardware requirements, the calculations are often
done offline, not in real time or on powerful desktop
hardware.

One of the few mobile solutions is VINS-
Mobile [LQH∗17], the iOS port of the VINS-Mono
project [QLS17]. The source code and the underlying
scientific papers are publicly available [VIN]. It
fuses visual and inertial measurements in a tightly-
coupled, optimization-based approach. The position
and orientation for successive selected camera frames
(keyframes) are stored in a global pose graph. Several
performance improving measures are utilized to enable
usage of mobile hardware. The main one being the
limitation of the global pose graph optimization to a
sliding window of 10 keyframes. Another important
feature is the initialization step, which automatically
determines the metric scale. There is no need for
assumptions or knowledge about the environment, but
the device-specific parameters have to be known. To
correct the occurring position drift a simple bag of
words based loop closure procedure is integrated into
the global pose optimization.

3 CALIBRATION
To port a framework many different steps are required.
Besides the translation of operating system specific
code to Android, a few parameters have to be adjusted
to the new hardware platform. The visual inertial
SLAM algorithm assumes that these parameters are
known before run-time. They include the intrinsic
camera parameters, focal length and center of the im-
age needed for visual reconstruction and the extrinsic
parameters that describe the transformation from the
IMU frame to the camera frame for correctly combin-
ing inertial information with the camera motion.
This section exemplary shows the different steps that
are required to determine these parameters. It can be
used as a guideline to port and use this framework on
any Android smartphone. We tested the Android port
on a Samsung Galaxy S7.

3.1 Intrinsic Parameters
The required intrinsic parameters are the focal length
and the center of the image (principal point), both in
pixels in X and Y direction. The focal length specifies
the distance between the lens and the focal point, while
the principle point specifies the image center in the pin-
hole camera model. It usually is close to the center of
the output image. Pixels as a unit of length are used in
relation to the photo sensor pixel size. A visualization
of the parameters based on the pinhole camera model is
shown in Figure 1.

To determine the intrinsic parameters, we took a
video of a checkerboard pattern at a video resolution
of 480 × 640, manually extracted 10 to 20 frames

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

10 ISBN 978-80-86943-38-1



Figure 1: Pinhole camera model with the parameters
focal length and principle point

spanning a variety of different camera positions and
reconstructed the intrinsic parameters using Camera
Calibrator from the software suite MatLab [MAT].

The reconstruction of the intrinsic parameters is nor-
mally only computable up to a scaling factor. This lim-
itation can be circumvented by manually providing the
length of a checkerboard square. Figure 2 shows the
mean reprojection error we were able to achieve dur-
ing the calibration process. Apart from the focal length
and principal point this procedure also reconstructs the
radial distortion of the lens, which, however, is being
ignored in the VINS-Mobile framework.

Instead of using standard checkerboards, it has been
proven advantageous to resort to special calibration
checkerboards with an odd number of rows and an even
number of columns. Unlike with standard checkerboard
patterns, orientation is always unique in this combina-
tion of row and column count. This will prevent most
calibration algorithms from selecting the wrong corner
when placing the pattern origin.

During our work, we tested two different setups for
this calibration step. The first video was taken with a
checkerboard pattern printed on a DinA4 sized sheet of
paper. The individual squares had a side length of ex-
actly 30 mm. The mean reprojection error in this setup
can be seen in Figure 2(a). For the second video, the
filmed pattern was displayed on a flat computer moni-
tor. The size of the squares in this setup was slightly
larger at 33.8 mm. The resulting mean reprojection er-
ror is shown in Figure 2(b). These two different in-
puts led to the calibration results printed in Table 1
& 2. As can be seen, the reprojection error from the
printed checkerboard is quite large compared to the one
from the screen checkerboard. The reason for that is
presumably that the printed paper had built up slightly
uneven waves due to the large amount of printer ink.
The surface not being completely flat caused the error
to be more than twice as big. Modern flat-panel dis-
plays serve the purpose of a perfect plane reasonably
well.

