

Straight Skeleton Computation

Optimized for Roof Model Generation

Kenichi Sugihara

Gifu Keizai University

5-50 Kitagata-chou

Ogaki city, Gifu-Pref., 503-8550, Japan

sugihara@gifu-keizai.ac.jp

ABSTRACT
3D building models with roofs are important in several fields, such as urban planning and BIM (Building

Information Model). However, enormous time and labor are required to create these 3D models. In order to

automate laborious steps, a GIS and CG integrated system is proposed for the automatic generation of 3D building

models, based on building polygons (building footprints) on digital maps. The generation is implemented through

straight skeleton computation, in which three events (‘Edge’ and ‘Split’, ‘Vertex’ events) were proposed. In the

computation process, usually three edges propagate into a node. Often it causes an acute angle shape that is not

appropriate for roof boards. To avoid the inappropriate shape, in this paper, methodologies are proposed for adding

‘Line segment’ events besides the conventional events, and monotone polygon nodes sorting.

Keywords
automatic generation, 3D building model, straight skeleton, building footprint, GIS.

1 INTRODUCTION
3D town models, such as the one shown in Fig.1 right,

are important in urban planning and architectural

design, e.g., BIM (Building Information Model).

However, enormous time and labor are required to

create these 3D models, using 3D modeling software

such as 3ds Max or SketchUp. For example, when

manually modeling a house with roofs by Constructive

Solid Geometry (CSG), one must follow the following

laborious steps:

(1) Generation of geometric primitives of proper size,

such as boxes, prisms or polyhedra that will form parts

of a house (2) Boolean operations are applied to these

primitives to form the shapes of parts of a house such

as making rectangular holes in a building body for

doors and windows (3) Horizontal and vertical

rotation of parts of a house (4) Placing the parts of a

house to appropriate positions (5) Texture mapping

onto these parts.

In order to save these laborious steps, a GIS and CG

integrated system that automatically generates 3D

building models is proposed, based on building

polygons (building footprints) on a digital map as

shown in Fig.1 left and Fig.7a, which show most

building polygons’ edges meet at right angles

(orthogonal polygon). An orthogonal polygon can be

divided or separated into a set of rectangles. The

proposed integrated system divides orthogonal

building polygons into a set of rectangles and places

rectangular roofs and box-shaped building bodies on

these rectangles. In the digital map, however, building

polygons are not always orthogonal. In either

orthogonal or non-orthogonal polygons, the

methodology is proposed for automatically creating

general shaped roofs by the straight skeleton

computation defined by Aichholzer et al. [Aic95].

In their proposal, two events (‘Edge’ and ‘Split’ events

described in section 4) will occur during shrinking

process. Besides two events, Eppstein et al. [Epp99]

suggested a ‘Vertex’ event in which two or more reflex

vertices reach the same point simultaneously. A reflex

vertex is a vertex whose internal angle is greater than

180 degrees. However, some roofs are not created by

these three events proposed. In our paper, the

methodology was proposed for constructing roof

models by assuming ‘the Third event’ in which a

reflex vertex runs into the edge, but the other split

polygon is collapsed into a node (an Edge event

happens in the Split event at the same time).

In this paper, a methodology is proposed for adding a

‘Line segment’ event besides the conventional events.

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on servers

or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

101 ISBN 978-80-86943-37-4https://doi.org/10.24132/CSRN.2019.2901.1.12

The shrinking process continues if polygons split have

non-zero area. The shrinking process ends when

polygons split fall into ‘Vertex’ or ‘Line segment’

since they have no area. Consequently, a ‘Line

segment’ can be a resulting shape of shrinking

procedure, and we will classify a ‘Line segment’ event

in which two line segments collapse into one line

segment.

Usually three edges propagate into a node. Often it

causes an acute angle shape that is not appropriate for

roof boards shown in Fig.3. To avoid the inappropriate

shape, a ‘Line segment’ event will be proposed for

straight skeleton computation. We also propose

‘monotone polygon nodes sorting’ by which not self-

intersecting monotone polygons are formed, where

‘monotone polygons’ are the areas divided by a

straight skeleton, as shown in Fig.2c.

