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ABSTRACT 
3D building models with roofs are important in several fields, such as urban planning and BIM (Building 

Information Model). However, enormous time and labor are required to create these 3D models. In order to 

automate laborious steps, a GIS and CG integrated system is proposed for the automatic generation of 3D building 

models, based on building polygons (building footprints) on digital maps. The generation is implemented through 

straight skeleton computation, in which three events (‘Edge’ and ‘Split’, ‘Vertex’ events) were proposed. In the 

computation process, usually three edges propagate into a node. Often it causes an acute angle shape that is not 

appropriate for roof boards. To avoid the inappropriate shape, in this paper, methodologies are proposed for adding 

‘Line segment’ events besides the conventional events, and monotone polygon nodes sorting. 

Keywords 
automatic generation, 3D building model, straight skeleton, building footprint, GIS. 

1 INTRODUCTION 
3D town models, such as the one shown in Fig.1 right, 

are important in urban planning and architectural 

design, e.g., BIM (Building Information Model). 

However, enormous time and labor are required to 

create these 3D models, using 3D modeling software 

such as 3ds Max or SketchUp. For example, when 

manually modeling a house with roofs by Constructive 

Solid Geometry (CSG), one must follow the following 

laborious steps:  

(1) Generation of geometric primitives of proper size, 

such as boxes, prisms or polyhedra that will form parts 

of a house (2) Boolean operations are applied to these 

primitives to form the shapes of parts of a house such 

as making rectangular holes in a building body for 

doors and windows (3) Horizontal and vertical 

rotation of parts of a house (4) Placing the parts of a 

house to appropriate positions (5) Texture mapping 

onto these parts. 

In order to save these laborious steps, a GIS and CG 

integrated system that automatically generates 3D 

building models is proposed, based on building 

polygons (building footprints) on a digital map as 

shown in Fig.1 left and Fig.7a, which show most 

building polygons’ edges meet at right angles 

(orthogonal polygon). An orthogonal polygon can be 

divided or separated into a set of rectangles. The 

proposed integrated system divides orthogonal 

building polygons into a set of rectangles and places 

rectangular roofs and box-shaped building bodies on 

these rectangles. In the digital map, however, building 

polygons are not always orthogonal. In either 

orthogonal or non-orthogonal polygons, the 

methodology is proposed for automatically creating 

general shaped roofs by the straight skeleton 

computation defined by Aichholzer et al. [Aic95].  

In their proposal, two events (‘Edge’ and ‘Split’ events 

described in section 4) will occur during shrinking 

process. Besides two events, Eppstein et al. [Epp99] 

suggested a ‘Vertex’ event in which two or more reflex 

vertices reach the same point simultaneously. A reflex 

vertex is a vertex whose internal angle is greater than 

180 degrees. However, some roofs are not created by 

these three events proposed. In our paper, the 

methodology was proposed for constructing roof 

models by assuming ‘the Third event’ in which a 

reflex vertex runs into the edge, but the other split 

polygon is collapsed into a node (an Edge event 

happens in the Split event at the same time). 

In this paper, a methodology is proposed for adding a 

‘Line segment’ event besides the conventional events. 
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The shrinking process continues if polygons split have 

non-zero area. The shrinking process ends when 

polygons split fall into ‘Vertex’ or ‘Line segment’ 

since they have no area. Consequently, a ‘Line 

segment’ can be a resulting shape of shrinking 

procedure, and we will classify a ‘Line segment’ event 

in which two line segments collapse into one line 

segment.  

Usually three edges propagate into a node. Often it 

causes an acute angle shape that is not appropriate for 

roof boards shown in Fig.3. To avoid the inappropriate 

shape, a ‘Line segment’ event will be proposed for 

straight skeleton computation. We also propose 

‘monotone polygon nodes sorting’ by which not self-

intersecting monotone polygons are formed, where 

‘monotone polygons’ are the areas divided by a 

straight skeleton, as shown in Fig.2c. 

 

2 RELATED WORK  
Since 3D building models are used for several 

different purposes, such as urban planning, 

archaeological reconstruction and game industries, 

various types of technologies, ranging from computer 

vision, computer graphics, photogrammetry, and 

remote sensing, have been proposed and developed for 

creating 3D building models. When 3D building 

models are used for urban planning or reconstruction 

of ancient cities, we will make non-existent building 

models which we cannot take a picture, and therefore 

these models are not created by CV, photogrammetry, 

and remote sensing. So, we focus on procedural 

modeling, especially roof creation by straight skeleton 

computation. Procedural modeling is an effective 

technique to create 3D models from sets of rules such 

as L-systems, fractals, and generative modeling 

language [Par01]. Mueller et al. [Mue06] have created 

an archaeological site of Pompeii and a suburbia 

model of Beverly Hills by using a shape grammar. 