FocalLength: [498.3953 495.7647]
PrincipalPoint: [226.4976 319.1671]

RadialDistortion: [0.2526 -0.5535]
ImageSize: [640 480]

MeanReprojectionError: 0.4699

Table 1: Camera intrinsics from printed checkerboard

FocalLength: [478.7620 478.6281]
PrincipalPoint: [231.9420 319.5268]

RadialDistortion: [0.2962 -0.6360]
ImageSize: [640 480]

MeanReprojectionError: 0.2147

Table 2: Camera intrinsics from screen checkerboard

3.2 Extrinsic Parameters
In addition to the described intrinsic parameters, the
visual inertial SLAM-algorithm needs specific knowl-
edge about the relative positioning of the inertial mea-
surement unit (IMU) to the camera. The relative ori-
entation is being ignored as the camera and the IMU
are expected to be axis-aligned. The extrinsic param-
eters are highly dependent on the target hardware. In
this work, we focus on the Samsung Galaxy S7 as target
mobile phone - however, the necessary steps for porting
the iOS VINS framework remain the same for arbitrary
Android phones.

Usually, the extrinsic parameters are irrelevant in the
development of normal smartphone applications, so it is
not surprising that the manufacturers did not publish the
necessary parameters required for the calibration. Even
internet sources that deal with the hardware of smart-
phones more meticulously have not specified this infor-
mation at all. As official information about the IMU
and camera locations are unavailable, we gathered the
needed information from available frontal straight X-
ray images [iFi16a] for the Apple iPhone 7 Plus and
an open device image with visible PCB [iFi16b] for the
Samsung Galaxy S7. Outer dimensions of the smart
phones are provided by the manufacturers and can be
used as a reference of scale.

In order to make the measurement of the dimensions
easier and more precise, the images of the devices were
rectified and scaled. The camera respectively the IMU-
axis should be the frame of reference for this rectifica-
tion. A visualization of the results can be seen in Figure
3. Displayed are the iPhone 7 Plus on the left and the
Galaxy S7 on the right. Both are frontal views look-
ing straight at the screen. The measurements from the
method described above are drawn in green. Blue in-
dicates the values found in the frameworks source code
for the iPhone 7 Plus. The translation in direction of the
visual axis of the camera is neglected because it cannot
be determined easily, is usually very small and thus has
only very little impact on the resulting accuracy.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

11 ISBN 978-80-86943-38-1



(a) Printed checkerboard (b) Screen checkerboard

Figure 2: Mean reprojection error from the camera calibration process. The individual bars represent the mean
reprojection error of the corresponding images and the dotted line the overall mean reprojection error.

4 PROBLEMS
In the following we describe further hard- and software-
posed challenges we encountered.

4.1 Synchronization
On the hardware side of Android, the synchronization
of the sensor events needs special attention. It is not
guaranteed that acceleration and gyroscope events are
always processed alternating, even if set to the exact
same frequency. For example, it can happen that ten
acceleration events occur at first and the ten correspond-
ing gyroscope events afterwards. Therefore in the port-
ing process, it was necessary to rewrite the buffer sys-
tem of the IMU measurements. It now uses a sepa-
rate queue for both sensor event types. The IMU mea-
surements are processed and inserted into the algorithm
only once both corresponding measurements occurred.
It is also ensured that if one event type skips a time step,
the buffer system does not lock forever.

4.2 Unsolved Problems
It was observed that the time difference between the
timestamps of the camera and the IMU can be shifted
by up to 300 ms. The reason is not obvious and might
lie in the hardware and OS-software architecture. At
this point it should be noted that the camera image time
interval at 30 Hz is just 33.3 ms and the IMU measure-
ment interval at 100 Hz is 10 ms. This shows how se-
vere this desynchronization issue is on Android. A pos-
sible explanation for this observation might be that the
image buffer of the camera cannot be processed fast
enough due to the increasing processing time as the run
progresses.
Due to the processing order of the camera and IMU
data, the consequences are limited to a general delay

in processing. For the preprocessing of the IMU data,
it is important that the processing of camera images is
deferred longer than the measurement processing of the
IMU. If this was not the case, some measurements of
the IMU would be lost because they have not yet been
inserted into the event queue before the latest image has
been processed. For the next picture they would be ne-
glected because their timestamp is older than the one of
the last picture. To reliably fix this desynchronization
issue the system could be improved by building another
buffer system, that fuses both IMU and camera data,
before processing them.

5 RESULTS

After the porting of the framework was completed we
compared the Android port with the original iOS ver-
sion in performance, robustness and accuracy. The
results of the quantitative performance study are pre-
sented in section 5.1. In section 5.2 we discuss the
qualitative differences in the form of an experimental
study.

For Android the Samsung Galaxy S7 was used as the
test device. It features an Exynos 8890 64-Bit Octa-
core processor clocked at 4 x 2.3 GHz and 4 x 1.6 GHz.
It has 4 GB of RAM and a 12 MP front-facing camera
(f/1.7, 26mm) with optical image stabilization [GSMb].
Thus it can be classified in the middle to upper perfor-
mance class of Android smartphones.

