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ABSTRACT
We have developed an image-based head-tracker interface for mobile devices that uses the information of the
front camera to detect and track the user’s nose position and translate its movements into a pointing metaphor
to the device. However, as already noted in the literature, the measurement errors of the motion tracking leads
to a noticeable jittering of the perceived motion. To counterbalance this unpleasant and unwanted behavior, we
have applied a Kalman filter to smooth the obtained positions. In this paper we focus on the effect that the use
of a Kalman filter can have on the throughput of the interface. Throughput is the human performance measure
proposed by the ISO 9241-411 for evaluating the efficiency and effectiveness of non-keyboard input devices. The
softness and precision improvements that the Kalman filter infers in the tracking of the cursor are subjectively
evident. However, its effects on the ISO’s throughput have to be measured objectively to get an estimation of the
benefits and drawbacks of applying a Kalman filter to a pointing device.
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1 INTRODUCTION
Head-trackers provide a hands-free way to interact with
devices through the movements of the head and so, they
have a direct application in assistive tools for motor-
impaired users. In the assistive domain technologies,
such interfaces are widely used for desktop computers
[MYPVP10, MGiSLVG06] and in several commercial
mobile applications [DSLKT03, GB].

Research on head tracker interfaces based on image
sensors for desktop computers is a mature discipline
and has been conducted for a long time for HCI pur-
poses [Toy98, BGF02, CMM+09, VMYP08]. Never-
theless, nowadays the advent of integrated frontal cam-
eras has focused this kind of research on mobile de-
vices.

We have developed an image-based head-tracker inter-
face for mobile devices [RMMYV16] that only uses the
information of the front camera to detect and track the
user’s nose position and translate its movements into
a pointing metaphor to the device. However, as already
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noted in the literature [CRV12], the measurement errors
of the motion tracking leads to a noticeable jittering of
the perceived motion. To counterbalance this unpleas-
ant and unwanted behavior, we have applied a Kalman
filter to smooth the obtained positions.
In this paper we focus on the effect that the use of a
Kalman filter can have on the throughput of the de-
veloped interface. Throughput is the human perfor-
mance measure proposed by the ISO 9241-411 [ISO12]
for evaluating the efficiency and effectiveness of non-
keyboard input devices.
The softness and precision improvements that the
Kalman filter infers in the tracking of the cursor is
subjectively evident. Nevertheless, its effects on the
final throughput also have to be measured objectively
to get an unbiased estimation of the benefits and
drawbacks of applying a Kalman filter to a pointing
device.
There have been some attempts to generally depict the
lag that filtering inherently introduces [CRV12] but, to
the best of our knowledge, there are no clues on the
effects of the Kalman filter on ISO’s throughput.

2 HEAD-TRACKER INTERFACE
FaceMe [RMMYV16] is a head-tracker interface for
mobile devices that uses the information of the front
camera to detect and track the user’s nose position and
translate its movements into interaction actions to the
device (Figure 1).
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Figure 1: Example of using FaceMe as a pointing de-
vice.

A version of SINA system [VMYP08], a camera-based
head-tracker interface for desktop environment, was
adapted and optimized for mobile devices.

The interface is based on facial feature tracking instead
of tracking the overall head or face. The selected facial
feature region is the nose, because it has specific char-
acteristics to allow tracking, it is not occluded by facial
hair or glasses, and it is always visible while the user is
interacting with the mobile device (even when the head
is rotated).

The process is divided into two stages: the User detec-
tion stage and the Tracking stage. In the User detection
stage we process the initial frames from the camera to
detect the user’s facial features to be tracked. After de-
tection, the Tracking stage performs the tracking and
filtering. Finally, the average of all the features (i.e., the
nose point) is sent to a transfer function. This transfer
function is responsible of the translation of the coordi-
nates’ change of the nose point to a coordinates’ change
on the device screen.

2.1 User Detection
In this step no calibration is needed, the only require-
ment is that the user must keep the head steady for a
small predefined number of frames to allow the system
to automatically detect the face region (see “User de-
tected" in Figure 2).

The main face is defined as the one with the biggest
area (see “Main face region" in Figure 2). To ensure
a steady user for a proper algorithm initialization and
to avoid false positives, we use a temporal consistency
scheme (see “Temporal consistency" in Figure 2).

According to anthropometrical measurements of the
human face [Sat16], the nose region occupies the sec-
ond third of the facial region (see “Nose region" in Fig-
ure 3). Inside this region, the nostrils and the corners
of the nose are selected as the initial facial features to
track (see “Facial features" in Figure 3).