They import building footprints from a GIS database 

and try to classify imported polygons as basic shapes 

in their shape vocabulary. In case of misclassification, 

they use a general extruded footprint together with a 

general roof obtained by the straight skeleton 

algorithm defined by a continuous shrinking process 

[Aic95].  

The straight skeleton algorithm is useful in generating 

hipped roofs, since its resulting ‘monotone polygons’ 

correspond to the roof boards of a hipped roof. The 

downside is that the generated roof is only one of 

many possible roofs, and there is no way to get another 

roof [Ede14]. To overcome the downside, a new 

generalization of straight skeletons is proposed by 

Helda et al. [Hel17], introducing additively-weighted 

straight skeletons. An additively-weighted straight 

skeleton is the result of a wavefront-propagation 

process where wavefront edges do not necessarily start 

to move at the begin of the propagation, resulting in 

an automated generation of roofs in which the 

individual facets have different inclinations and start 

at different heights. 

By using the straight skeleton, Kelly et al. [Kel11] 

present a user interface for the exterior of architectural 

models to interactively specify procedural extrusions. 

They use a profile editor which controls the sweeping 

of a plane from the base of the building footprint, and 

they finally construct a wide variety of roofs and a 

complex architecture. 

By these interactive modeling, 3D building models 

with plausible detailed façade can be achieved. 

However, the limitation of these modeling is the large 

amount of user interaction involved [Jia09], and the 

models created are ‘surface models’ by sweeping or 

extruding dependent on edited profiles, or revolving 

2D primitive geometries. However, when creating 3D 

building models for architectural design and BIM, 3D 

building models should be made up of solid 

geometries primitives which will be parts of the 

building, created through Boolean operation. Thus, the 

GIS Application 
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Figure 1: Pipeline of Automatic Generation for 3D Building Models by Straight Skeleton Computation 
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GIS and CG integrated system that automatically 

generates 3D building models immediately by CSG 

(Constructive Solid Geometry) is proposed. Although  

surface models can have ‘beautifully curved roof’ by 

interactive procedural modeling, in reality these roofs 

are consisted of hundreds of narrow flat boards in most 

building design. These narrow boards will be properly 

placed along the roof curve.  

 

3 PIPELINE of AUTOMATIC 

GENERATION 
As the pipeline of automatic generation is shown in 

Fig.1, the source of 3D models is a digital map that 

contains building polygons linked with attributes data, 

such as the number of stories and the type of roof, 

shown in Fig.1 left below. The maps are then 

preprocessed at the GIS module, and the CG module 

finally generates the 3D building model. 

The preprocessing at the GIS module includes the 

procedures as follows: (1) Calculate the minimum 

receding distance for an Edge event (including a Third 

and Line segment event). Until the Edge event occur, 

check if Split event happens by starting continuous 

shrinking process. (2) Start continuous shrinking 

process in which edges of the polygon move inward, 

parallel to themselves at a constant speed (Fig.2a&2b). 

(3) Detect any event such as a Split, Edge or Line 

segment event during shrinking process, and 

formation of nodes by these events. The position of the 

node is calculated by the intersection of angular 

bisectors. (4) Inherit and store three or more original 

edges’ ID (e.g. edgN in Fig.2a) linked to the node 

during the shrinking process in which the topology of 

the polygon will change. In shrinking process, Fig.2b 

shows edg2 firstly disappears into Node1, and two 

edges (edg8 & 9) secondly result in Node2. Since at 

least three original edges sweep into the node, edg1,2 

& 3 propagation result in Node1, and edg4,5 & 10 

propagation result in Node3 (by Split event). (5) Every 

(original) edge will inquire ‘each node’ having three 

or more ID to find out which node has the same 

original edge ID. If so, then nodes of the same ID are 

collected and the set of nodes are sorted according to 

the edge vector to form ‘monotone polygon’ and the 

straight skeleton. (6) Calculate the length, width, 

center position and inclination of the bounding 

rectangle for ‘monotone polygon’. (7) Export the 

coordinates of polygons’ vertices, ‘monotone 

polygons’ information, and attributes of buildings.  