For iOS the Apple iPad Pro 12.9 (2015) was used for
comparison. This tablet features an Apple A9X 64-Bit
Dual-core processor clocked at 2.26 GHz. It has 4 GB
of RAM too and a 8 MP front-facing camera (f/2.4,
31mm) [GSMa].

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

12 ISBN 978-80-86943-38-1



(a) Apple iPhone 7 Plus

(b) Samsung Galaxy S7

Figure 3: Extrinsic parameters: Translation from IMU
to Camera. Drawn in blue are the values found in the
frameworks source and drawn in green the values deter-
mined by our method.

5.1 Quantitative Performance

This section presents the statistical results of our per-
formance benchmark. We gathered timings for each of
the individual steps of the algorithm. The resulting sta-
tistical observations are listed in Table 3. The struc-
ture and values for iOS are inferred from [LQH∗17].
Android Studio in combination with the native devel-
opement kit (ndk) and its GNU Compiler Collection
(GCC) variant was utilized for porting and compiling
the framework on Android. To reach comparable levels
of performance on Android it is necessary to enable the

T Module Freq. iOS Android
1 Feature Detection 10 Hz 17 ms 16 ms

Feature Tracking 30 Hz 3 ms 8 ms
Visualization 30 Hz 6 ms

2 Initialization once 80 ms 268 ms
Nonlinear Opt. 10 Hz 60 ms 113 ms

3 Loop Detection 3 Hz 60 ms 34 ms
Feature Retrieval 3 Hz 10 ms 44 ms

4 Global Pose Opt. marg. 29 ms

Table 3: Performance comparison. Modules are
grouped by threads (T) they run in.

highest possible compiler optimization level. Without
these optimizations the modules relying on the Ceres
Solver library are more than a magnitude slower.

For the measurements of the optimized version we
chose two different approaches:
First, we ran 10 tests which we canceled immediately
after initialization. These were used solely to gather
information about the average initialization time.
Second, we carried out 5 more test runs, each limited
to 20 seconds. In each of them the initialization was
completed and a 360 degree turn performed. In 4
out of 5 of them the previously visited regions were
recognized and the loops in the pose graph successfully
closed. Like in the first approach, we used the collected
data to extract a meaningful average of the other
algorithm steps over these runs.

Not specified in table 3 is the total time of the
onImageAvailable function, which is executed
for each camera input frame. It includes the necessary
image format conversion as well as the feature detec-
tion and tracking and the visualization. As it takes up
37.25 ms on average, the processing isn’t able to keep
up with the image input rate of 30 Hz and thus causes
skipping of some camera frames. The resulting delay
and skipping of frames is noticeable to the naked eye,
but partly affects the iOS version as well, though not as
strongly.

The observed value for loop detection is surprisingly
low in comparison to the iOS measurements. This
could be attributed to the short duration of the test. As
the pose graph continues to grow over time, this module
will take more time.

Overall, the results indicate that the interaction between
software and hardware on iOS is optimized better. This
is particularly noticeable in the measurements of ini-
tialization and nonlinear optimization, as both heavily
rely on the Ceres Solver library. The Android version
would potentially benefit a lot from a better paralleliza-
tion implementation of the applied algorithms, due to
the great multithreading performance of most Android
smartphones.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

13 ISBN 978-80-86943-38-1



(a) iOS - Apple iPad Pro (b) Android - Samsung Galaxy S7

Figure 4: Successful loop closure

Figure 5: Test setup for fixing the devices. For test-
ing purposes we added a Google Tango device, a now
abandoned AR-project by Google that uses specialized
hardware for tracking movement and the environment.

5.2 Experimental Performance

This section presents the results of the experimental
comparison between the Android port and the iOS ver-
sion. The two platforms are very different in some
regards, especially in the sensor inputs, which have a
direct impact on the quality and performance of the
framework. Therefore, it makes little sense to use a
publicly available dataset for the comparison, such as
MH 03 medium used in [LQH∗17] or a similar one. In-
stead, a test under practical conditions was chosen, ex-
posing the different platforms to the same environmen-
tal conditions. Of course, physically it is impossible to
produce the exact same conditions, since the cameras
cannot all be at the same position. In order to provide
the best possible approximation, a test apparatus was
designed on which the devices can be firmly fixed. A
picture of this setup can be seen in Figure 5.

