
The City Metaphor in Software Visualization

Clinton L. Jeffery
Department of Computer Science

University of Idaho
875 Perimeter Drive MS 1010
USA 83844, Moscow, Idaho

jeffery@cs.uidaho.edu

ABSTRACT
A city metaphor has become a popular method of visualizing properties of program code. This paper provides
an overview of research projects that employ this metaphor for a wide range of software engineering tasks. Until
now, projects employing the city metaphor have primarily focused on visualizing static and semi-static properties
of software repositories, such as understanding how a program’s source code structure is changing over time,
and who is changing what. This paper compares these existing code cities and suggests likely avenues of future
research.

Keywords
software visualization; code cities

1 INTRODUCTION
In the 1980’s, works of science fiction such as TRON
and Neuromancer popularized the notion that code and
data could be visualized in 3D and understood by means
of animation and anthropomorphization. A metaphor
was needed in order for the human viewer to under-
stand the visualization of abstract mathematical con-
structs that operate on scales beyond our normal cog-
nitive range. Since humans are trained from an early
age to understand how to navigate through man-made
structures in the real world, it was natural to envision
software as a city inhabited by many dynamic entities
whose behavior could be understood by means of direct
observation.

The first generation of virtual reality hardware in the
late 1990’s inspired researchers to attempt to implement
the metaphor of the software city with headsets and SGI
workstations. Almost simultaneously, rapid advances
in the game industry and the internet made such shared
online virtual 3D spaces popular and useful, even with-
out specialized hardware.

However, the rate of development of software city visu-
alizations has been modest and has followed the boom-
bust cycle of virtual reality technologies, rather than the
rapid rate at which computer game technology has ad-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

vanced. The rate of advances in software cities has been
limited by the difficulty of programming them, in ad-
dition to the varying rate at which funding for VR re-
search has been available.

This paper surveys the published research on software
city visualizations. The goal is to understand the range
of results achieved, their interconnections, and what
gaps or missing pieces are needed in order for this genre
of software tools to become more widely developed and
used.

By necessity, the paper draws a line at city visualiza-
tions of software. Thus, it does not consider some fine
work exploring other metaphors for software, including
metaphors that employ a galactic or solar system space
metaphor, an atomic metaphor, a cellular metaphor, or
other geographic metaphors such as islands [Kuhn08]
[Misi18] [Schr18]. Any metaphor that helps users is
valuable, and some of this related research has pro-
duced gorgeous images. Nevertheless, although some
software might arguably be developed by means that fit
one of these other metaphors, most software that gets
studied is written as a semi-planned artificial human
construct, for which the city metaphor is a better fit than
other metaphors where human planning is not so obvi-
ously involved.

2 RESEARCH QUESTIONS
The paper first establishes via literature survey what
coarse-grained, large-scale static and semi-static
software properties have been depicted using software
cities. It then asks the following research questions,
which focus on the question of dynamic analysis of
program execution behavior:

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

153 ISBN 978-80-86943-37-4https://doi.org/10.24132/CSRN.2019.2901.1.18

• What fine-grained, dynamic program execution be-
haviors have been depicted using software cities?

• Is it possible to integrate both large-scale static and
fine-grained dynamic information into the same
software city visualization?

3 EXISTING IMPLEMENTATIONS
Software World and Component City
Knight and Munro used the Maverik VR toolkit
[Hubbold99] to develop a tool called Software World
[Knig00] that is an early single-user example of the
city metaphor for software visualization. Their layout
maps Java classes to districts, within which methods
are buildings whose height is one storey per 10 LOC.
Parameters are depicted by exterior doors. Lighter
and darker building colors indicate public and private.
The mapping of one building onto one function seems
suited to visualization of finer-grained details at the
expense of scalability to larger systems.

The work of Knight and Munro was later subsumed by
a tool called Component City, which depicts compo-
nents as buildings, a larger granularity shared by most
other research projects that employ the city metaphor
[Charters02]. Component City was not based on the
Software World implementation, but instead uses XML
and XSLT to generate VRML that can be viewed in
browsers with a suitable plug-in. The published papers
on Software World and Component City do not include
an evaluation, but their wide influence can be seen in
their number of citations and the number of projects that
utilize the same or similar metaphor.