In these procedures, the areas divided by a straight 

skeleton are called as ‘monotone polygons’ shown in 

Fig.2c, and to get ‘monotone polygons’, the set of the 

nodes belonging to the same original edge will be 

aligned depending on the coordinate value on the axis 

parallel to each original edge vector (the ‘node vector 

projections’ onto the original edge vector). These 

nodes are coplanar and will form roof boards for a 3D 

building model. 

As shown in Fig.1, the CG module receives the pre-

processed data that the GIS module exports, 

generating 3D building models. In GIS module, the 

system measures the length and inclination of the 

bounding rectangle for the monotone polygon that will 

be a roof board. The CG module generates a bounding 

box of the length and width, measured in GIS module. 

The monotone polygons will be converted into 

primitives, i.e., thin boxes by Boolean operation 

between the extrusion of the monotone polygon and 

the box primitive.  

In case of modeling a building with roofs, the CG 

module follows these steps: (1) Generate primitives of 

appropriate size, such as boxes, prisms or polyhedra 

that will form the various parts of the house. (2) 

Boolean operations applied to these primitives to form 

the shapes of parts of the house, for examples, making 

holes in a building body for doors and windows, 

a) b) c) d) 

Figure 2: Shrinking process and a straight skeleton, a roof model generated. a) Input polygon (bold) start 

continuous shrinking process in which edges of the polygon move inward, parallel to themselves at a constant 

speed. b) Shrinking polygons (blue) by no event, and red one by a split event. c) The straight skeleton (blue) and 

monotone polygons. d) A roof model automatically generated: each roof board is based on an ‘monotone polygon’. 
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making trapezoidal roof boards for a hipped roof and 

a temple roof. (3) Rotate parts of the house according 

to the inclination of the partitioned rectangle. (4) Place 

parts of the house. (5) Texture mapping onto these 

parts according to the attribute received. (6) Copy the 

2nd floor to form the 3rd floor or more in case of 

building higher than 3 stories. 

CG module has been developed using Maxscript that 

controls 3D CG software (3ds MAX, Autodesk Inc). 

 

4 STRAIGHT SKELETON 

COMPUTATION 
Aichholzer et al. [Aic95] introduced the straight 

skeleton defined as the union of the pieces of angular 

bisectors traced out by polygon vertices during a 

continuous shrinking process in which edges of the 

polygon move inward, parallel to themselves at a 

constant speed. The straight skeleton is applied to 

constructing general shaped roofs based on any simple 

building polygon, regardless of their being rectilinear 

or not.  

As shrinking process shown in Fig.2, each vertex of 

the polygon moves along the angular bisector of its 

incident edges. This situation continues until the 

boundary change topologically. According to 

Aichholzer et al. [Aic95], there are two possible types 

of changes: 

(1) Edge event: An edge shrinks to zero, making its 

neighboring edges adjacent now. 

(2) Split event: An edge is split, i.e., a reflex vertex 

runs into this edge, thus splitting the whole polygon. 

New adjacencies occur between the split edge and 

each of the two edges incident to the reflex vertex.  

The shrinking procedure is uniquely determined by the 

distance dshri between the two edges of before & after 

shrinking procedure. 

The distance e_dshri is the dshri when an Edge event 

happens in the shrinking process. e_dshri for the edge 

(edi) is calculated as follows: 

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1  

  

 

where Li is the length of edi, and θi & θi+1 are internal 

angles of vertices incident to edi. 

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e. , the sum 

of the internal angles of two vertices incident to an 

edge is less than 360 degrees, an Edge event may 

happen unless the edge is intersected by an angular 

bisector from a reflex vertex and a Split event happens. 

4.1 How Straight Skeleton is formed 
How a straight skeleton and monotone polygons are 

formed is as follows.  

(1) One simple polygon (P) is given such as shown in 

Fig.2a. If there is any reflex vertex in the P, then it can 

be divided into two or more polygons.  

(2) The system calculates e_dshri (receding distance for 

an Edge event, shown in above (1)) for all edges and 

finds the shortest of them. Then, the system checks if 

a Split event occurs by increasing dshri by (e_dshri 

/n_step). In this way, the shrinking process may 

proceed until dshri reaches the shortest e_dshri 

calculated.  

