
SyCaT-Vis: Visualization-Based Support of Analyzing
System Behavior based on System Call Traces

Alrik Hausdorf1

hausdorf@informatik.uni-
leipzig.de

Nicole Hinzmann1

hinzmann@informatik.uni-
leipzig.de

Dirk Zeckzer1

zeckzer@informatik.uni-
leipzig.de

1Image and Signal Processing Group,
Leipzig University

ABSTRACT
Detecting anomalies in the behavior of a computer system is crucial for determining its security. One way of
detecting these anomalies is based on the assessment of the amount and sequence of system calls issued by pro-
cesses. While the number of processes on a computer can become very large, the number of system calls issued
during the lifespan of such a process and its subprocesses can be humongous. In order to decide whether these
anomalies are due to the intended system usage or if they are caused by malicious actions, this humongous amount
of data needs being analyzed. Thus, a careful analysis of the system calls’ types, their amount, and their temporal
sequence requires sophisticated support. Visualization is frequently used for this type of tasks. Starting with a
carefully aggregation of the data presented in an overview representation, the quest for information is supported
by carefully crafted interactions. These allow filtering the tremendous amount of data, thus removing the standard
behavior data and leaving the potentially suspicious one. The latter can then be investigated on increasingly finer
levels. Supporting this goal-oriented analysis, we propose novel interactive visualizations implemented in the tool
SyCaT-Vis. SyCaT-Vis fosters obtaining important insights into the behavior of computer systems, the processes
executed, and the system call sequences issued.

Keywords
Security visualization, system call traces, security analysis, behavior analysis

1 INTRODUCTION
Detecting anomalies in the behavior of a computer sys-
tem is crucial for determining its security. The analysts
need to decide if these anomalies are due to intended
system usage or if they are caused by malicious actions.
To do so, the behavioral analysis can be based on ob-
serving the system calls issued by processes like mem-
ory reads and writes, network usage, and CPU usage,
among others. Besides the types of the system calls,
their amount and their sequence are important clues for
separating intended from malicious behavior.

Overall, this behavioral system analysis is quite in-
volved due to the huge amount of individual system
calls and the already large number of processes that
run in parallel. To date, only some approaches for au-
tomated analysis of system call traces were proposed

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(Section 2.1). Regarding visual support of these anal-
yses, only three approaches were found in the litera-
ture [16, 14, 2] (Section 2.2). Our contribution is the
tool SyCaT-Vis (SystemCallTrace-Visualization) pro-
viding three views containing interactive visualizations
adapted to this situation:

1. A Context View showing all traces that were cap-
tured.

2. A Process view proving more detailed, temporal in-
formation about programs and program groups.

3. A detailed thread view showing groups of system
calls as well as individual system calls themselves.

This realizes a semantic zooming environment that to-
gether with filtering as well as additional interactions
fosters the analysts insights into the process behavior
recorded and thus eases analyzing the security of the
computer system under investigation (Section 4).

2 RELATED WORK
2.1 Automated Analysis of System Call

Traces
Analyzing the behavior of a system is often performed
based on data about which processes are running and

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

45 ISBN 978-80-86943-37-4https://doi.org/10.24132/CSRN.2019.2901.1.6



Data Set t CA E SC SCT SCC C U P T

1 1s i 21,362 10,756 23 9 4 6 22 75
2 5s i 62,353 31,339 72 12 1 5 84 143
3 8s i 105,384 52,900 81 12 1 7 101 165
4 ∼60s i 784,167 392,896 88 12 1 7 304 516
5 ∼27s au 3,674,663 1,838,122 106 13 7 14 145 715

Table 1: Basic values of the benchmark data (t: time span; CA: computer activity (i: idle, au: actively used); and
the contained number of elements (see also Table 2; E: events (without switch events); SC: system calls; SCT:
system call types; SCC: system call categories; C: containers; U: users; P: processes; T: threads)

Information Type Result-Set sysdig Parameters

event information Ein f evt.num, evt.rawtime, evt.latency, evt.dir
system call type Stype syscall.type
event category Ecat evt.category
container C container.id, container.name
user U user.uid, user.name
process P proc.pid, proc.exe, proc.args, proc.pname, proc.name
thread T thread.tid

Table 2: Attributes extracted from the complete sysdig trace.

which system calls are issued by them. To obtain low
false-positive rates in detecting malicious system be-
havior, several different models supporting the auto-
mated analysis of system call traces have been devel-
oped.