2 RELATED WORK
Since 3D building models are used for several

different purposes, such as urban planning,

archaeological reconstruction and game industries,

various types of technologies, ranging from computer

vision, computer graphics, photogrammetry, and

remote sensing, have been proposed and developed for

creating 3D building models. When 3D building

models are used for urban planning or reconstruction

of ancient cities, we will make non-existent building

models which we cannot take a picture, and therefore

these models are not created by CV, photogrammetry,

and remote sensing. So, we focus on procedural

modeling, especially roof creation by straight skeleton

computation. Procedural modeling is an effective

technique to create 3D models from sets of rules such

as L-systems, fractals, and generative modeling

language [Par01]. Mueller et al. [Mue06] have created

an archaeological site of Pompeii and a suburbia

model of Beverly Hills by using a shape grammar.

They import building footprints from a GIS database

and try to classify imported polygons as basic shapes

in their shape vocabulary. In case of misclassification,

they use a general extruded footprint together with a

general roof obtained by the straight skeleton

algorithm defined by a continuous shrinking process

[Aic95].

The straight skeleton algorithm is useful in generating

hipped roofs, since its resulting ‘monotone polygons’

correspond to the roof boards of a hipped roof. The

downside is that the generated roof is only one of

many possible roofs, and there is no way to get another

roof [Ede14]. To overcome the downside, a new

generalization of straight skeletons is proposed by

Helda et al. [Hel17], introducing additively-weighted

straight skeletons. An additively-weighted straight

skeleton is the result of a wavefront-propagation

process where wavefront edges do not necessarily start

to move at the begin of the propagation, resulting in

an automated generation of roofs in which the

individual facets have different inclinations and start

at different heights.

By using the straight skeleton, Kelly et al. [Kel11]

present a user interface for the exterior of architectural

models to interactively specify procedural extrusions.

They use a profile editor which controls the sweeping

of a plane from the base of the building footprint, and

they finally construct a wide variety of roofs and a

complex architecture.

By these interactive modeling, 3D building models

with plausible detailed façade can be achieved.

However, the limitation of these modeling is the large

amount of user interaction involved [Jia09], and the

models created are ‘surface models’ by sweeping or

extruding dependent on edited profiles, or revolving

2D primitive geometries. However, when creating 3D

building models for architectural design and BIM, 3D

building models should be made up of solid

geometries primitives which will be parts of the

building, created through Boolean operation. Thus, the

GIS Application

(ArcGIS)

*Building polygons on 2D
Digital Map

*Attributes (left below) such as
a texture map code and number
of stories linked to building
polygons

Figure 1: Pipeline of Automatic Generation for 3D Building Models by Straight Skeleton Computation

CG Module
(MaxScript)

*Generation of 3D roof models

by placing roof board

primitives to monotone

polygons, and roof ridges

primitives to straight skeleton

segments with Boolean

operation
* Generation of walls, windows

and facade by placing wall and

windows board primitives

along the receded building

polygons by setback distance

*Automatic texture mapping

onto primitives

GIS Module
(Python & Visual Basic)

*Acquire coordinates of

building polygons’
vertices & attributes by

Python including ArcPy

(ArcGIS)

*Node formation by

edge event and split

event by shrinking
building polygons

through straight

skeleton computation
* Straight skeleton

formation from nodes

* Monotone polygon
generation

Automatically generated 3D town model

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

102 ISBN 978-80-86943-37-4

GIS and CG integrated system that automatically

generates 3D building models immediately by CSG

(Constructive Solid Geometry) is proposed. Although

surface models can have ‘beautifully curved roof’ by

interactive procedural modeling, in reality these roofs

are consisted of hundreds of narrow flat boards in most

building design. These narrow boards will be properly

placed along the roof curve.

3 PIPELINE of AUTOMATIC

GENERATION
As the pipeline of automatic generation is shown in

Fig.1, the source of 3D models is a digital map that

contains building polygons linked with attributes data,

such as the number of stories and the type of roof,

shown in Fig.1 left below. The maps are then

preprocessed at the GIS module, and the CG module

finally generates the 3D building model.