(3) During shrinking until dshri reaches the shortest 

e_dshri, the system checks if a ‘checking angular 

bisector’ from a reflex vertex intersects another edge 

of the polygon or not. If an edge is found intersected, 

then the system calculates the node position by the 

Split event. The position of the node is calculated by 

the intersection of two angular bisectors: one from the 

reflex vertex and the other between the intersected 

edge and one of two edges incident to the reflex vertex. 

However, edges may be intersected by several 

‘checking angular bisectors’ from several reflex 

vertices. Among the several reflex vertices, the reflex 

vertex that gives the shortest dshri will be selected for 

calculating the node position. 

(4) In the process of (2), a Split event may happen and 

the polygon will be divided into some polygons: Ps.  

In this ‘Split event checking’ process, all divided 

polygons are checked if they can be divided more. As 

long as there are some Ps that can be divided, ‘Split 

event checking’ routine will continue. After that, the 

system concentrates on the Edge event procedure.  

(5) In this stage, since the number of polygons divided 

does not increase by the Split event, the system can 

concentrate on the Edge event including Third and 

Line segment event procedures. If the polygon divided 

has only three vertices, then the polygon (triangle) 

collapses to a node; this is the final stage for the 

polygon divided. 

(6) While the Edge events are being executed, the 

topology of the polygon will change. If the change 

happens, then the system re-implement the process 

from (2) to (5) for the polygon whose topology has 

changed. At that moment, the system recalculates the 

length of each edge and the internal angle of each 

vertex in order to find the shortest dshri for next events. 

This re-implementation process continues until all 

polygons changed collapse to a node or a line segment.  

4.2 Node Structure 
The generated node will be associated with the edges 

of original P (original edge: o-edge) which are 

identified by original edges’ ID (e.g. edg1 & edg2 in 

Fig.2a), since at least three original edges sweep to 

form a node. Therefore, at each event when the node 

is generated, at least three o-edges will be linked to the 

(1) 
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node. This means more than three o-edges ID will be 

stored in the node with a suitable structure.  

In our system, a node has the following properties; (a) 

‘Node Type’ (how the node is risen; by Edge event or 

Split event, Vertex event, Multiple Edge event and so 

on) (b) ‘Number of forming edges’ (usually three 

edges sweep to form a node, but more than three edges 

sweep in case of Multiple Edge event) (c) ‘o-edge ID 

preceding the vanishing edge’ (by Edge event) or ‘o-

edge ID of one of the edge incident to the reflex vertex’ 

(by Split event) (d) ‘o-edge ID following the vanishing 

edge’ (by Edge event) or ‘o-edge ID of the other edge 

incident to the reflex vertex’ (by Split event) (e) ‘o-

edge ID of at least one vanishing edge’ (by Edge 

event) or ‘o-edge ID of a split edge’ (by Split event) 

 

Since three edges usually sweep into the node, three 

‘o-edge IDs’ are stored in the property of a node. 

These IDs are used for forming a monotone polygon. 

The system is looking for the node which has the same 

‘o-edge ID’ as each original edge of P to form 

monotone polygons.  

In special cases, four or more edges collapse into 

nodes, such as Node2 in Fig.2 and Node1,2,3 in Fig.4c. 

In extreme cases, such as a hexagon or a regular 

polygon, a star-shaped polygon collapses to a node, 

four or more o-edges will sweep into a node, and more 

than three ‘o-edge IDs’ are stored in the property of 

the node. Therefore, a node needs ‘Number of forming 

edges’ property.  

This is the case of a multiple Edge event or the case 

Eppstein et al. [Epp99] defined as a ‘degenerate case’ 

in which the straight skeleton can have vertices of 

degree higher than three, introduced by simultaneous 

events at the same location. However, in single or 

double precision floating point calculation for the 

position of the node, it is quite rare for four or more 

vertices to reach the same point simultaneously.  

To rectify monotone polygons to be appropriate shape 

for roof boards, in our system, if multiple edges 

collapse into a certain area considered as a point for a 

node, then they are considered to converge into the 

same point and the node is formed.  