Forrest et al. [6, 4, 5] developed an n-gram pattern
approach. Sequences of system calls are analyzed
and those stemming from normal process execution
are used to form pattern that are stored in a database.
The system call sequences to be analyzed are then
compared to the pattern stored in the database and
mismatches are reported. Sekar et al. [10] and Yu et
al. [17] use finite state automata instead of the n-grams
for this analysis. Ghosh et al. [7] use neural networks
to determine whether or not the system behavior is
malicious, while Liao et al. [8] use k-nearest neighbor
classification for pattern detection overcoming the need
of learning sequence pattern for individual programs.

Warrender et al. [15] compared several methods to de-
tect intrusions: enumeration of observed sequences, a
rule induction technique, and Hidden Markov Mod-
els. They conclude that “weaker methods than Hidden
Markov Models are likely sufficient” for these tasks.

Coull et al. [1] use an approach that is based on tech-
niques used in bioinformatics to uncover masquerade
attacks. The trace to be analyzed is compared to pre-
vious traces using semi-global alignment. A similarity
score is computed and based on this score the similarity
or dissimilarity between the traces that are compared
can be assessed.

Mazeroff et al. [9] employ an approach based on proba-
bilistic models. They construct probabilistic suffix trees
and translate them into probabilistic suffix automata.

The resulting models are then used for monitoring data
in real-time.

Shu et al. [13] analyze the correlation among events
using long-span behavior anomaly detection based on
mildly context-sensitive grammar verification.

All these approaches rely on machine learning ap-
proaches, generating models and assessing the systems’
behavior according to these models. No visual support
for analyzing the results is provided.

2.2 Visual Analysis of System Call Traces
Visualizations supporting system behavior analysis
based on system call traces are less common. Wu et
al. [16] propose “lviz”, a tool visualizing Microsoft
Windows system call traces. Their visualization shows
two call traces and the contained events in a dotplot
matrix. Tandon et al. [14] visualize distances of motifs
found in system calls using scatterplots. Lately, the
tool Csysdig [2] showing the latency of system calls
per time in a spectrogram was proposed.

Our tool provides three visualizations allowing on the
one hand to obtain a general overview and on the other
hand analyzing and comparing several process execu-
tion traces at the same time. Moreover, the user can
smoothly change between these views in a top-down or
bottom-up manner according to her workflow.

3 DATA SETS
For testing the performance and showing the features of
our visualization, we use self-generated data sets (Ta-
ble 1). The behavioral data was collected using the tool
“sysdig” [3]. This tool does not provide system calls
directly. Therefore, these have to be extracted from the

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

46 ISBN 978-80-86943-37-4



behavioral data comprising the events associated with
the system calls. Sysdig stores the data obtained in
compressed, binary files, the proposed file extension
being “scap”.

As the amount of attributes collected by sysdig is very
large, it is useful to extract those attributes that should
be analyzed before subsequent operations. This is done
calling sysdig using a set of parameters indicating the
attributes to be extracted. The information we are inter-
ested in together with the corresponding sysdig param-
eters is given in Table 2.

"switch"-events are not related to system calls and just
indicate a context switch, i.e., when a thread is put to
sleep by the process scheduler, while another thread
will be executed. Therefore, they are filtered from the
data. Data selection and filtering are performed while
loading the original data into our tool.

Data Set 5 contains the largest amount of collected sys-
tem calls and therefore will be used as example for pre-
senting our approach.