Figure 1 shows two views from Software World. The
upper image shows a street level view of many, varying
sizes of methods. The lower image shows an overview
of a district based on a reasonably sized class, with two
methods that contain large amounts of code.

Code City
Wettel et al developed a system called Code City in
which a building represents an entire class, with a
height proportional to the number of methods, rather
than to lines of code [Wett07]. Length and width of the
buildings were proportional to the number of member
variables. The layout of buildings was performed
using a treemap, atop a land whose elevation indicated
nesting level of packages.

The increased scalability of representing an entire class
as a building allows Code City to visualize large sys-
tems. consisting of many thousands of classes. The tool
is used in the study of code evolution over time in soft-
ware repositories. Code City was evaluated by demon-
strating its scalability to large real-world software sys-
tems such as ArgoUML, Azureus, and VisualWorks, al-
lowing views of as many as 8,000 classes. The work

Figure 1: Software World (images courtesy of Claire
Knight, from [Knigh00b])

has been heavily cited or directly used in much soft-
ware city visualization work that came after it. Figure
2 shows views of two large software systems from Code
City.

Vizz3D
Panas et al developed an unnamed software city im-
plementation for visualizing C++ programs using their
visualization package named Vizz3D [Pana07]. Like
Software World, their visualization depicts member
functions as buildings; a blue platform serves as a pad
for all the functions within a class. The number of
lines of code in a member function is indicated by the
texture of its exterior walls.

In contrast with most software city implementations,
the Vizz3D based tool visually depicts more dependen-
cies between functions and classes, such as “water tow-
ers” showing dependencies between header files and the
classes defined within them. The system incorporates
some dynamic analysis information, including the tim-
ing information produced by gprof, to augment a vast
amount of static information that is depicted in the vi-
sualization.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

154 ISBN 978-80-86943-37-4

Figure 2: Code City (images courtesy of Michele
Lanza)

Figure 3 shows a city generated using Vizz3d. The
system is evaluated mainly by means of examples that
demonstrate the range of stakeholders and roles (such
as managers, testers, and engineers) that can utilize
the single-view architectural visualization in perform-
ing their required tasks.

UML-City

Lange and Chaudron devised a UML-City visualiza-
tion by combining two methods of reusing UML dia-
grams to produce visualizations in a system called Met-
ricView Evolution [Lang07] [Lang07b]. A first method,
called MetaView, focused on showing relationships be-
tween entities across reduced-size depictions of the en-
tire set of UML diagrams available for a given software
project. A second method, called MetricView, super-
imposed various software metrics data atop UML dia-
grams, as a vertical height, color, or shape.

The combination of MetaView and MetricView on large
software systems produces an enriched, high-level view
of the UML diagrams that resembles a city. The use-
fulness of these views was validated by a detailed user
study of 100 M.S. students that demonstrates both im-
proved speed and correctness of understanding UML
diagrams when using the 3D visualizations than when
trying to understand the software using a plethora of
conventional, disconnected 2D UML diagrams.

Figure 3: Vizz3d (images courtesy Thomas Epperly)

EvoStreets
Steinbruckner and Lewerentz created a system called
EvoStreets [Stei10]. They adapt ideas from cartogra-
phy, particularly the primary, secondary, and tertiary
data models that respectively distinguish raw data, a de-
tailed internal model, and a view-specific model that is
render-friendly.
EvoStreets lays out classes, depicted as cylinders or
cuboids, around streets, corresponding to directories or
packages. The origin date of the various software com-
ponents is indicated by their elevation given on a to-
pographic map. Arguably, laying out structures around
streets is more consistent with actual human cities than
are space-filling techniques such as a treemap algo-
rithm, although treemaps scale well.
EvoStreets has been used to study spatial orientation on
VR head-mounted displays [Rude18]. Figure 4 shows
an EvoStreets layout.

VizzAspectJ-3D
Bentrad and Meslati extended the city metaphor used
in CodeCity to support the visualization of aspects in

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

155 ISBN 978-80-86943-37-4

Figure 4: Evostreets (images c©Claus Lewerentz and
Markus Uhlig, BTU Cottbus, 2016, by permission)

AspectJ programs [Bent11]. They developed an Eclipse
plug-in in which both classes and aspects are buildings.
The aspect buildings use the number of pointcuts and
advice to determine building height. Different color-
codings are used in complexity and dependencies views
of the classes and aspects.