The preprocessing at the GIS module includes the

procedures as follows: (1) Calculate the minimum

receding distance for an Edge event (including a Third

and Line segment event). Until the Edge event occur,

check if Split event happens by starting continuous

shrinking process. (2) Start continuous shrinking

process in which edges of the polygon move inward,

parallel to themselves at a constant speed (Fig.2a&2b).

(3) Detect any event such as a Split, Edge or Line

segment event during shrinking process, and

formation of nodes by these events. The position of the

node is calculated by the intersection of angular

bisectors. (4) Inherit and store three or more original

edges’ ID (e.g. edgN in Fig.2a) linked to the node

during the shrinking process in which the topology of

the polygon will change. In shrinking process, Fig.2b

shows edg2 firstly disappears into Node1, and two

edges (edg8 & 9) secondly result in Node2. Since at

least three original edges sweep into the node, edg1,2

& 3 propagation result in Node1, and edg4,5 & 10

propagation result in Node3 (by Split event). (5) Every

(original) edge will inquire ‘each node’ having three

or more ID to find out which node has the same

original edge ID. If so, then nodes of the same ID are

collected and the set of nodes are sorted according to

the edge vector to form ‘monotone polygon’ and the

straight skeleton. (6) Calculate the length, width,

center position and inclination of the bounding

rectangle for ‘monotone polygon’. (7) Export the

coordinates of polygons’ vertices, ‘monotone

polygons’ information, and attributes of buildings.

In these procedures, the areas divided by a straight

skeleton are called as ‘monotone polygons’ shown in

Fig.2c, and to get ‘monotone polygons’, the set of the

nodes belonging to the same original edge will be

aligned depending on the coordinate value on the axis

parallel to each original edge vector (the ‘node vector

projections’ onto the original edge vector). These

nodes are coplanar and will form roof boards for a 3D

building model.

As shown in Fig.1, the CG module receives the pre-

processed data that the GIS module exports,

generating 3D building models. In GIS module, the

system measures the length and inclination of the

bounding rectangle for the monotone polygon that will

be a roof board. The CG module generates a bounding

box of the length and width, measured in GIS module.

The monotone polygons will be converted into

primitives, i.e., thin boxes by Boolean operation

between the extrusion of the monotone polygon and

the box primitive.

In case of modeling a building with roofs, the CG

module follows these steps: (1) Generate primitives of

appropriate size, such as boxes, prisms or polyhedra

that will form the various parts of the house. (2)

Boolean operations applied to these primitives to form

the shapes of parts of the house, for examples, making

holes in a building body for doors and windows,

a) b) c) d)

Figure 2: Shrinking process and a straight skeleton, a roof model generated. a) Input polygon (bold) start

continuous shrinking process in which edges of the polygon move inward, parallel to themselves at a constant

speed. b) Shrinking polygons (blue) by no event, and red one by a split event. c) The straight skeleton (blue) and

monotone polygons. d) A roof model automatically generated: each roof board is based on an ‘monotone polygon’.

pt1 pt2

pt3

pt4 pt5

pt6

pt7
pt8

pt9

Node3

Node2

Node1 Node1

Node3

Node2

Node4 Node5

Node7

Node6

edg1
edg2

edg3

edg4

edg5

edg6

edg7

edg8

edg9

edg10

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

103 ISBN 978-80-86943-37-4

making trapezoidal roof boards for a hipped roof and

a temple roof. (3) Rotate parts of the house according

to the inclination of the partitioned rectangle. (4) Place

parts of the house. (5) Texture mapping onto these

parts according to the attribute received. (6) Copy the

2nd floor to form the 3rd floor or more in case of

building higher than 3 stories.

CG module has been developed using Maxscript that

controls 3D CG software (3ds MAX, Autodesk Inc).

4 STRAIGHT SKELETON

COMPUTATION
Aichholzer et al. [Aic95] introduced the straight

skeleton defined as the union of the pieces of angular

bisectors traced out by polygon vertices during a

continuous shrinking process in which edges of the

polygon move inward, parallel to themselves at a

constant speed. The straight skeleton is applied to

constructing general shaped roofs based on any simple

building polygon, regardless of their being rectilinear

or not.