4 SYCAT-VIS
4.1 System Overview
To support analyzing a system’s behavior based on its
system call traces obtained using sysdig [3], we pro-
pose SyCaT-Vis (SystemCallTrace-Visualization). All
data to be analyzed is stored in a PostgreSQL database.
SyCaT-Vis imports the data collected into this database
by running the sysdig command as described in the pre-
vious section for selecting and filtering the original sys-
tem traces (scap-file) followed by parsing the results
and writing them into the database. The importer itself
is written in the Java programming language.

A ReSTful API written in NodeJS connects the SyCaT-
Vis user interface to this database. It also serves as a
cache for database requests needing a long computing
time. The user interface itself is written in JavaScript
using the AngularJS library (version 1.7.7) for data and
interaction handling, and the D3.js library for creating
the visualizations.

Currently, three views are provided by the user interface
for analyzing the system behavior following Shneider-
man’s mantra “Overview first, zoom and filter, then de-
tails on demand” [12]. The Context View (Section 4.2)
provides an overview: information about the main at-
tributes and their values in the information areas, a user-
selected hierarchy of attributes in the main area, and
a configuration area for selecting and deselecting the
attributes and their hierarchy shown in the main area
realizing a filter. A contextual popup-menu provides
additional information (details on demand) and allows
using the currently selected element as a filter in the
Process View.

The Process View (Section 4.3) is a more detailed, in-
termediate view (zoom) showing the time evolution of
all processes or of those processes that match the filter
conditions selected. Various interactions allow modify-
ing the display of the information as well as adapting
the filters. Altogether, the filter conditions can be se-
lected in the context view and they can be selected and
changed in the process view.

Selecting individual processes in the Process View can
in turn be used as a filter for the most detailed view, the
Thread View (Section 4.4). This view shows the system
calls for the selected threads of a process from a coarse
grained aggregated view summarizing system calls to a
fine grained view showing individual system calls, thus
realizing several zooming levels.

We describe these views in the subsequent sections us-
ing Data Set number 5 (Table 1) as a running example.

4.2 Context View
The main area of the context view (Figure 1) contains
a circle-based hierarchical view showing an overview
of the data (Figure 1 (c), Section 4.2.3). It is com-
plemented by a configuration area allowing selecting
the elements displayed in the hierarchy and their order
(Figure 1 (b), Section 4.2.2). Moreover, the configura-
tion area provides selecting scaling the attribute values
being visualized linearly or logarithmically. The infor-
mation areas to the left and to the right of the visual-
ization and interaction areas provide information about
the entries for the main attributes (container: upper left,
users: lower left, processes: upper right, and system
call types: lower right) (Figure 1 (a), Section 4.2.1).
Finally, a contextual popup menu provides further in-
teraction facilities (Figures 1 (d) and 2, Section 4.2.4).
Next, we describe each of these areas in the order of the
work flow of an end user.

4.2.1 Information Areas
The information areas (Figure 1 (a)) are to the left and
to the right of the visualization and interaction areas
providing information about the different values of the
main attributes. These correspond to the previously
(Section 3) defined sets C: Container (upper left), U :
Users (lower left), P: Processes (upper right), and Stype:
System Call Types (lower right). For each of these at-
tributes, its name and the amount of different values
are given. Additionally, the eye-icon indicates that this
dimension is currently part of the hierarchy displayed
in the main area of this view. The attribute values
are sorted by the amount of system calls they are con-
nected to in descending order. The top eight attribute
values according to this order are shown together with
the amount of system calls they are related to. Finally,
a hint about how many more attribute values are not
shown is displayed. On mouse-over one of the attribute

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

47 ISBN 978-80-86943-37-4



Figure 1: The Context View containing the following areas: (a) Information Areas showing the attributes that
can be included into the hierarchy (b) shown in the main area (c); (b) Configuration Area allowing to construct
the hierarchy to be analyzed as well as to switch between linear and logarithmic scaling; (c) Main Area showing
a circle-based hierarchical visualization representing the currently active attribute hierarchy; (d) Context Menu
showing information about the selected element (green) and providing interaction facilities.

values, all occurrences of this attribute value in the main
area are highlighted, if this attribute is shown there.

