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ABSTRACT

The task of synthesizing sketches from photographs has been pursued with image processing methods and super-
vised learning based approaches. The former lack flexibility and the latter require large quantities of ground-truth
data which is hard to obtain because of the manual effort required. We present a convolutional neural network
based framework for sketch generation that does not require ground-truth data for training and produces various
styles of sketches. The method combines simple analytic loss functions that correspond to characteristics of the
sketch. The network is trained on and evaluated for human face images. Several stylized variations of sketches are
obtained by varying the parameters of the loss functions. The paper also discusses the implicit abstraction afforded
by the deep convolutional network approach which results in high quality sketch output.
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1 INTRODUCTION

Stylized sketch synthesis from a photograph is an
important problem in image stylization. In this paper
we propose a simple framework for stylized sketch
generation from images using a convolutional neural
network used as an image-to-image optimization
framework. We present results and analysis for human
face images.

Sketches are representational artwork characterized
by minimal marks (strokes, shading, etc.) on paper or
other substrates. They can be hand-drawn or digitally
constructed using software, and in this work we limit
our scope to digitally styled sketches only. These
sketches usually start from a photographic image, and
transform it by means of an image processing pipeline.

Static filter pipelines (for example in [11]) are a
fast method for producing sketch-like effects. The
drawback of such an approach is that its ability to
capture features of a sketch drawing depends on
complex heuristics that do not always work. Also,
these methods lack control over the characteristics
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Figure 1: Sketching results using our method. The dif-
ferent styles of sketches are produced by varying the
parameters and structure of the loss function at the top
of an image-to-image neural network.

of the output sketch which depends heavily on the
input image. Our method addresses both of these
concerns by learning a function from image data using
an optimization objective that captures the semantics
of the desired sketch output. Different stylized sketch
output can be constructed simply by changing the
parameters and structure of the loss functions of the
underlying neural network.

Neural networks are now commonly used for image
stylization, starting with [6]. Sketch generation could
be posed as a style-transfer problem. The primary
drawback of this approach is that examples images of
each sketch style are required. Our method addresses
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this problem by not requiring any specifically collected
paired-data. Also, the results vary significantly with
style-transfer.

Stylized sketch generation can also be set up as a
supervised learning problem, but the data for stylized
sketches is scarce. Generative approaches using adver-
sarial training, such as in [20], have also been proposed

but they too lack control over the characteristics of the
sketch output.

Our method for photograph to sketch generation com-
prises of a U-Net [12] like feed-forward convolutional
neural-network which is trained on different loss func-
tions that capture the semantics of the sketch output -
its similarity to the input photograph, its overall bright-
ness and contrast, and its sharpness, as determined by
the amount of variation captured. We fuse a set of non-
trainable classical image-processing filters at the top of
the convolutional network that enables the styles to be
varied either by direct combination with the output, or
by enforcing a semantic constraint on it. Different loss
function parameters produce different stylizations. The
data used for training is a set of regular, non-sketch pho-
tographs. The network trains quickly, for fewer than ten
thousand iterations, and produces high quality sketch
output.

This paper makes the following contributions:

e A generalized method for fusing classical image
processing techniques into a learnable filter mech-
anism as constraints.

e Loss functions for producing stylized sketch output,
that are also extensible to other kinds of image styl-
ization tasks.

2 RELATED WORK

Our work on sketch generation is closest to those based
on style-transfer because both methods use end-to-end
training of neural networks without the need for exten-
sive data. Supervised learning methods like [1, 14, 13,
21, 18, 25, 26, 24, 19, 17, 4] learn from large sets of
paired data and are directed towards producing hand-
drawn sketches, and are therefore not directly related to
our work.

Style Transfer Neural Style Transfer methods like [6],
[8] are closely related to our work because they too train
a deep neural network without the use of paired data.
[8] extended the initial algorithm in [6] by training the
image transformer network for each style image, thus
making it possible to generate stylized images for a sin-
gle style in a single pass. [2] proposed to use condi-
tional instance normalization in image transformer net-
works. Their method reduces each style to a point in the
embedding space and makes it possible to train a single
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network for several different styles. Recently, [3] obvi-
ated the need to retrain the image transformer networks
for every new style by proposing a meta network that
takes a style image and produces the transformer net-
work directly. All of these methods rely on matching
the low- and mid-level features of deep neural network
for transferring style from a style source to another im-
age. Our method differs from style transfer in that the
style source is itself expressed as semantic constraints
on the output, rather than another image.

Deep Image Prior An important reason why the
method is able to produce stylized sketch images with
ease is that the underlying neural network affords it a
certain level of abstraction of the representational qual-
ities of the input images. This ability of the network
is discussed in the work by Ulyanov et al. [15]. They
discuss how a minimally trained U-Net network ([12])
provides a good prior for the input itself and impedes
noise (details). This can be considered a means of
implicit abstraction of photographic images. We use
this impedance of the network to noise and detail to
the effect of producing a pre-styled, abstract state. The
constraints imposed by the filters then enable directing
the output towards the desired sketch characteristics.