Figure 2: Illustrated theoretical stages for the detection
of the main user face.

Changing light conditions can lead to the selection of
unstable features, therefore we need to re-select the ini-
tial facial features using symmetry constraints (respect
to the vertical axis). This leads to a more robust track-
ing process.

The finally chosen nose point is the average of all the
facial features being tracked, which will be centered on
the nose, between the nostrils (see “Nose point" in Fig-
ure 3).

Figure 3: Simulated steps of the User detection stage.

The User detection stage works in a wide range of light-
ing conditions (dark or clear), users particularities (skin
color, glasses or facial hair) and backgrounds (homoge-
neous or heterogeneous).

2.2 Tracking
In the Tracking stage, there is no need for the face to be
fully visible, as only an small region surrounding the
nose is used.

We get the best image registration exploding the spa-
tial intensity gradient information of the images using
a pyramidal implementation of the Lukas-Kanade algo-
rithm [Bou01]. Since the algorithm is robust to rotation,
scaling and shearing, the user can move in a flexible
way. However, fast head movements can cause the lost
or displacement of features to track. If we detect a fea-
ture abnormally separated from the average point, this
feature is discarded (see “Filtered of displaced feature"
in Figure 4). In case there are not enough features to
track, the User detection stage restarts.

We follow a typical Bayesian approach to sensor fusion,
combining measurements in the representation of a pos-
terior probability. For each new frame, we combine the
tracked nose features with newly detected features (see
“Fusion" in Figure 4).

After this stage, we apply the velocity constant Kalman
filter to get rid of the jittering.
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Figure 4: Simulated steps of the Tracking stage.

Our tracking stage is able to run in real-time on current
mobile devices with a variety of CPU platforms.
A detailed description of the system is found in other
sources [RMMYV16].

2.3 The Kalman filter
The Kalman filter is a powerful mathematical tool to
be used when working with real world inaccurate mea-
surements. It was first introduced in 1960 [Kal60] and
it is still commonly used in a broad range of disci-
plines including satellite navigation systems [SHiS14],
object and people tracking [PAHEM09] [SR11] or au-
tonomous navigation [LFL+18].
The Kalman filter is an optimal estimation of the state
of a process, in a way that minimizes the mean of the
squared error. Its implementation is very fast and its
memory requirements are very low, as there is no need
to reprocess previously observed data.
Kalman filter algorithms work in the continuous itera-
tion of two steps. In the first step, we update the state of
our system using the dynamic model (prediction), and
in the second step we update our measurement with the
observation model (correction).
Our goal when using the Kalman filter is to find an es-
timation of the cursor position such that we obtain a
smoother motion, reducing the jittering. So, in our im-
plementation of the filter, the state of our system at time
t is described with a position p and a velocity v, defin-
ing the state of the nose:

x̄t = (p,v)

The position and the velocity are correlated (the higher
the velocity, the farther the motion and the slower the
velocity, the nearer the motion). This correlation is de-
scribed in a covariance matrix Pt where each element
corresponds to the level of correlation between the cou-
ples position-velocity:

Pt =

(
Cpp Cpv
Cvp Cvv

)
At a time t, we need to know an estimation of the state
of the system x̂t :

x̂t =

(
p
v

)

And, from the current state, we have to predict the next
one x̂t .

Let use simple kinematics:

pt = pt−1 +∆tvt−1

vt = vt−1

From which we can build a prediction matrix Ft :

F̂t =

(
1 ∆t
0 1

)
,

such that,

x̂t = Ft x̂t−1 (1)

At time t, we also need to keep track of the covariance
matrix (i.e. the prediction of the new uncertainty). We
have to compute the new covariance matrix using the
prediction matrix. If we multiply every element in a
distribution by the prediction matrix, we get:

Pt = FtPt−1FT
t

At this point, we can also add some additional uncer-
tainty from the process noise expanding the covariance
by adding the term Qt :

Pt = FtPt−1FT
t +Qt (2)

Equation 1 and Equation 2 are used to estimate the state
of the system and the covariance projecting them from
time t to time t−1 in the prediction step.

In the correction step, we first have to compute the
Kalman gain K, using the matrix H that models the sen-
sors relating the state with the measurements and the
covariance of the observation noise R:

K = HtPtHT
t (HtPtHT

t +Rt)
−1

And now, we can state the equations for the correction
step:

P′t = Pt −K′HtPt (3)

x̂′t = x̂t +K′(~zt −Ht x̂t) (4)

Where ~zt is the reading we have observed.