In our example, the “Container”, the “Users”, and the
“Processes” are part of the hierarchy shown in the mid-
dle (having an eye icon), while the “System Call Types”
are not (no eye icon). All container attribute values are
shown (7) in its list, while only 8 out of 10 users (2 more
not displayed), 8 out of 145 processes (137 more not
displayed), and 8 out of 106 system calls types (98 more
not displayed) are listed in the respective areas. User
“alrik” is associated with the largest number of system
calls (1,782,285), followed by “root” (50,156).

4.2.2 Configuration Area

The configuration area is located between the two in-
formation areas at the top (Figure 1 (b)). In the middle
of the configuration area, the attributes currently shown
in the main area are displayed in the order in which
they form the hierarchy from top (left) to bottom (right).
Each of the currently shown attributes can be removed.
Moreover, new attributes can be added to the top or to
the bottom of the hierarchy.

On the left side of the configuration area, the user can
switch between linear and logarithmic scaling of the at-
tribute values visualized in the main area. Logarithmic
scaling is especially useful if small elements should be
made more visually salient.

In the example given in Figure 1, the hierarchy is “Con-
tainer” (top) – “Users” – “Processes” (bottom). More-
over, linear scaling is chosen.

4.2.3 Main Area
In the main area of the context view (Figure 1 (c)), the
currently selected hierarchy is displayed using a circle-
based hierarchical view. The circles are color-coded
according to the hierarchy they belong to, the lightest
color representing the top attribute of the hierarchy and
the darkest color representing the bottom attribute of
the hierarchy. Moreover, the size of each circle reflects
the number of the associated system calls.

In the example, the basic color is gray. Thus, the seven
values of the top-most attribute of the hierarchy (“Con-

Figure 2: Context View restricted to the container
“host” with user “alrik” being selected.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

48 ISBN 978-80-86943-37-4



tainer”) are mapped to seven light-gray circles that are
arranged next to each other in the main area. The val-
ues of the next attribute in the hierarchy (“Users”) are
grouped by container value and each container-users
pair is mapped to a middle-gray circle. These circles
are arranged inside the circles representing their respec-
tive containers. Finally, the values of the bottom-most
attribute of the hierarchy (“Processes”) are grouped
by container-users value pairs yielding container-users-
processes triplets. Each such triplet is mapped to a
dark-gray circle. These circles are arranged inside their
respective container-users circles.

If an attribute value corresponding to a circle is se-
lected, the circle is colored green. In the example, the
green circle represents the container “host”. Within this
container, there are circles for all users active in this
container (eight). Some of these circles are very small
and can barely be seen. Logarithmic scaling could be
used to enlarge them when needed. Within each of the
circles representing the users, the dark circles repre-
sent the processes like the two “java” processes and the
single “htop” process inside the circle representing the
lower right user of the container “host”, or the process
“gulp” on the upper left.

Figure 2 shows the main area restricted to the container
“host” with user “alrik” being selected (circle colored
green). Only the main area is shown.

We also tested a squarified treemap [11] representation
of the same data (see also http://www.cs.umd.
edu/hcil/treemap-history/). In general, a
treemap is emphasizing leaf information over hierarchy
information. Also, treemaps are prone to create very
small, sub-pixel wide or high stripes. Comparing the
circle layout to a squarified treemap layout showing the
same data (Figure 3), it can be seen that the hierarchy
is more salient and that the processes with less activity
are easier to discern in the circle representation (Fig-
ure 3(a)) compared to the squarified treemap represen-
tation (Figure 3(b)). Further, it can be seen, that the
unused space around the circles helps to spot elements
that are very small and that can not be identified in the
squarified treemap representation. As both the hierar-
chical information and the inner nodes (and information
about them) are both important for our application, the
circle-based hierarchical view was chosen.