4.3 Line Segment Event 
Since three edges usually sweep into a node, very 

often this causes a quite acute angle shape that is not 

appropriate for roof board shape shown in Fig.3. In 

Fig.3c, pt5 propagates to join pt2 and four edges 

(edg1,2,4,5) propagate into Node2, whereas, in Fig.3b, 

pt5 does not join pt2 and goes off Node2, and three 

edges (edg1,4,7) result in Node3 with acute angle 

shape. This acute angle shape is also found at the 
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figure of Eppstein et al. [Epp99], which uses 

perturbation techniques, replacing the high-degree 

node with several nodes of degree three, connected by 

zero-length edge. In our system, using the technique 

completely opposite to Eppstein’s perturbation, a 

‘Line segment’ event is proposed where edges are 

overlapped and collapse into a line segment instead of 

a node to avoid the acute angle shape. This so-called 

snapping function is done by setting up a certain range 

for possible ‘Line segment’ events, in which edges 

converge into a certain area considered as a line 

segment, then they are supposed to converge into the 

same line segment. 

By a ‘Line segment’ event, two parallel edges 

converge into one edge (line segment), and the 

convergent line segment will be detached from a next 

shrinking body polygon. But if the detached line 

segment leaves no vertex for next shrinking process, 

then the line segment is disconnected from a body 

skeleton. Therefore, the detached line segment leaves 

at least one vertex for next shrinking process. 

Examples are shown in the line segment between 

Node2 and Node5 in Fig.4c and Fig.5b; one node 

whose interior angle is flat will remain for the next 

shrinking process so as to create the border of 

monotone polygons. For example, in Fig.4c & Fig.5b, 

four edges (edg11,12,14,15) propagate into Node2, 

and two overlapping edges (edg12,14) turn into the 

line segment incident to Node2 & nearby Node after 

edg13 disappeared.  

If a configurable range is quite narrow, then edge 

propagation will be extended, ending in Node5 as 

shown in Fig.5a; three edges (edg12,14,15) result in 

Node2, and three edges (edg11,12,15) result in Node5 

whose inner angle is quite acute, which is improper for 

roof board shape. 

4.4 Monotone Polygon Nodes Sorting 
According to Aichholzer et al. [Aic95], the area 

divided by a straight skeleton will be a ‘monotone 

polygon’. To get the monotone polygons, the set of the 

nodes belonging to each original edge will be sorted 

according to the ‘coordinate value of node vector 

projections’ onto the original edge vector parallel to 

each original edge. These nodes are coplanar and will 

form roof boards for a 3D building model. However, 

for some polygon, this methodology does not work, 

resulting in self-intersecting polygons. Fig.5c shows 

monotone polygons for edg13 are self-intersecting. 

This is because the edge (connecting Node3 & Node4) 

of the monotone polygon is perpendicular to the 

original edge (edg13) of the polygon, and the nodes 

are connected in the order of ‘node vector projection’. 

The self-intersection is found at edg29 in Fig.5c and 

edg21 in Fig.5b. 

To avoid self-intersection, the azimuth angle of the 

nodes belonging to the same monotone polygon is 

proposed, where the azimuth is the angle between each 

original edge vector and a node vector. The first node 

in the monotone polygon vertices numbering is 

selected from the node with least azimuth, and the last 

node is the node with greatest azimuth, since the nodes 

near the both ends on an original edge may wrap 

around both ends for some monotone polygons, and 

wrapping around nodes may not have simply 

increasing ‘coordinate value’. For example, in Fig.5c, 

the edge (connecting Node1 & Node2) of the 

monotone polygon is perpendicular to the original 

edge (edg29), and Node1 & Node2 have the same 

‘coordinate value’, resulting in self-intersection at 

nodes sorting. Thus, the nodes at ends are sorted by 

the azimuth angles. Then, the sorting of the nodes is 

found successful in a complicated shape polygon such 

as the one in Fig.4c and Fig.6c. 

 

5 APPLICATION 
Here are the examples of 3D building models 

automatically generated by the integrated system. 

Fig.6 & Fig.7 show the examples of 3D building 

models automatically generated. In generating these 

models, we classify the case of ‘Line segment event’. 

In Split event as mentioned in section 4.1, it is assumed 

to calculate the intersection of two non-parallel line 
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segments, i.e., two non-parallel angular bisectors. 

However, for some orthogonal polygons, two parallel 

edges will be overlapped when shrunk by e_dshri, and 

two parallel angular bisectors will be overlapped. If 

we do not classify the case of Line segment event, then 

we end up with numerical error by trying to calculate 

the intersection of two parallel line segments. 