Due to the lack of a possibility to acquire the ground
truth of the traveled route, the result could only be eval-
uated manually. For that purpose the screen of each
device was recorded. Since it is not possible to record a
video of the screen on iOS version 10, we took screen-
shots at key points of the route on the iPad.

For the test, as the starting point we chose a feature
rich object, which stood out from the rather repetitive
surroundings. We then took a walk inside our university
building. The covered distance is approximately 80 m.
At the end of the test run we returned to the starting
point, so that the algorithm had a chance to detect and
close the occurring loop.
Both the iOS version and the Android port are able
to recognize the previously visited location and adjust
their pose accordingly, which can be subject to a sig-
nificant drift, caused e.g. by barren corridors or fast
movements. The screenshots in Figure 4 visualize this
loop closure. As can be seen both show roughly the
same quality in tracking. To enable measuring the oc-
curring error, an additional online or offline system for
recording the groundtruth would have to be installed.
Furthermore the framework would need to be modified
in a way that allows logging the estimated current pose
over the course of the testing. After testing, the error
could then be calculated and visualized.

6 CONCLUSION AND FUTURE
WORK

We describe the process of porting a visual inertial
SLAM algorithm from iOS to Android and discuss how
to solve the according challenges. At the example of
the VINS Mobile Framework we explain the necessary
steps to calibrate the device specific parameters cor-
rectly and analyze its performance both quantitatively
and qualitatively.
In future work, the complex calibration process could
be partially automated, so that a broader range of an-
droid smartphones could be used by the framework. To
further expand the functionality of the framework, tech-
niques of dense environment reconstruction could be
used to enable occlusion of AR-content by the environ-
ment.
Our framework is publicly available at [GIT].

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

14 ISBN 978-80-86943-38-1



7 REFERENCES

[ARC] ARCore - Google. URL: https://
developers.google.com/ar [cited
29.04.2019].

[ARK] ARKit - Apple. URL: https:
//developer.apple.com/arkit
[cited 29.04.2019].

[ARTa] ARToolKit. URL: https://github.
com/artoolkit [cited 29.04.2019].

[ARTb] artoolkitX. URL: http://www.
artoolkitx.org [cited 29.04.2019].

[BOHS15] BLOESCH M., OMARI S., HUTTER M.,
SIEGWART R.: Robust visual inertial
odometry using a direct ekf-based ap-
proach. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS) (Sep. 2015), pp. 298–
304. doi:10.1109/IROS.2015.
7353389.

[GIT] VINS-Mobile-Android. URL: https:
//github.com/jannismoeller/
VINS-Mobile-Android [cited
27.04.2019].

[GSMa] GSMARENA.COM: Apple iPad Pro 12.9
(2015) - Full tablet specifications. URL:
https://gsmarena.com/apple_
ipad_pro_12_9_(2015)-7562.
php [cited 29.04.2019].

[GSMb] GSMARENA.COM: Samsung
Galaxy S7 - Full phone specifications.
URL: https://gsmarena.com/
samsung_galaxy_s7-7821.php#
g930f [cited 29.04.2019].

[HKBR14] HESCH J. A., KOTTAS D. G., BOWMAN
S. L., ROUMELIOTIS S. I.: Consistency
analysis and improvement of vision-aided
inertial navigation. IEEE Transactions
on Robotics 30, 1 (Feb 2014), 158–176.
doi:10.1109/TRO.2013.2277549.

[iFi16a] IFIXIT: iPhone 7 Plus Teardown, Sept.
2016. URL: https://de.ifixit.
com/Teardown/iPhone+7+Plus+
Teardown/67384#s136470 [cited
29.04.2019].

[iFi16b] IFIXIT: Samsung Galaxy S7 Tear-
down, Mar. 2016. URL: https://de.
ifixit.com/Teardown/Samsung+
Galaxy+S7+Teardown/56686#
s122920 [cited 29.04.2019].

[IWKD13] INDELMAN V., WILLIAMS S., KAESS
M., DELLAERT F.: Information fusion in
navigation systems via factor graph based
incremental smoothing. Robotics and Au-

tonomous Systems 61, 8 (2013), 721 – 738.
doi:10.1016/j.robot.2013.05.
001.

[KUD] Kudan. URL: https://kudan.io
[cited 29.04.2019].

[LLB∗15] LEUTENEGGER S., LYNEN S., BOSSE
M., SIEGWART R., FURGALE P.:
Keyframe-based visual–inertial odome-
try using nonlinear optimization. The In-
ternational Journal of Robotics Research
34, 3 (2015), 314–334. doi:10.1177/
0278364914554813.