4.2.4 Context Menu
Selecting a circle in the main area results in display-
ing a contextual popup menu (Figure 1 (d)), Figure 2)
showing information about the element associated with
the circle representing a specific attribute selected (Ta-
ble 3 shows the values for the examples provided in Fig-
ure 1 (d) and Figure 2):

• The name of the attribute
• The value of the attribute

Information shown Figure 1 (d) Figure 2
Attribute Name Container User
Attribute Value host alrik
Element ID 14 1000
Hierarchy host host > alrik
System Calls Amount 1,375,457 1,275,438

Table 3: Attribute values provided by the popup menu
shown in Figure 1 (d) and Figure 2, respectively.

• The id of this element
• The elements of the hierarchy starting at the top and

ending at the selected element including the selected
element

• The amount of system calls that are associated with
the selected element

Moreover, the context menu provides several interac-
tion facilities. For each hierarchy level above and in-
cluding the current element, a filter can be selected at
the bottom of the menu. The filter options are to select
the element (none selected), to hide the element (strike-
through eye, middle), and show only this one (eye, left).
Each set of icons is annotated by the hierarchy infor-
mation in the format “attribute: attribute value (id)”. In
Figure 1 (d), there is only one entry: “Container: host
(14)”, while in Figure 2, there are two entries: “Users:
alrik (1000)” and “Container: host (14)” according to
the two hierarchy levels involved in the selection. The
third icon changes to the Process View (Section 4.3)
showing the activities of the processes filtered by the
selected element.

4.2.5 Interpretation

The Context View provides a general overview over the
data set. Using this overview, first assumptions about
the usage of the monitored computer are created. To do
so, a solid knowledge is needed about which users are
executing processes on this machine, which processes
are expected to be running, and what the non-malicious
behavior on this machine should look like. In the exam-
ple shown in Figure 1, the existence of containers is ex-
pected on the machine under exam and thus should not
cause an alert. However, a similar image based on the
data drawn from an office only computer could be an in-
dication of a misuse of the machine. Together with the
activity of processes used by different users, this could
indicate malicious behavior, e.g., by a malware infected
computer.

On the other hand, if the inspected system is a server,
the view of the container and the active processes inside
is helpful. Based on the idea to have one container for
one purpose, there should not be several processes that
are equally active. If a container looks like the selected
host of Figure 2, the assumption that the container was
attacked could be made and that, e.g., a reverse shell

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

49 ISBN 978-80-86943-37-4

http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/


(a) Each user is represented by a light grey circle. The run-
ning processes of the user are represented by circles having a
darker grey color located inside the user’s circle. The size of
the circles represents the amount of system calls aggregated
for the respective circle. Compared to the treemap layout (b),
the low activity processes are easier to discern and the hier-
archy is salient.

(b) Squarified treemap representation of the “User” > ‘Processes” hierar-
chy. Each user is mapped to an individual color. The size of the leafs
representing the processes is mapped to the amount of their system calls.
Compared to the circle layout (a), the low activity processes more difficult
to discern and the hierarchy is less salient.

Figure 3: Comparison between the circle layout (a) and the squarified treemap layout (b) showing the Main Area
of the Context View with no filters representing the hierarchy is “User” > “Processes”.

Figure 4: The Process View for user “alrik” in the container “host”. The number of system calls per process
overlapping a specific time step is encoded using a logarithmic grey scale. The relation is “group” and the processes
are grouped by “executable”. The groups are ordered by the count of “elements”. The time resolution is one second.

was used to deploy malicious software inside a con-
tainer.

4.3 Process View
The Process View (Figure 4) shows an overview of pro-
cesses and their corresponding activities. Either all pro-
cesses are shown or only the ones that were previously

selected in the Context View. The filter currently ap-
plied to this view is shown at the top of the view. Filters
can be removed and added there, too.