Once 3D models with roofs are created, a top view of 

these models can be a roof report as shown in Fig.7i & 

7j, which can be used for the rapid assessment of roof 

damages by insurance companies. Automated 

generation of simple and complex roof geometries will 

be utilized for rapid roof area damage reporting by the 

length measurements and area calculations of all roof 

surfaces. The roof board area will be easily calculated, 

since a roof board is a monotone polygon, and can be 

partitioned into a set of trapezoids or triangles. The 

roof board area will be calculated by adding these 

trapezoids, and subtracted or added by two triangles, 

depending on the shape of the monotone polygon.  

The advantage of our generation system is that our 3D 

building models created are utilized for architectural 

design, i.e., BIM (Building Information Model), while 

3D models created by procedural modeling are not 

solid models but surface models which are to be 

converted into geometric primitives (CSG) when they 

are used for construction design.  

Now, architectural design world is experiencing a shift 

from 2D CAD drawings to BIM 3D modeling. BIM 

revolution is happening in the construction industry 

that is producing a step change in efficiency and 

accuracy. In our research, 3D building models 

automatically created can be used for BIM 3D 

modeling. There is no automatic generation system for 

3D building solid models with complicated roofs as 

far as we know. Automatic generation will be 

compared with manual creation which are a series of 

manual operations mentioned in section 1 by 3ds Max, 

and broken down into functions of the program 

(Maxscript) described as CG module’s process in 

section 3. It will take about more than one hour to 

create one hipped roof house including making 

intricately shaped ridges, while several seconds to 

automatically generate one by the personal computer. 

If given digital maps with attributes being inputted, as 

shown in Fig.1&7, the system automatically generates 

one hundred 3D building models within less than 10 

minutes by the personal computer with Intel(R) 

Core(TM) i7-7820HK CPU 2.90GHz. 

 

6 CONCLUSION 
In this paper, the new and extended methodology is 

proposed for adding ‘Line segment’ event besides the 

conventional events, and ‘monotone polygon nodes 

sorting’ by which self-intersecting monotone 

polygons are not formed. Thus, the proposed 

integrated system succeeds in automatically 

generating 3D building models. 

The roofs created by the straight skeleton are limited 

to hipped roofs with their roof ridges parallel to nearby 

long edges of the building contour. However, there are 

many roofs whose ridges are perpendicular to long 

edges. In the residential area all over the world, there 

are many roofs the straight skeleton method cannot 

create. For example, in the middle of the top edge in 

Fig.4a and Fig.6a, Fig.7e, there are some branch roofs 

which are not slanting and drop 90 degrees vertically, 

i.e., gable roofs. These are not created by the straight 

skeleton. 

In order to create various shape of roof, we propose a 

couple of schemes to create roofs by straight skeleton 

computation or partitioning or separating of 

orthogonal polygons. A complicated orthogonal 

building polygon can be partitioned or separated into 

a set of rectangles. Our proposed system partitions 

orthogonal polygons into a set of rectangles and places 

various shapes of roofs which include gable & hipped 

roofs or the roof whose ridges are perpendicular to 

nearby long edges on these partitioned rectangles. 

Thus, in order to create the 3D building models that 

have hipped and gable branch roofs, the future work is 

for developing the system in which we can select a 

couple of various schemes; dividing or separation 

Figure 6: Complicated shape polygon in shrinking process and a straight skeleton, a roof model generated.  

a) Complicated building polygon drawn on an orthophoto. b) Shrinking polygons (blue) by no event and red ones 
by events. c) The straight skeleton (blue) of the building polygon (bold). d) A roof model automatically generated 

a) b) c) d) 
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scheme or straight skeleton scheme to automatically 

create the different styles of roofs for one building 

footprint. 
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(b) Set of receding 
polygons by dshri calculated 
by equation (1) 

(a) Building polygons on 
2D Digital Map: Most of 
them are orthogonal. 

 

(c) The straight skeleton 
formed as the union of the 
pieces of angular bisectors 

 

(d) Automatically generated 
3D building model based on 
monotone polygons 

Figure 7: Shrinking process and a straight skeleton, a roof model generated, roof report 

 

(e) Enlarged building 
polygons: orthogonal 

 

(f) Set of receding polygons by 
dshri calculated by equation (1) 

(g) The straight skeleton 
formed as the union of the 
pieces of angular bisectors 

 

(h) Automatically generated 
3D building model based on 
monotone polygons 
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