SkyscrapAR
Souza et al developed an augmented reality system
called SkyscrapAR that visualizes Java systems with
a metaphor similar to Code City except with building
height denoting code churn [Souz12]. Churn refers
to the idea that the number of lines of changes to a
class may indicate its probability of containing soft-
ware bugs. The visualization is projected onto a phys-
ical marker card that allows direct manipulation of the
position, orientation, and scaling of the city, usually on
a tabletop.

SynchroVis/ExplorViz
Waller et al invented a piece of software called Syn-
chroVis in which classes are buildings [Wall13]. Each
instance of a class is visualized as a storey on the build-
ing, allowing per-instance depiction of runtime depen-
dencies and behavior.

SynchroVis depicts threads using colored arrows, al-
lowing the visualization of concurrent behavior, com-

munication and synchronization issues such as dead-
lock. Icons depict reasons why code may be suspended
in a given instance, such as a method call to another
object, or a wait on a semaphore. Figure 5 shows Syn-
chroVis in action.

The software engineering group that developed Syn-
chroVis also adapted their ExplorViz software to pro-
duce an Oculus Rift implementation with which to in-
teract with a city metaphor [Fitt15]. This implemen-
tation allows translation, rotation, and scaling of the
model using hand gestures input using a Kinect device.

Figure 5: SynchroVis (image courtesy of Wilhelm Has-
selbring)

CityVR
Merino et al created a VR application for the HTC Vive
using the CodeCity system to generate the 3D visualiza-
tion [Meri17]. The number of lines of code in a class
is indicated via brightness. Source code for any class
can be pulled up in a translucent 2D heads-up-display
by pointing and clicking on the building. A similar sys-
tem was used used on the HoloLens to explore whether
immersive augmented reality technology will help to
overcome usability issues with 3D visualizations in per-
forming software engineering tasks [Meri18].

VR City
Vincur et al wrote a VR application for HTC Vive
in which building layout is more organic because the
amount of surface area contact between buildings is
proportional to the amount of coupling between them
[Vinc17]. For highly-coupled classes, the visualization
may appear somewhat jigsaw-like. Although classes
are represented by entire buidings with storeys repre-
senting methods as in Code City, the lengths and widths
of storeys depict method metrics rather than class met-
rics. This simultaneously visualizes more information
while resulting in building shapes that are more inter-
esting and less uniform.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

156 ISBN 978-80-86943-37-4

The VR City visualization allows the use of color-
coding to highlight revision log information such as au-
thor commits, or dynamic information such as execu-
tion call traces. Figure 6 shows VR City’s elegant use
of color coding and translucence.

Figure 6: VR City (images courtesy of Ivan Polasek)

Code Park
Khaloo et al developed a system called Code Park
that utilizes the city metaphor more for navigation of
source code rather than for study of software architec-
ture [Khal17]. Building size is proportional to code size
but software engineering metrics are not the point of the
tool.

The walls of buildings in Code Park contain source
code with IDE-like syntax coloring and code naviga-
tion features. Users can toggle between birds-eye-view
and first-person view on the ground. Movement be-
tween locations such as moving from a variable use
to its definition is performed by animating up to birds-
eye-view and then down to the new location, improving
the user’s orientation within the code base, compared
with the more hyperlink-like teleportation that would be
common in IDEs. Figure 7 shows Code Park’s build-
ing layout (left) and a depiction on source code inside a
building’s walls.

Figure 7: Code Park (images courtesy of Joseph LaVi-
ola)

High-Rise
Ogami et al developed a city-metaphor tool to deliver
profile timing information in near real-time [Ogam17].
The height of buildings rises and falls over time, pro-
portional to the amount of time consumed by the class
in a fixed time frame such as the last L milliseconds.
This design blurs the line between a city metaphor and
a three dimensional bar chart.

By watching the profiles of different classes fluctuate
over time, developers can notice issues that are not
portrayed in conventional profiler output. It is clear
that this visualization depicts transitions between ma-
jor phases in an application very well.