We have tuned the noise parameters so that jittering is
correctly compensated in most use conditions.

Figure 5 depicts the desired trajectory, the raw data tra-
jectory (No Kalman) and the Kalman filtering results.
Although using a short path, the jittering of the red mea-
sures are clearly visible and very user noticeable in the
interactive application.
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Figure 5: Desired, measured and filtered trajectories.

3 ISO TESTING AND THE CALCULA-
TION OF THROUGHPUT

ISO 9241-411 [ISO12] describes performance tests for
evaluating the efficiency and effectiveness of existing
or new non-keyboard input devices1. The primary tests
involve target-select tasks using throughput as a depen-
dent variable.

The calculation of throughput is performed over a range
of amplitudes (A) and with a set of target widths (W) in-
volving tasks for which computing devices are intended
to be used.

The ISO standard proposes a one-directional target-
select test and a multi-directional target-select test. Due
to the two-dimensional nature of the pointing metaphor,
the multi-directional test is better suited for our require-
ments.

3.1 Multi-directional Target-select Test
The multi-directional test evaluates target-select move-
ments in different directions. The user moves the cur-
sor across a layout circle to sequential targets of width
W equally spaced around the circumference of the cir-
cle with diameter A (see Figure 6). Each sequence of
trials begins and ends in the top target and alternates on
targets moving across and around a layout circle.

3.2 The Calculation of Throughput
The ISO standard specifies throughput (TP) as the per-
formance measure and it is calculated as follows:

TP =
Effective index of difficulty

Movement time
=

IDe

MT
, (5)

where IDe is computed from the movement amplitude
(A) and target width (W) and MT is the per-trial move-
ment time averaged over a sequence of trials.

1 ISO 9241-411 [ISO12] is an updated version of ISO 9241-
9 [ISO02]. With respect to performance evaluation, the two
versions of the standard are the same.

Figure 6: ISO Multi-directional target-select test.

The effective index of difficulty is a measure, in bits,
of the difficulty and user precision achieved in accom-
plishing a task:

IDe = log2

(
Ae

We
+1

)
, (6)

where We is the effective target width, calculated from
the width of the distribution of selection coordinates
made by a participant over a sequence of trials. The
effective target width is calculated as follows:

We = 4.133 ·Sx, (7)

where Sx is the standard deviation of the selection co-
ordinates in the direction that movement proceeds. The
effective value is used to include spatial variability in
the calculation. The effective amplitude (Ae) can also
be used if there is an overall tendency to overshoot or
undershoot. Ae is calculated as the mean movement dis-
tance from the start-of-movement position to the end
points [SM04].

Using the effective values, throughput is a single human
performance measure that embeds both the speed and
accuracy in human responses. A detailed description of
the calculation of throughput is found in other sources
[SM04, Mac15, RMMMYV17].

4 THE EXPERIMENT
The main goal of the experiment is to evaluate the mo-
bile head-tracker interface following the recommenda-
tions described in the ISO standard in order to obtain
a benchmark value of throughput. This will allow the
comparison between the two different implementations
of the head-tracker interface: by using the position ob-
tained using the Kalman filter or by using the raw posi-
tion directly.
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4.1 Participants
Twelve participants (5 females) were recruited from the
local town university campus in Spain. Ages ranged
from 22 to 52 with a mean of 31.25 years (SD = 10.67).
There were no requirements on prior experience to par-
ticipate in the study. None of the participants had pre-
vious experience with head-tracker interfaces.

4.2 Apparatus
The experiment was conducted on an Apple iPad Air
with a resolution of 2048× 1536 px and a pixel density
of 264 ppi. This corresponds to a resolution of 1024 ×
768 Apple points.2 All communication with the tablet
was disabled during testing.
The software implemented the ISO multi-directional
target-select test (see Figure 7 for details).

Figure 7: Screenshot of the experiment software: ex-
ample target condition with annotations (A = 1040 px,
W = 260 px).

User input combined the mobile head-tracker for point-
ing and touch for selection.
Each sequence consisted of 20 targets with the target to
select highlighted for each trial. Upon selection, a new
target was highlighted. Selections proceeded in a pat-
tern moving across and around the layout circle until all
targets were selected. If a target was missed, a small red
square appeared in the center of the missed target; oth-
erwise, a small black square appeared showing a correct
selection. The target was highlighted in green when the
cursor was inside it.

2 Apple’s point (pt.) is an abstract unit that covers two pixels on
retina devices. On the iPad Air, one point equals 1/132 inch
(Note: 1 mm ≈ 5 pt.).