4.3.1 Design

A tabular design was chosen for displaying the pro-
cesses and their evolution over time. Each process is

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

50 ISBN 978-80-86943-37-4



represented by a row and each time step is represented
by a column. The number of system calls overlapping
a time step is represented by the respective cell’s light-
ness: the darker the cell, the more system calls are asso-
ciated with the (sub-)process and overlap this time step.

By default, the processes are grouped by the “par-
ent_name”, a 16 bit identifier for the process. Every
process in a group is spawned from the same named
parent. It is possible that processes are spawned from
different parent processes with the same parent_name.
The parent_name should be a significant identifier for
the activity or for the goal of the process. Therefore,
the grouping of processes with similar named parents
is interesting to us. Another option is to group the pro-
cesses by the associated executable.

The processes can be ordered by the process id of the
first system call in each group, or by the number of pro-
cesses per group. The ordering can be either ascending
or descending.

The labels shown in Figure 4 (process id, executable,
and number of system calls) can be hidden such that
only the visual elements are shown. Then, the informa-
tion can be shown on mouse-over the respective cell.

Besides changing the filters, additional interaction fa-
cilities are provided by this view (Figure 4, below the
filters; selected values are emphasized):

• Select the color hue (“Color”: grey, blue, red)
• Select the scale (“Scale”: linear, logarithmic)
• Select the relation (“Related to”: group, global)
• Group by (“Grouped by”: executable, parent_name)
• Order by (“Ordered by”: process id, number of ele-

ments in group; ascending, descending)
• Select the time resolution (“Resolution”: between

50ms and 1s)
• Select if labels are shown (“Labels”: on, off)

Here, the processes in the container “host” for user
“alrik” are shown that are related to the executable
“chrome”. Overall, 25 processes and 27 time steps are
shown in Figure 4.

Several pattern emerge from this visualization:

(a) The first three processes are different from the re-
maining ones. (see blue bordered area (a) in Fig-
ure 4)

(b) Several processes are constantly active, i.e., every
time step. (see red bordered area (b) in Figure 4)

(c) Several processes show a regular activation (sub-
)pattern. (see black bordered area (c) in Figure 4)
They are at least active every six seconds.

Based on these pattern, hypotheses about the exe-
cutable’s behavior can be created.

4.3.2 Interpretation
Being an intermediate view between the Context View
and the Thread View, the Process View provides the

temporal dimension of active processes that are related
to each other. One malicious behavior that is identi-
fiable using this view is reverse-shells on servers. The
possible indication for this type of malicious behavior is
a long idle time followed by an extremely high amount
of activity of another process directly afterwards, e.g.,
a php-child.

A similar example of this behavior—a process starting
a new process that performs some sub-tasks—can be
found in Figure 4 in the lines marked with an (a). In
this case, the chrome process with process id 800 (line
before) has no further activities after starting. However,
directly afterwards, a high amount of system calls by its
child process having the pid 898 is observed. Knowing
the spawning schemata of specific processes, like us-
ing a fixed process-pool for computation, it can be as-
sessed whether or not this behavior of creating new sub-
processes and delegating tasks to them is malicious.

4.4 Thread View
4.4.1 Design
Figure 5 shows the system call traces at thread level.
Each line—except the last two—represents a thread that
can be selected from a list. In the last line, a barchart
shows the distribution of systems calls over time. The
number of all system calls from all threads overlapping
the respective time interval is mapped to the height of
the associated blue bar of the bar chart. On mouse over,
the exact number of system calls overlapping each time
interval is shown. Above this bar chart, the timeline is
shown.

Figure 5(a) shows the coarsest granularity where the
number of time intervals depends on the available
screen space. Similar to the “Process View”, a cell
represents all system calls for a specific thread (row)
overlapping a specific time interval (column). The
saturation of the cell represents this number of system
calls in relation to

• the total number of system calls of the thread (used
in Figure 5)

• the maximal number of system calls overlapping a
time step over all threads

• the sum of system calls overlapping a time step over
all threads

• the sum of system calls over all threads

Interaction allows to obtain more details. Zooming-in
using the mouse allows to decrease the length of the
time intervals. Thus, fewer, shorter time intervals are
shown. These shorter time intervals are represented by
cells as long as they contain more system calls than can
be displayed. Otherwise, triangles and bars represent-
ing individual system calls are used. Each triangle starts
at the beginning of the system call and ends at its termi-
nation. The triangle’s color represents the system call
category:

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

51 ISBN 978-80-86943-37-4



(a) Coarsest view showing the complete time interval selected. The saturation of each cell represents the number of
system calls that are active in that interval: the higher the saturation the more system calls are contained in this thread
and time interval.