LD-City
de Graaf and Khalili developed a city metaphor specif-
ically for the representation of linked data, called LD-
City [Graaf17]. Within that context, their visualization
is used to detect anti-patterns such as god classes or fea-
ture envy. Their prototype implementation is built atop
Three.js and related web technologies.

Comparison
Table 1. presents a comparison of existing software
city visualizations. Column Language indicates the
language(s) supported by the tool. Column VR spec-
ifies the type of VR hardware required, if any. Col-
umn Building conveys what a building denotes, such
as a class or a function/method. Column Src indi-
cates whether the tool depicts or integrates source code.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

157 ISBN 978-80-86943-37-4

Column Static shows the static program properties de-
picted. Column Dynamic shows the dynamic program
activity depicted. Column Instr gives the source/type
of instrumentation used for dynamic program execution
behavior, if any. An entry of n/a means an item is un-
known or not applicable.

4 RESEARCH OPPORTUNITIES
Looking at Table 1, several obvious opportunities can
be identified for near-term future research on visualiza-
tions using the city metaphor. Opportunities to better
visualize information from static analysis are discussed
first, followed by opportunities that involve incorpora-
tion of dynamic analysis information.

In this section, the research opportunities are sometimes
couched in terms of suggested potential software-city-
metaphor solutions, but really, better solutions may be
empirically derived or simply invented by whomever
incorporates that aspect into their software city visu-
alization first. Many opportunities suggested here in-
volve adding useful information to the city visualiza-
tion. The research questions are often: what informa-
tion is needed in a given context, and how to provide
that information in a manner that is intuitive and does
not result in cognitive overload.

Additional Static Information
None of the published works on the city metaphor deal
with certain aspects of available static analysis infor-
mation. For example, many of the published research
works omit relationships between classes or functions
beyond approximate juxtaposition of neighbors from
the same file, package, or directory.

Tools that do visualize dependencies such as inheri-
tance or caller-callee relationships risk overwhelming
the viewer with too many interconnections, occluding
too much of the cityscape. There is an opportunity to
depict this information without overload, such as us-
ing animation, or an intermittent or context-sensitive
depiction. It is possible to identify circumstances un-
der which different dependencies merit visible rendi-
tion for a limited period of time, without overwhelming
the viewer’s other items under observation.

Integrating More Dynamic Information
Various existing tools feed dynamic analysis informa-
tion into a city visualization post-mortem from log files,
or at run-time. Either way, dynamic information has
been far less utilitized in city-metaphor visualizations.
This is probably due more to the difficulty of extract-
ing fine grained program execution behavior than to the
challenges posed to the visualization researcher of how
to depict dynamic information in the city.

In any case, it is long overdue for software city visu-
alizations to incorporate more kinds of dynamic infor-
mation from program executions. Such information is
not suggested to reduce or replace the static information
currently being visualized, but rather, to complement
and leverage the static information visualization in or-
der to visualize dynamic behavior that is intrinsically
more difficult to understand.
Function or method calls and returns, timing infor-
mation and thread operations have been depicted by
existing city visualization tools. In future software
cities should include depictions of behavior such as data
structures and access patterns, stack and heap alloca-
tion, and input/output behavior.

Populating the City
In real life, cities exist in order to organize and facilitate
the coordinated efforts of large numbers of humans. If
the city is found to be useful as a metaphor at all in soft-
ware visualization, its most likely purpose is to provide
structure and context that assists the viewer in interpret-
ing the dynamic aspects of program behavior, avoid-
ing that cognitive overload that is otherwise ubiquitous
when viewing software in its abstract complexity.
The population of objects within a software city might
be graphic primitives such as spheres or cuboids.
Adopting the terminology of videogames, a dynamic
rendered object with which the user may interact may
be termed an entity. It is a research question whether
human viewers will find it more effective to visualize
software objects via anthropomorphic entities, such
as humans, robots, or pets that populate the city, or
whether they will find abstract shapes just as effective.
The most obvious category of entity that would natu-
rally construe a citizen of the city would be an applica-
tion domain object: a class (or record/struct) instance
where the corresponding type is from the application
domain (as opposed to being an implementation arti-
fact such as a glue data structure type). Criterion for
citizenship might also include lifespan, since many or
most objects in some programs do not exist long enough
to deserve much investment from the visualization sub-
system.
Although invoking a method on a citizen means that
a thread of execution will be active within that citizen’s
class, we are often primarily interested in where that cit-
izen object is being accessed from. Rather than drawing
an arrow from caller to callee, citizens should stroll to-
ward the code from where they are accessed. Some citi-
zens will always be hanging out within the code (build-
ing) of some containing or highly-coupled object, while
other citizens may continuously be going to and fro be-
tween many different sites from which they are refer-
enced in the code. Such citizens, which may indicate
design or performance bugs, will be very evident if they
are portrayed walking around on the streets of the city.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