[LM13] LI M., MOURIKIS A. I.: High-precision,
consistent EKF-based visual-inertial
odometry. The International Journal of
Robotics Research 32, 6 (2013), 690–711.
doi:10.1177/0278364913481251.

[LQH∗17] LI P., QIN T., HU B., ZHU F., SHEN
S.: Monocular visual-inertial state esti-
mation for mobile augmented reality. In
2017 IEEE International Symposium on
Mixed and Augmented Reality (Piscat-
away, NJ, 2017), Broll W., Regenbrecht
H., Swan J. E., (Eds.), IEEE, pp. 11–21.
doi:10.1109/ISMAR.2017.18.

[MAT] MatLab. URL: https://mathworks.
com/products/matlab.html [cited
29.04.2019].

[MAX] MAXST AR SDK. URL: https:
//developer.maxst.com/ [cited
29.04.2019].

[OPE] OpenCV. URL: https://opencv.org
[cited 29.04.2019].

[QLS17] QIN T., LI P., SHEN S.: VINS-Mono:
A robust and versatile monocular visual-
inertial state estimator, 2017. URL:
http://arxiv.org/pdf/1708.
03852.

[SMK15] SHEN S., MICHAEL N., KUMAR V.:
Tightly-coupled monocular visual-inertial
fusion for autonomous flight of rotor-
craft MAVs. In 2015 IEEE International
Conference on Robotics and Automation
(ICRA) (May 2015), pp. 5303–5310. doi:
10.1109/ICRA.2015.7139939.

[VIN] VINS-Mobile - GitHub. URL:
https://github.com/
HKUST-Aerial-Robotics/
VINS-Mobile [cited 29.04.2019].

[VUF] Vuforia. URL: https://engine.
vuforia.com [cited 29.04.2019].

[WIK] Wikitude. URL: https://wikitude.
com [cited 29.04.2019].

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part II

15 ISBN 978-80-86943-38-1

https://developers.google.com/ar
https://developers.google.com/ar
https://developer.apple.com/arkit
https://developer.apple.com/arkit
https://github.com/artoolkit
https://github.com/artoolkit
http://www.artoolkitx.org
http://www.artoolkitx.org
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1109/IROS.2015.7353389
https://github.com/jannismoeller/VINS-Mobile-Android
https://github.com/jannismoeller/VINS-Mobile-Android
https://github.com/jannismoeller/VINS-Mobile-Android
https://gsmarena.com/apple_ipad_pro_12_9_(2015)-7562.php
https://gsmarena.com/apple_ipad_pro_12_9_(2015)-7562.php
https://gsmarena.com/apple_ipad_pro_12_9_(2015)-7562.php
https://gsmarena.com/samsung_galaxy_s7-7821.php#g930f
https://gsmarena.com/samsung_galaxy_s7-7821.php#g930f
https://gsmarena.com/samsung_galaxy_s7-7821.php#g930f
https://doi.org/10.1109/TRO.2013.2277549
https://de.ifixit.com/Teardown/iPhone+7+Plus+Teardown/67384#s136470
https://de.ifixit.com/Teardown/iPhone+7+Plus+Teardown/67384#s136470
https://de.ifixit.com/Teardown/iPhone+7+Plus+Teardown/67384#s136470
https://de.ifixit.com/Teardown/Samsung+Galaxy+S7+Teardown/56686#s122920
https://de.ifixit.com/Teardown/Samsung+Galaxy+S7+Teardown/56686#s122920
https://de.ifixit.com/Teardown/Samsung+Galaxy+S7+Teardown/56686#s122920
https://de.ifixit.com/Teardown/Samsung+Galaxy+S7+Teardown/56686#s122920
https://doi.org/10.1016/j.robot.2013.05.001
https://doi.org/10.1016/j.robot.2013.05.001
https://kudan.io
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364913481251
https://doi.org/10.1109/ISMAR.2017.18
https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://developer.maxst.com/
https://developer.maxst.com/
https://opencv.org
http://arxiv.org/pdf/1708.03852
http://arxiv.org/pdf/1708.03852
https://doi.org/10.1109/ICRA.2015.7139939
https://doi.org/10.1109/ICRA.2015.7139939
https://github.com/HKUST-Aerial-Robotics/VINS-Mobile
https://github.com/HKUST-Aerial-Robotics/VINS-Mobile
https://github.com/HKUST-Aerial-Robotics/VINS-Mobile
https://engine.vuforia.com
https://engine.vuforia.com
https://wikitude.com
https://wikitude.com