(b) Finest view showing individual system calls, only. Triangles represent the system calls and their durations (called
‘latency” by sysdig) from the start event to the final event of each system call. The triangle’s color represents its system
call category: red: net(work), blue: inter-process communication (IPC), violet: sleeping, orange: unknown (system call
type: fdatasync). Single vertical red lines represent system calls with zero duration (e.g. in the marked lines, before and
after the yellow system call). The irregularities in the idle threads (see marked lines) can easily be identified.

Figure 5: Visualization of the threads showing only aggregated system calls (a) and only individual system
calls (b). In the last line, a barchart shows the distribution of systems calls over time. The number of all system
calls from all threads overlapping the respective time interval is mapped to the height of the associated blue bar of
the bar chart. On mouse over, the exact number of system calls overlapping each time interval is shown. Above
this bar chart, the timeline is shown.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

52 ISBN 978-80-86943-37-4



• red: net
• blue: inter-process communication (IPC)
• violet: sleeping
• orange: unknown (system call type: fdatasync).

A red bar represents a system call of zero duration. The
finest level displaying individual system calls, only, is
shown in Figure 5(b) (most detailed view).

This flexibility allows to generate as many intermedi-
ate levels between the coarsest (least detailed) and the
finest (most detailed) level as necessary to provide an
acceptable number of elements (bins or individual sys-
tem calls).

4.4.2 Interpretation

The temporal pattern that can be observed in this visu-
alization fosters recognizing normal as well as possibly
malicious behavior. Again, a thorough understanding
about the computer, its users, and the processes to be
expected is needed for judging whether or not a cer-
tain visual pattern is suspected to be malicious or not.
Therefore, the system calls that were issued are ana-
lyzed regarding their amount and their sequence. The
detection of malicious behavior is one the one hand
fosters by the side-by-side display of a number of pro-
cesses performing the same task (see Figure 5 (b) line
4 to 9) such that processes with a divergent amount or
sequence of system calls can be spotted. On the other
hand, a sudden change in the behavior of a single pro-
cess might point to a malicious irregularity. In Figure 5,
the irregularities in the idle threads (lines in the blue
bordered box, Figure 5) are an example of this type of
anomaly.

5 CONCLUSION
We propose SyCaT-Vis for the visualization-based
analysis of system call traces. Currently, three views
are provided fostering understanding of the system’s
behavior: an overview showing the processes and their
context (context view), an intermediate view showing
details of selected processes (process view), and a
detailed view showing details of selected threads of
one or more processes (thread view, several levels
of detail). Being able to configure and to interact
with these flexible visualizations enables the security
researcher to adapt them to her needs and to focus
on the crucial parts for understanding whether the
system’s behavior is normal or not.

6 ACKNOWLEDGMENTS
This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) within the
project Explicit Privacy-Preserving Host Intrusion De-
tection System EXPLOIDS (BMBF 16KIS0522K).