As shrinking process shown in Fig.2, each vertex of

the polygon moves along the angular bisector of its

incident edges. This situation continues until the

boundary change topologically. According to

Aichholzer et al. [Aic95], there are two possible types

of changes:

(1) Edge event: An edge shrinks to zero, making its

neighboring edges adjacent now.

(2) Split event: An edge is split, i.e., a reflex vertex

runs into this edge, thus splitting the whole polygon.

New adjacencies occur between the split edge and

each of the two edges incident to the reflex vertex.

The shrinking procedure is uniquely determined by the

distance dshri between the two edges of before & after

shrinking procedure.

The distance e_dshri is the dshri when an Edge event

happens in the shrinking process. e_dshri for the edge

(edi) is calculated as follows:

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1

where Li is the length of edi, and θi & θi+1 are internal

angles of vertices incident to edi.

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e. , the sum

of the internal angles of two vertices incident to an

edge is less than 360 degrees, an Edge event may

happen unless the edge is intersected by an angular

bisector from a reflex vertex and a Split event happens.

4.1 How Straight Skeleton is formed
How a straight skeleton and monotone polygons are

formed is as follows.

(1) One simple polygon (P) is given such as shown in

Fig.2a. If there is any reflex vertex in the P, then it can

be divided into two or more polygons.

(2) The system calculates e_dshri (receding distance for

an Edge event, shown in above (1)) for all edges and

finds the shortest of them. Then, the system checks if

a Split event occurs by increasing dshri by (e_dshri

/n_step). In this way, the shrinking process may

proceed until dshri reaches the shortest e_dshri

calculated.

(3) During shrinking until dshri reaches the shortest

e_dshri, the system checks if a ‘checking angular

bisector’ from a reflex vertex intersects another edge

of the polygon or not. If an edge is found intersected,

then the system calculates the node position by the

Split event. The position of the node is calculated by

the intersection of two angular bisectors: one from the

reflex vertex and the other between the intersected

edge and one of two edges incident to the reflex vertex.

However, edges may be intersected by several

‘checking angular bisectors’ from several reflex

vertices. Among the several reflex vertices, the reflex

vertex that gives the shortest dshri will be selected for

calculating the node position.

(4) In the process of (2), a Split event may happen and

the polygon will be divided into some polygons: Ps.

In this ‘Split event checking’ process, all divided

polygons are checked if they can be divided more. As

long as there are some Ps that can be divided, ‘Split

event checking’ routine will continue. After that, the

system concentrates on the Edge event procedure.

(5) In this stage, since the number of polygons divided

does not increase by the Split event, the system can

concentrate on the Edge event including Third and

Line segment event procedures. If the polygon divided

has only three vertices, then the polygon (triangle)

collapses to a node; this is the final stage for the

polygon divided.

(6) While the Edge events are being executed, the

topology of the polygon will change. If the change

happens, then the system re-implement the process

from (2) to (5) for the polygon whose topology has

changed. At that moment, the system recalculates the

length of each edge and the internal angle of each

vertex in order to find the shortest dshri for next events.

This re-implementation process continues until all

polygons changed collapse to a node or a line segment.

4.2 Node Structure
The generated node will be associated with the edges

of original P (original edge: o-edge) which are

identified by original edges’ ID (e.g. edg1 & edg2 in

Fig.2a), since at least three original edges sweep to

form a node. Therefore, at each event when the node

is generated, at least three o-edges will be linked to the

(1)

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

104 ISBN 978-80-86943-37-4

node. This means more than three o-edges ID will be

stored in the node with a suitable structure.

In our system, a node has the following properties; (a)

‘Node Type’ (how the node is risen; by Edge event or

Split event, Vertex event, Multiple Edge event and so

on) (b) ‘Number of forming edges’ (usually three

edges sweep to form a node, but more than three edges

sweep in case of Multiple Edge event) (c) ‘o-edge ID

preceding the vanishing edge’ (by Edge event) or ‘o-

edge ID of one of the edge incident to the reflex vertex’

(by Split event) (d) ‘o-edge ID following the vanishing

edge’ (by Edge event) or ‘o-edge ID of the other edge

incident to the reflex vertex’ (by Split event) (e) ‘o-

edge ID of at least one vanishing edge’ (by Edge

event) or ‘o-edge ID of a split edge’ (by Split event)

Since three edges usually sweep into the node, three

‘o-edge IDs’ are stored in the property of a node.