3 METHOD

An overview of our framework is depicted in Figure
2. The learning pipeline comprises of a U-Net like
convolutional neural network with a set of fixed, non-
trainable filters at the top. The network learns to op-
timize a composite loss function which is constructed
on the input image, the raw unfiltered output from the
network and the filtered output. The sketch output is
either a filtered output from the fixed filters or a linear
combination of the raw unfiltered and filtered outputs.
Combinations of different fixed filters and different loss
functions lead to distinct sketch stylizations. For con-
trast independence, we employ the instance normaliza-
tion trick from [16].

3.1 Dataset

The training of our network does not require any
ground-truth data. We trained and validated our
framework on human face images as input. We use
the Celeb-A [10] aligned and cropped images for our
experiments. The dataset has over 200,000 images of
human faces. We use around 30,000 of these images
for training, and the rest for testing. The images are
center-cropped to a size 192x192 pixels for training.
We also validate our method with images from the
CUHK Face Sketch Database [22].

3.2 Network Architecture

The network is a U-Net [12] like fully convolutional
neural network. We chose the U-Net like architecture
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Figure 2: Network architecture.

because of the implicit prior that it affords, as discussed
in [15]. In our experiments, this network trained re-
ally quickly as long as the expected output as close to
the input image itself, the closeness measure itself be-
ing codified by the loss functions. All training sessions
were run for fewer than ten thousand iterations. The
last layer of the network has a sigmoid activation and
produces a 3-channel image output. This output is then
fed into a set of fixed filters including edge detection,
and blur filters. The resulting output image, as well as
the raw, unfiltered output from the network, along with
the input images are all passed into the composite loss
function. The output is selected as either the filtered
output, or a combination of the filtered and unfiltered
output images.

3.3 Loss Formulation

We consider sketches as an interpolate between the
grayscale image and the inverted edge response image,
along with some modified textural characteristics. This
transformation is achieved by means of the neural net-
work working as an image-to-image filter that is trained
to optimize certain functions of the output image, and
satisfy constraints defined on classical image process-
ing filters over the output. For example, pencil or char-
coal sketches can be considered as gray-scale image
representations of a photographic image which have the
following properties:

e The shapes and edges of the sketch match with those
of the photographic image.

e The substrate color (white for the paper, for in-
stance) is higher in mass than the pencil/charcoal
marks.

Output
Characteristic

Loss Representations
(Mean)

L, =[|G(¥) - GX)|]*

Brightness Similarity

Edge Similarity L= |[VY —VX|J
Overall Brightness L, =|G(Y)||
Local Brightness Lip = ||tnxn(G(Y)) —

Haxn(G(X))|I?
Le=[G(Y)[Z" +
FG(Y)l

Ly =[|VY]|

Table 1: Key image characteristics used for construct-
ing loss functions. X is the input image, Y is the output,
G(x) is the grayscale conversion of x, V is the gradient
operator, U, is the n X n average pooling operation,
[|2X™ is n x n max-pooling.

Overall Contrast

Total Variation

These ideas are used to formulate loss functions that
produce different variants of sketch outputs. The gen-
eral formulation includes loss terms for edge similarity
L., brightness similarity L;,, overall brightness L; and
contrast L. of the output, its closeness to a binary image
Fpin, a function of the overall brightness of the image
(Luma CCIR601) that determines the degree of white-
ness in the output F,,, and a total variation term Ly,.
The similarity terms are measured with respect to the
original image. More explicitly, this is expressed as:

L(X,Y) =ApairLs + AcagedifLe + AipaifLp
+ ;LbrightFmass (G(Y)) + )LcontrLc (1)
+ ApinFoin(G(Y)) + AvarLsy
Here, X is the RGB color input image, Y is the RGB
output image, G(Y) is the grayscale image correspond-

ing to the output image and the As are constant weights.
The different variations of sketch output are produced
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Figure 3: Pencil Sketch Output.

Figure 4: Charcoal sketch output.

by choosing different values for the As, Fyqs, Fpin, and
the implementation of the gradient (V) operator. Table
1 lists the different loss function components.

3.3.1 Shaded Pencil Sketch

Shaded pencil sketches (Figure 3(a)) are characterized
by thin strokes and smears over the paper. The con-
stants are Aeggedir = 1.0, Aprigne = 1072, Apin = 1073..
The loss function components are:

L =||VY — VX|P
Fnass(x) =(1.0— G(x) - x) 2)
Fpin(x) =[|(1.0—4(x—0.5)%)]|

3.3.2  Traced Pencil Sketch Output

A contoured sketch output (Figure 3(b)) can be pro-
duced where instead of edge-matching with the Sobel
operator, for the input image X, we employ a formu-
lation which is similar to the Difference of Gaussians
method for edge detection as used in [23] and imple-
menting a selection operation on the edges in the input
image. The image predicted by the network (Y), is a
selection mask over the edges. The objective function
itself is to minimize the difference between the Y,,,; im-
age and the grayscale vector of the input image G(X),
as well as reduce the overall edge response of the pre-
dicted mask Y.