7 REFERENCES

[1] S. Coull, J. Branch, B. Szymanski, and
E. Breimer. Intrusion detection: a bioinformatics
approach. In Proc. 19th Annual Comp. Security
Appl. Conference, pp. 24–33, Dec 2003. doi: 10.
1109/CSAC.2003.1254307

[2] Draios Inc. Csysdig Overview, March 2017.
[3] Draios Inc. Sysdig Overview, March 2017.
[4] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Com-

puter Immunology. Commun. ACM, 40(10):88–
96, Oct. 1997. doi: 10.1145/262793.262811

[5] S. Forrest, S. A. Hofmeyr, and A. Somayaji. The
Evolution of System-Call Monitoring. In Pro-
ceedings of the Annual Comp. Security Appl. Con-
ference, ACSAC ’08, pp. 418–430. IEEE Com-
puter Society, Washington, DC, USA, 2008. doi:
10.1109/ACSAC.2008.54

[6] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for Unix processes. In
Proceedings 1996 IEEE Symposium on Security
and Privacy, pp. 120–128, May 1996. doi: 10.
1109/SECPRI.1996.502675

[7] A. K. Ghosh and A. Schwartzbard. A Study
in Using Neural Networks for Anomaly and
Misuse Detection. In Proc. of the 8th Confer-
ence on USENIX Security Symposium - Volume
8, SSYM’99, pp. 12–12. USENIX Association,
Berkeley, CA, USA, 1999.

[8] Y. Liao and V. R. Vemuri. Using Text Catego-
rization Techniques for Intrusion Detection. In
Proceedings of the 11th USENIX Security Sympo-
sium, pp. 51–59. USENIX Association, Berkeley,
CA, USA, 2002.

[9] G. Mazeroff, V. De, C. Jens, G. Michael, and
G. Thomason. Probabilistic Trees and Automata
for Application Behavior Modeling. In 41st ACM
Southeast Regional Conference Proceedings, pp.
435–440, 2003.

[10] R. Sekar, M. Bendre, D. Dhurjati, and P. Bolli-
neni. A fast automaton-based method for de-
tecting anomalous program behaviors. In Pro-
ceedings 2001 IEEE Symposium on Security and
Privacy. S P 2001, pp. 144–155, 2001. doi: 10.
1109/SECPRI.2001.924295

[11] B. Shneiderman. Tree Visualization with Tree-
maps: 2-d Space-filling Approach. ACM Trans.
Graph., 11(1):92–99, Jan. 1992. doi: 10.1145/
102377.115768

[12] B. Shneiderman. The eyes have it: a task by data
type taxonomy for information visualizations. In
Proc. IEEE Symp. on Visual Languages, pp. 336–
343, 1996. doi: 10.1109/VL.1996.545307

[13] X. Shu, D. D. Yao, N. Ramakrishnan, and

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

53 ISBN 978-80-86943-37-4



T. Jaeger. Long-Span Program Behavior Mod-
eling and Attack Detection. ACM Trans. Priv.
Secur., 20(4):12:1–12:28, Sept. 2017. doi: 10.
1145/3105761

[14] G. Tandon, P. Chan, and D. Mitra. MORPHEUS:
Motif Oriented Representations to Purge Hostile
Events from Unlabeled Sequences. In Proc. of the
ACM Workshop on Visualization and Data Min-
ing for Computer Security, VizSEC/DMSEC ’04,
pp. 16–25. ACM, New York, NY, USA, 2004. doi:
10.1145/1029208.1029212

[15] C. Warrender, S. Forrest, and B. Pearlmutter. De-
tecting intrusions using system calls: alternative
data models. In Proc. of the IEEE Symp. on Secu-
rity and Privacy (Cat. No.99CB36344), pp. 133–
145, 1999. doi: 10.1109/SECPRI.1999.766910

[16] Y. Wu, R. H. C. Yap, and F. Halim. Visualizing
Windows System Traces. In Proceedings of the
5th International Symposium on Software Visual-
ization, SOFTVIS ’10, pp. 123–132. ACM, New
York, NY, USA, 2010. doi: 10.1145/1879211.
1879231

[17] F. Yu, C. Xu, Y. Shen, J.-Y. An, and L.-F. Zhang.
Intrusion detection based on system call finite-
state automation machine. In IEEE International
Conference on Industrial Technology, pp. 63–68,
Dec 2005. doi: 10.1109/ICIT.2005.1600611

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 2901 WSCG Proceedings Part I

54 ISBN 978-80-86943-37-4