These IDs are used for forming a monotone polygon.

The system is looking for the node which has the same

‘o-edge ID’ as each original edge of P to form

monotone polygons.

In special cases, four or more edges collapse into

nodes, such as Node2 in Fig.2 and Node1,2,3 in Fig.4c.

In extreme cases, such as a hexagon or a regular

polygon, a star-shaped polygon collapses to a node,

four or more o-edges will sweep into a node, and more

than three ‘o-edge IDs’ are stored in the property of

the node. Therefore, a node needs ‘Number of forming

edges’ property.

This is the case of a multiple Edge event or the case

Eppstein et al. [Epp99] defined as a ‘degenerate case’

in which the straight skeleton can have vertices of

degree higher than three, introduced by simultaneous

events at the same location. However, in single or

double precision floating point calculation for the

position of the node, it is quite rare for four or more

vertices to reach the same point simultaneously.

To rectify monotone polygons to be appropriate shape

for roof boards, in our system, if multiple edges

collapse into a certain area considered as a point for a

node, then they are considered to converge into the

same point and the node is formed.

4.3 Line Segment Event
Since three edges usually sweep into a node, very

often this causes a quite acute angle shape that is not

appropriate for roof board shape shown in Fig.3. In

Fig.3c, pt5 propagates to join pt2 and four edges

(edg1,2,4,5) propagate into Node2, whereas, in Fig.3b,

pt5 does not join pt2 and goes off Node2, and three

edges (edg1,4,7) result in Node3 with acute angle

shape. This acute angle shape is also found at the

a) b) c)
pt3

pt2

edg4

edg3

edg5 edg1

edg6

pt4

pt6 pt5

pt7

edg8

edg2

pt1

Figure 3: a) An orthogonal building polygon b) a monotone polygon with an acute angle c) rectified

monotone polygons by ‘Line segment’ event

pt8

Node1

edg7

Node2

Node3

edg3

edg5

edg6

pt4

pt6 pt5

pt7

edg2

pt1

pt8

edg1

edg8

Node1

pt2

pt3

Node2

Node3

edg4

edg7

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

105 ISBN 978-80-86943-37-4

figure of Eppstein et al. [Epp99], which uses

perturbation techniques, replacing the high-degree

node with several nodes of degree three, connected by

zero-length edge. In our system, using the technique

completely opposite to Eppstein’s perturbation, a

‘Line segment’ event is proposed where edges are

overlapped and collapse into a line segment instead of

a node to avoid the acute angle shape. This so-called

snapping function is done by setting up a certain range

for possible ‘Line segment’ events, in which edges

converge into a certain area considered as a line

segment, then they are supposed to converge into the

same line segment.

By a ‘Line segment’ event, two parallel edges

converge into one edge (line segment), and the

convergent line segment will be detached from a next

shrinking body polygon. But if the detached line

segment leaves no vertex for next shrinking process,

then the line segment is disconnected from a body

skeleton. Therefore, the detached line segment leaves

at least one vertex for next shrinking process.

Examples are shown in the line segment between

Node2 and Node5 in Fig.4c and Fig.5b; one node

whose interior angle is flat will remain for the next

shrinking process so as to create the border of

monotone polygons. For example, in Fig.4c & Fig.5b,

four edges (edg11,12,14,15) propagate into Node2,

and two overlapping edges (edg12,14) turn into the

line segment incident to Node2 & nearby Node after

edg13 disappeared.

If a configurable range is quite narrow, then edge

propagation will be extended, ending in Node5 as

shown in Fig.5a; three edges (edg12,14,15) result in

Node2, and three edges (edg11,12,15) result in Node5

whose inner angle is quite acute, which is improper for

roof board shape.