158 ISBN 978-80-86943-37-4

Tool Language VR Building Src Static Dynamic Instr

SoftwareWorld Java Maverik function n/a

LOC
#methods

public/private
parameters
param. types

n/a n/a

ComponentCity XML VRML compon. n/a func. attributes n/a n/a

CodeCity
SmallTalk

Java
C++

n/a class n/a
methods
attributes

package struct.
n/a n/a

Vizz3D C/C++ n/a function n/a

LOC
complexity
call graphs

contains
inheritance

str. conn. comp.

gprof
none

(-pg)

SkyscrapAR Java AR class n/a
LOC
churn n/a n/a

UML-City UML n/a
class

various n/a
various metrics

author n/a n/a

VizzAspectJ
Java

AspectJ n/a
class

aspect n/a
methods
pointcuts
advices

n/a n/a

EvoStreets Java n/a class n/a

module age
coupling

dependencies
module size

last mod. date
author

n/a n/a

SynchroVis
ExplorVis Java Rift class n/a

inheritance
implementation

association

instances
calls

thread op

Kieker
traces

CityVR Java/C++ Vive class yes
LOC

methods
attributes

n/a n/a

VR City Java Vive class yes

LOC
methods

author
coupling

trace loc.
inTrace
traces

Code Park C# n/a class yes
size

method names n/a n/a

High-Rise Java n/a function no n/a time ASM
injection

LD-City LD-R n/a (dynamic) n/a
#instances

properties n/a n/a

Table 1: Feature Sets of City-Metaphor Visualizations

Time Scales

Understanding the execution behavior of software sys-
tems includes a need to understand dynamic behav-
ior at widely ranging time scales, perhaps from sub-
microsecond granularity to things that challenge hu-
man patience. A visualization tool can implement yet-
another slider to control the speed of execution, and
leave the user in control, but users have better things to

think about. Alice in Wonderland and Star Trek are sug-
gestive, but perhaps Dr. Who’s Weeping Angels provide
a better metaphor and potential user interface mecha-
nism: the speed of execution behavior should automat-
ically stop while an entity is being observed, either via
explicit pointer selection or by entering a user’s center
of vision.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

159 ISBN 978-80-86943-37-4

Dealing with Dynamic Data

Some of the more dynamic oriented software cities ani-
mate the buildings themselves, with building height de-
picting the number of instances, or the amount of time
spent in a class. Separate from the scalability problem
introduced by such approaches, they have a metaphor
problem. Although software cities are by no means re-
quired to be “realistic” or follow rules that would apply
to human cities, the value of the metaphor depends on
an analogy. Humans can recognize buildings as solid
artificial structures that have a purpose and that can be
navigated around.

While it is easy in software to grow and shrink a set
of cuboids in an animated 3D bar chart, the notion of
buildings rapidly growing and shrinking violates the
city metaphor and makes the entities softer and more
transient. Cities, streets, and topography are a more
natural fit to depict static or semi-static data, provid-
ing a context in which to interpret the vast amounts of
dynamic information that humans need to understand.

Whereas the challenge of visualizing and making com-
prehensible very large bodies of code is a semi-static
one, a software city can portray large amounts of dy-
namic data: on the stack, on the heap, or entering and
exiting via I/O ports. In most cases, the primary chal-
lenge is the depiction of large amounts of information,
much of which is very short-lived.

Short-lived information may be categorized by its im-
portance. If it is important enough that the user may
need to interact with it, it may require a temporal stop
or slowdown so that the user has time to take it in. If
user interaction is not required, such information may
still be useful, and might by depicted by means of a
more subtle visual effect rather than an entity.