4.3 Procedure
After signing a consent form, participants were briefed
on the goals of the experiment and were instructed to sit
and hold the device in portrait orientation in a comfort-
able position (see Figure 8). The only requirement was
that their entire face was visible by the front camera of
the device.

Figure 8: Participant performing the experiment.

The experiment task was demonstrated to participants,
after which they did a few practice sequences. They
were instructed to move the cursor by holding the de-
vice still and moving their head. Selection occurred by
tapping anywhere on the display surface with a thumb
when the cursor was inside the target. Testing began
after they felt comfortable with the task and the interac-
tion method.

Participants were asked to select targets as quickly and
accurately as possible and to leave errors uncorrected.
They were told that missing an occasional target was
OK, but that if many targets were missed, they should
slow down. They were allowed to rest as needed be-
tween sequences. Testing lasted about 20 minutes per
participant.

4.4 Design
The experiment was fully within-subjects with the fol-
lowing independent variables and levels:

• Filtering mode: Kalman, No Kalman.

• Block: 1, 2, 3.

• Amplitude: 260, 520, 1040 px.

• Width: 130, 260 px.

The primary independent variable was filtering mode:
by applying a velocity constant Kalman filter to smooth
the positions returned by the head-tracker interface
(Kalman filtering mode) or by using the raw positions
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directly (No Kalman filtering mode). Block, amplitude,
and width were included to gather a sufficient quantity
of data over a reasonable range of task difficulties (with
IDs from 1.00 to 3.17 bits).

For each condition, participants performed a sequence
of 20 trials. The two filtering modes were assigned
using a Latin square with 6 participants per order.
The amplitude and width conditions were randomized
within blocks.

The dependent variables were throughput, movement
time, and error rate.

The total number of trials was 12 participants × 2 in-
teraction modes × 3 blocks × 3 amplitudes × 2 widths
× 20 trials = 8,640.

5 RESULTS
In this section, results are given for throughput, move-
ment time and error rate.

5.1 Learning Effects
Since head-tracking was unfamiliar to all participants, a
learning effect was expected. Figure 9 shows the learn-
ing effect for throughput by filtering mode. The learn-
ing effect (i.e., block effect) was statistically signifi-
cant (F2,22 = 11.36,p < .001), confirming the expected
improvement with practice. The effect was more pro-
nounced between the 1st and 2nd blocks, with 8.65%
increase in throughput, compared to a almost indis-
cernible decrease of 0.97% between the 2nd and 3rd

blocks. A Scheffé post hoc analysis confirmed that the
effect was not significant after block 1. As throughput is
the dependent variable specified in ISO 9241-411, sub-
sequent analyses are based on the pooled data from the
2nd and 3rd blocks of testing.

Figure 9: Results for filtering mode and block for
throughput.

5.2 Throughput
The grand mean for throughput was 1.55 bps. This
value is within the expected range for head input on mo-
bile and desktop environments (from 1.28 bps to 2.10
bps [MFM15, DSLKT03, RMMMYV18]).

The mean throughput for the No Kalman filtering
mode was 1.58 bps, which was 10.5% higher than the
mean throughput of 1.43 bps for the Kalman filtering
mode. The difference was statistically significant
(F1,11 = 7.63, p < .05).

5.3 Movement Time
The grand mean for movement time was 1.44 s per trial.
By filtering mode, the means were 1.58 s (Kalman) and
1.42 s (No Kalman). The difference was statistically
significant (F1,11 = 5.92, p < .05).

5.4 Error Rate
The grand mean for error rate was 5.58% per sequence.
By filtering mode, the means were 5.70% (Kalman) and
5.37% (No Kalman). The difference was not statisti-
cally significant (F1,11 = 0.37, ns).

6 CONCLUSION AND DISCUSSION
In this contribution, we show that to indiscriminately
apply a Kalman filter to our data may lead to a decrease
on the human performance in terms of the throughput
of our head-tracker.

Our results show that when using the Kalman filter to
smooth the positions returned by the head-tracker inter-
face, the throughput is up to a 9.5% lower than when
using the raw positions detected in the original images.
Therefore, it has a negative effect on the throughput of
the interface. Whether this effect is compensated by the
very noticeable absence of jitter, it has to be decided de-
pending on the application.

Results also show that although the use of the Kalman
filter had no effect on the accuracy of the head-tracker
in terms of error rate, it also has a significant negative
effect in terms of velocity.

In the near future we are planning to evaluate the effect
that some low-pass filters like the 1e Filter [CRV12]
can have on the throughput of the head-tracker used as
a pointing device.
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