Gpooled :‘G(X) ‘iﬂ‘
Gshifled :R4><4(Gpooled7wah) 3
\2:¢ :Gshifted - G(X)
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Where R4 is a re-scaling operation that restores the
size of the max-pooled image to the original size. The
output image is computed as:

You =1.0—-VG(X)-G(Y) “4)

L(va) :AlbdifHYout*G(X)||2+A¢VLIV @)

Where Ajpqir = 1.0, and 4;, = 0.01

3.3.3 Charcoal Drawing Generation

Charcoal drawings (Figure 4) have larger smears and
deeper black shades. The corresponding loss function
components are the same as for shaded pencil sketches
2 except for the additional contrast terms and the A val-
ues:

L =|GY)[Z4+] - G(r)[* (©)

with afedgedif = 1.0, l17right = 1073’ Aconr = 0.1, and
Apin = 0.1.

3.4 Contrast Invariant Output

One major reason why we employ a learning method
for sketch generation is that it can be used to learn the
map from a color image to a sketch image irrespec-
tive of the contrast of the input. For this, instance-
normalization (as described in [16]) layers are inserted
into the encoder part of the network. Figure 5 shows
the results without and with the instance normalization
trick.

3.5 Results on other datasets

Figure 6 depicts some results from the CUHK Face
Database. These results are not really comparable to the
hand-drawn ground-truth images, but they are produced
for comparison with other contemporary methods.

3.6 Training and Stability

We use the Adam optimizer [9] for training the network.
Many of the loss functions we use have stable local
minima which poses a challenge in training. For exam-
ple, if the network is initialized randomly, and trained
with Lp;, as part of the loss function, sometimes it re-
sults in an inverted initial output. And then it takes very
long for the network to converge towards the global op-
timum (or even a good local optimum). We could re-
duce the learning rate or reduce the weights of these
losses considerably, but that too results in delay in con-
vergence. We found that training with the L, loss be-
tween the input (grayscale) and output images (recon-
struction task) for only a thousand iterations initially,
produces a very good prior and adds to the stability of
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With Instance
Normalization

Figure 5: Output without and with instance normalization.
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Figure 6: Pencil and charcoal sketch output for the
CUHK dataset. Top row: Charcoal sketches, Bottom
row: pencil sketch output.

=
[y -

Figure 7: Quilt-like sketch output produced by match-
ing the inverted edge image against the grayscale input
image.

the training. In our experiments, with an initial train-
ing for reconstruction, the network never converged to
a stable local optimum.

Just as in illustration workflows, where an abstract
shape or form serves as a good starting point for produc-
ing styled art, this abstraction implicit in the network
serves as a good starting point for learning automatic
stylization. We can use this fact to produce artistic ren-
ditions of the input image that abstract away certain rep-
resentational qualities but retain the semantics. Sketch
generation is an instance of this sort of abstraction.

To further corroborate the insight that the network does
learn a representation close to the original image even
when it is not fully trained, we train our network with

a combination of three conflicting loss function with
clear trade-offs. This ensures that the network never
fully converged to the minimum of either of the loss
function components:

L(X Y) Ledge"’Lbdzf
Legge(X,Y) =[|(1=F((G(Y)) = G(X)[]2 (7
Lyair (X, Y) =||taxa(G(Y)) — paxa(G(X))||2

where the filter function F(Y) is the average of the gra-
dient responses (computed using the Sobel operator) in
the x- and y- directions.

F(Y) = 0.5-(V,(¥) + Y, (¥)) ®)

The loss functions pit the (inverted) edge response
against the grayscale value of the input image. For
photographic images, the gradient response is rarely
equal to the input image G(X), because the intensities
of the pixels are not exponential in their coordinates.
Therefore, this is a very hard optimization problem for
the network. As a result, the network learns to abstract
out details and produces only the most necessary edge
responses. Training with this loss function produces a
quilt-like pattern(Figure 7) from the network.

3.7 Comparison with Style Transfer

Our results are compared with those from style trans-
fer methods. To produce results from style transfer, we
took a synthesized sketch image from our method as a
style image and used it to transfer style over to a pho-
tograph in the dataset via the approach of neural style
transfer as in [6]. The results are depicted in Figure 8.

3.8 Extended Results

The versatility of our approach is indicated by the di-
versity of results that can be obtained by simply chang-
ing the underlying loss function parameters. Figure
9 demonstrates the results on high-resolution images.
The last output is obtained by capturing the color output
times the inverted edge response, while keeping identi-
cal objectives as a pencil sketch, besides an L, distance
between the color output and the input image.
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Style Transfer Result Our Result

Figure 8: Comparison with style transfer outputs. The style transfer output loses semblance with the content image,

while our method produces better looking sketch output.
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Figure 9: High Reéolution Results. The last result is obtained by capturing the color output from the network times

the inverted edge response as the output.

4 CONCLUSIONS

This paper presents a framework for producing styl-
ized images without the need to train with paired style
and ground-truth data. It focuses on producing stylized
sketch output by means of fusing classical image pro-
cessing filters into a learning framework based on an
intuitive loss function. It also demonstrates how the
underlying abstraction afforded by the deep neural net-
work aids in producing stylizations.
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