Multi-user Shared Viewing
From the earliest example of Software World, re-
searchers have identified a networked multi-user
environment as an objective for software city visual-
izations, but this feature adds enough implementation
challenges that it is usually omitted. A substantial
opportunity exists for a cloud-based software city
whose open infrastucture is accessed and shared by
multiple research groups.

Multi-Lingual City Visualization
Several existing projects support two or more main-
stream languages such as Java and C++ by means of
some standard common tool for obtaining static infor-
mation, such as an Eclipse IDE plugin. While such
multi-lingual support is compelling, no standard exists
for high-level language-neutral dynamic analysis infor-
mation. A standard is needed that provides higher-level

dynamic information than that available via virtual ma-
chines that support managed code in many languages,
such as the JVM or .Net.

In addition, many large software systems are written in
a combination of languages. For example, a software
city might depict a program written in a higher level
language (such as Python or Java) with an understand-
ing that its subterranean or aquatic regions depict the
behavior of intermediate or lower-level elements, such
as ones invoked through a native interface to libraries
written in C or C++.

5 CONCLUSION
The city metaphor has been adopted by a growing num-
ber of research groups for the visualization of large,
complex software systems. Existing research has been
successful in scaling to real-world software with a large
number of classes, for which many static properties of
the program code can be immediately observed.

Compared with the static information for which they
were originally developed, city visualizations have not
been applied as much to the task of making dynamic
program execution behavior visible and understand-
able. In that domain software cities are potentially even
more useful than the applications where it has thus-
far been applied. Tremendous potential exists for the
research groups that apply this metaphor to a broader
range of dynamic program execution behavior. Such
projects will require access to general purpose, high-
performance execution frameworks capable of report-
ing a wide range of execution events, such as JVMTI
[JVMTI] or Alamo [Jeffery98].

Several of the recent research advances that use the city
metaphor focus on VR, despite head-mounted displays
still being inadequate for displaying large quantities of
text. This has resulted somewhat in a bifurcation be-
tween high-text software cities that run on desktops,
and low-text software cities that run on VR systems.

6 REFERENCES
[Bent11] Bentrad, S. and Meslati, D. 2D and 3D Vi-

sualization of AspectJ Programs. In 10th Interna-
tional Symposium on Programming and Systems,
pp. 183-190, IEEE 2011.

[Charters02] Charters, S.M., Knight, C., Thomas, N.,
and Munro, M. Visualization for informed deci-
sion making; from code to components. In SEKE
02: Intl. Conference on Software Engineering
and Knowledge Engineering, pp. 765-772, ACM
Press 2002.

[Fitt15] Fittkau, F., Krause, A., and Hasselbring, W.
Exploring Software Cities in Virtual Reality, in
3rd Working Conference on Software Visualiza-
tion, IEEE, pp. 130-134, 2015.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

160 ISBN 978-80-86943-37-4

[Graaf17] de Graaf, K.A., and Khalili, A. Visualizing
Linked Data as Habitable Cities. VOILA 2017,
Third Intl. Workshop on Visualization and Inter-
action for Ontologies and Linked Data, Vienna,
CEUR-WS vol. 1947, pp. 131-138, 2017.

[Hubbold99] Hubbold, R., Cook, J., Keates, M., Gib-
son, S., Howard, T., Murta, A., West, A., and
Pettifer, S. GNU/MAVERIK: A micro-kernel for
large-scale virtual environments. VRST’99, pp.
66-73, ACM, 1999.

[Jeffery98] Jeffery, C., Zhou, W., Templer, K., and
Brazell, M. A Lightweight Architecture for Pro-
gram Execution Monitoring. Proc. of PASTE’98.
ACM SIGPLAN Notices 33(7).

[JVMTI] Java Virtual Machine Tool Interface (JVM
TI). https://docs.oracle.com/javase/8/docs/tech-
notes/guides/jvmti.

[Khal17] Khaloo, P., Maghoumi, M., Taranta, E., Bet-
tner, D., and Laviola, J. Code Park: A New 3D
Code Visualization Tool, in Working Conference
on Software Visualization, IEEE, pp. 43-53, 2017.

[Knig00] Knight, C., and Munro, M. Virtual but Visi-
ble Software. 2000 IEEE Conference on Informa-
tion Visualization. London, IEEE, pp 198-205.