4.4 Monotone Polygon Nodes Sorting
According to Aichholzer et al. [Aic95], the area

divided by a straight skeleton will be a ‘monotone

polygon’. To get the monotone polygons, the set of the

nodes belonging to each original edge will be sorted

according to the ‘coordinate value of node vector

projections’ onto the original edge vector parallel to

each original edge. These nodes are coplanar and will

form roof boards for a 3D building model. However,

for some polygon, this methodology does not work,

resulting in self-intersecting polygons. Fig.5c shows

monotone polygons for edg13 are self-intersecting.

This is because the edge (connecting Node3 & Node4)

of the monotone polygon is perpendicular to the

original edge (edg13) of the polygon, and the nodes

are connected in the order of ‘node vector projection’.

The self-intersection is found at edg29 in Fig.5c and

edg21 in Fig.5b.

To avoid self-intersection, the azimuth angle of the

nodes belonging to the same monotone polygon is

proposed, where the azimuth is the angle between each

original edge vector and a node vector. The first node

in the monotone polygon vertices numbering is

selected from the node with least azimuth, and the last

node is the node with greatest azimuth, since the nodes

near the both ends on an original edge may wrap

around both ends for some monotone polygons, and

wrapping around nodes may not have simply

increasing ‘coordinate value’. For example, in Fig.5c,

the edge (connecting Node1 & Node2) of the

monotone polygon is perpendicular to the original

edge (edg29), and Node1 & Node2 have the same

‘coordinate value’, resulting in self-intersection at

nodes sorting. Thus, the nodes at ends are sorted by

the azimuth angles. Then, the sorting of the nodes is

found successful in a complicated shape polygon such

as the one in Fig.4c and Fig.6c.

5 APPLICATION
Here are the examples of 3D building models

automatically generated by the integrated system.

Fig.6 & Fig.7 show the examples of 3D building

models automatically generated. In generating these

models, we classify the case of ‘Line segment event’.

In Split event as mentioned in section 4.1, it is assumed

to calculate the intersection of two non-parallel line

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

106 ISBN 978-80-86943-37-4

segments, i.e., two non-parallel angular bisectors.

However, for some orthogonal polygons, two parallel

edges will be overlapped when shrunk by e_dshri, and

two parallel angular bisectors will be overlapped. If

we do not classify the case of Line segment event, then

we end up with numerical error by trying to calculate

the intersection of two parallel line segments.

Once 3D models with roofs are created, a top view of

these models can be a roof report as shown in Fig.7i &

7j, which can be used for the rapid assessment of roof

damages by insurance companies. Automated

generation of simple and complex roof geometries will

be utilized for rapid roof area damage reporting by the

length measurements and area calculations of all roof

surfaces. The roof board area will be easily calculated,

since a roof board is a monotone polygon, and can be

partitioned into a set of trapezoids or triangles. The

roof board area will be calculated by adding these

trapezoids, and subtracted or added by two triangles,

depending on the shape of the monotone polygon.

The advantage of our generation system is that our 3D

building models created are utilized for architectural

design, i.e., BIM (Building Information Model), while

3D models created by procedural modeling are not

solid models but surface models which are to be

converted into geometric primitives (CSG) when they

are used for construction design.

Now, architectural design world is experiencing a shift

from 2D CAD drawings to BIM 3D modeling. BIM

revolution is happening in the construction industry

that is producing a step change in efficiency and

accuracy. In our research, 3D building models

automatically created can be used for BIM 3D

modeling. There is no automatic generation system for

3D building solid models with complicated roofs as

far as we know. Automatic generation will be

compared with manual creation which are a series of

manual operations mentioned in section 1 by 3ds Max,

and broken down into functions of the program

(Maxscript) described as CG module’s process in

section 3. It will take about more than one hour to

create one hipped roof house including making

intricately shaped ridges, while several seconds to

automatically generate one by the personal computer.

If given digital maps with attributes being inputted, as

shown in Fig.1&7, the system automatically generates

one hundred 3D building models within less than 10

minutes by the personal computer with Intel(R)

Core(TM) i7-7820HK CPU 2.90GHz.

6 CONCLUSION
In this paper, the new and extended methodology is

proposed for adding ‘Line segment’ event besides the

conventional events, and ‘monotone polygon nodes

sorting’ by which self-intersecting monotone

polygons are not formed. Thus, the proposed

integrated system succeeds in automatically

generating 3D building models.