[Knigh00b] Knight, C. Virtual software in reality.
Ph.D. Thesis, University of Durham, 2000.

[Kuhn08] Kuhn, A., Loretan, P., Nierstrasz, O. Consis-
tent Layout for Thematic Software Maps, Pro-
ceedings of the 15th Working Conference on
Reverse Engineering, WCRE ’08. pp. 209-218,
2008.

[Lang07] Lange, C. and Chaudron, M. Interactive
Views to Improve the Comprehension of UML
Models - An Experimental Validation, Proceed-
ings of the 15th IEEE International Conference
on Program Comprehension, pp. 221-230, 2007.

[Lang07b] Lange, C., Wijns, M., and Chaudron, M. A
Visualization Framework for Task-Oriented Mod-
eling Using UML, 40th Annual Hawaii Interna-
tional Conference on System Sciences, p. 289a,
2007.

[Meri17] Merino, L., Ghafari, M., Anslow, C. and
Nierstrasz, O. CityVR: Gameful Software Visual-
ization. in International Conference on Software
Maintenance and Evolution (ICSME), Shanghai,
IEEE, pp. 633-637, 2017.

[Meri18] Merino, Bergel, and Nierstrasz. Overcoming
Issues of 3D Software Visualization through Im-
mersive Augmented Reality, in Working Confer-
ence on Software Visualization, pp. 54-64, IEEE,
2018.

[Misi18] Misiak. et al. IslandViz: A Tool for Visualiz-
ing Modular Software Systems in Virtual Reality.

In Working Conference on Software Visualiza-
tion, IEEE, pp. 112-116, 2018.

[Ogam17] Ogami, K., Kula, R.G., Hata, H., Ishio, T.
and Matsumoto, K. Using High Rising Cities to
Visualize Performance in Real-Time, in Working
Conference on Software Visualization, Shanghai,
IEEE, pp. 33-42, 2017.

[Pana07] Panas, T., Epperly, T., Quinlan, D., Saeb-
jornsen, A. and Vuduc, R. Communicating Soft-
ware Architecture using a Unified Single-View
Visualization, in Proc. ICECCS 2007, Auckland,
IEEE, pp. 217-228.

[Rude18] Rüdel, M.O., Ganser, J., and Koschke, R. A
Controlled Experiment on Spatial Orientation in
VR-Based Software Cities, in Working Confer-
ence on Software Visualization, pp. 21-31, IEEE,
2018.

[Schr18] Schreiber and Misiak. Visualizing Software
Architectures in Virtual Reality with an Island
Metaphor. VAMR 2018, International Conference
on Virtual, Augmented, and Mixed Reality, pp.
168-182, 2018.

[Souz12] Souza, R., Silva, B., Mendes, T. and Men-
donça, M. SkyscrapAR: An Augmented Reality
Visualization for Software Evolution, in II Work-
shop Brasileiro de Visualizaçao de Software, Na-
tal, RN, Brasilian Computing Society, 2012, pp.
17-24.

[Stei10] Steinbrückner, F. and Lewerentz, C. Repre-
senting Development History in Software Cities,
in Proceedings of the 5th international sympo-
sium on Software visualization, SOFTVIZ 2010,
ACM, New York, pp. 193-202.

[Vinc17] Vincur, J., Navrat, P., and Polasek, I. VR
City: Software Analysis in a Virtual Reality En-
vironment, in International Conference on Soft-
ware Quality, Reliability and Security Companion
(QRS-C), Prague, IEEE, pp. 509-516, 2017.

[Wall13] Waller, J., Wulf, C., Fittkau, F., Doring, P.,
and Hasselbring, W. SynchroVis: 3D Visualiza-
tion of Monitoring Traces in the City Metaphor
for Analyzing Concurrency. in First IEEE Work-
ing Conference on Software Visualization, Eind-
hoven, Netherlands, IEEE, pp. 1-4, 2013.

[Wett07] Wettel, R. and Lanza, M. Visualizing Soft-
ware Systems as Cities, in Proceedings of VIS-
SOFT 2007 (4th IEEE International Workshop
on Visualizing Software For Understanding and
Analysis), pp. 92-99, IEEE Computer Society
Press, 2007.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

161 ISBN 978-80-86943-37-4