The roofs created by the straight skeleton are limited

to hipped roofs with their roof ridges parallel to nearby

long edges of the building contour. However, there are

many roofs whose ridges are perpendicular to long

edges. In the residential area all over the world, there

are many roofs the straight skeleton method cannot

create. For example, in the middle of the top edge in

Fig.4a and Fig.6a, Fig.7e, there are some branch roofs

which are not slanting and drop 90 degrees vertically,

i.e., gable roofs. These are not created by the straight

skeleton.

In order to create various shape of roof, we propose a

couple of schemes to create roofs by straight skeleton

computation or partitioning or separating of

orthogonal polygons. A complicated orthogonal

building polygon can be partitioned or separated into

a set of rectangles. Our proposed system partitions

orthogonal polygons into a set of rectangles and places

various shapes of roofs which include gable & hipped

roofs or the roof whose ridges are perpendicular to

nearby long edges on these partitioned rectangles.

Thus, in order to create the 3D building models that

have hipped and gable branch roofs, the future work is

for developing the system in which we can select a

couple of various schemes; dividing or separation

Figure 6: Complicated shape polygon in shrinking process and a straight skeleton, a roof model generated.

a) Complicated building polygon drawn on an orthophoto. b) Shrinking polygons (blue) by no event and red ones
by events. c) The straight skeleton (blue) of the building polygon (bold). d) A roof model automatically generated

a) b) c) d)

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

107 ISBN 978-80-86943-37-4

scheme or straight skeleton scheme to automatically

create the different styles of roofs for one building

footprint.

6 REFERENCES
[Aic95] Aichholzer O., Aurenhammer F., Alberts D.,

Gärtner B. A novel type of skeleton for polygons.

Journal of Universal Computer Science (1995), 1

(12): 752–761.

[Ede14] Johannes Edelsbrunner, Ulrich Krispel, Sven

Havemann, Alexei Sourin. Constructive Roof

Geometry. Cyberworlds (CW) 2014,·DOI:

10.1109/CW.2014.17

 [Epp99] Eppstein David, Erickson Jeff. Raising roofs,

crashing cycles, and playing pool: applications of

a data structure for finding pairwise interactions.

Discrete and Computational Geometry (1999), 22

(4): 569–592

[Hel17] Helda M., Palfradera P. Straight Skeletons

with Additive and Multiplicative Weights and

Their Application to the Algorithmic Generation

of Roofs and Terrains. Computer-Aided Design,

Elsevier B.V. (Nov 2017), Vol 92, pp. 33-41

[Jia09] Jiang N., Tan P., Cheong L. F. Symmetric

architecture modeling with a single image. Proc.

SIGGRAPH Asia '09 (2009), papers No. 113

[Kel11] Kelly T., Wonka P. Interactive Architectural

Modeling with Procedural Extrusions. ACM

Transactions on Graphics (TOG) (2011), 30(2),

14-28.

[Mue06] Mueller P., Wonka P., Haegler S., Ulmer A.,

Gool L.V. Procedural modeling of buildings.

ACM Transactions on Graphics (2006), 25, 3,

614–623.

[Par01] Parish Y. I. H., Müller P. Procedural

modeling of cities. Proceedings of ACM

SIGGRAPH (2001), ACM Press, E. Fiume, Ed.,

New York, 301–308

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

108 ISBN 978-80-86943-37-4

(b) Set of receding
polygons by dshri calculated
by equation (1)

(a) Building polygons on
2D Digital Map: Most of
them are orthogonal.

(c) The straight skeleton
formed as the union of the
pieces of angular bisectors

(d) Automatically generated
3D building model based on
monotone polygons

Figure 7: Shrinking process and a straight skeleton, a roof model generated, roof report

(e) Enlarged building
polygons: orthogonal

(f) Set of receding polygons by
dshri calculated by equation (1)

(g) The straight skeleton
formed as the union of the
pieces of angular bisectors

(h) Automatically generated
3D building model based on
monotone polygons

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 2901 WSCG Proceedings Part I

109 ISBN 978-80-86943-37-4

