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ABSTRACT
Spline interpolation is widely used in many different applications like computer graphics, animations and robotics.
Many of these applications are run in real-time with constraints on computational complexity, thus fueling the need
for computational inexpensive, real-time, continuous and loop-free data interpolation techniques. Often Catmull-
Rom splines are used, which use four control-points: the two points between which to interpolate as well as the
point directly before and the one directly after. If interpolating over time, this last point will ly in the future. How-
ever, in real-time applications future values may not be known in advance, meaning that Catmull-Rom splines are
not applicable. In this paper we introduce another family of interpolation splines (dubbed Three-Point-Splines)
which show the same characteristics as Catmull-Rom, but which use only three control-points, omitting the one
“in the future”. Therefore they can generate smooth interpolation curves even in applications which do not have
knowledge of future points, without the need for more computational complex methods. The generated curves
are more rigid than Catmull-Rom, and because of that the Three-Point-Splines will not generate self-intersections
within an interpolated curve segment, a property that has to be introduced to Catmull-Rom by careful parameteriza-
tion. Thus, the Three-Point-Splines allow for greater freedom in parameterization, and can therefore be adapted to
the application at hand, e.g. to a requested curvature or limitations on acceleration/deceleration. We will also show
a method that allows to change the control-points during an ongoing interpolation, both with Thee-Point-Splines
as well as with Catmull-Rom splines.
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1 INTRODUCTION
Spline interpolation is widely used for the creation of
smooth paths e.g. in computer graphics or for the mo-
tion of robots. These splines have typically to fulfill
four mathematical properties:

1. they have to be (at least) C1 continuous,

2. they have to be interpolating splines, i.e. pass
through all of their control points,

3. they have to be affine invariant, i.e. the sum of all
blending polynomials is always 1, for all values of
the interpolation variable, and
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4. they must allow for local control, i.e. each control-
point influences only a small, compact part of the
overall generated curve.

Probably the most used interpolating splines are
Catmull-Rom splines (CR), which fulfill all of the
above properties, are fast to calculate and simple to
use. CR use 4 control points - the two defining the
current interpolation segment as well as the one directly
before and the one directly after; if interpolating over
time the latter point will ly in the future. However, in
real-time applications limited information is available
about future points, especially there might be no future
information available apart from the next control point,
rendering CR and all other conventional interpolation
splines unsuitable. The spline in this paper, called
Three-Point-Splines (TPS), exhibits the same prop-
erties as CR, but does not rely on the knowledge of
any future points, and is thus applicable even in these
scenarios.
In some cases the path to the next control point might
be blocked, e.g. by a moving object, normally neces-
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sitating motion replanning and probably stopping the
current motion. As alternative, a method is introduced
enabling to change the next control-point during an
ongoing interpolation without loosing any of their
properties, for both TPS and CR. This can be used
e.g. in animations for computer games or for instant
reactions of robots to a changed environment, thus
enabling the robots to perform safer and more effi-
ciently, a critical factor for their success in real-world
applications [ET14].
Furthermore, TPS exhibit a very rigid behavior, and
less variation as comparable splines (like e.g. CR). Be-
cause of this the curves generated by TPS are naturally
self-intersection-free, a property that has to be intro-
duced to CR by careful parameterization. In contrast,
TPS allow for a range of different parameterizations
that all are guaranteed to be self-intersection-free, and
can therefore be adapted to meet the requirements
of the application like e.g. limits on speed or accel-
eration/deceleration. Typically, reparameterizations
are needed to ensure that these limits are kept, which
introduces computational overhead. Also, not all
reparameterizations have an analytical solution (like
e.g. arc-length parameterization).
Finally, it is shown that the TPS are of lower com-
putational complexity than CR which is important
for real-time systems with limited computational
capabilities.
TPS have only been described once earlier, in a confer-
ence poster by the author [Ogn13]. This paper extends
the earlier work by describing the exact properties of
TPS and by introducing a recursive evaluation form and
parameterization scheme, needed for artifact-reduction.
The change of the next control-point during an ongoing
interpolation has not been described earlier.

1.1 Related Work
TPS are asymmetric splines that use three control-
points. Asymmetric interpolation, in the sense of
using a different number of points before (i.e. “in the
past” of) and after (i.e. “in the furture” of) the current
interpolation segment, was first proposed in [Yua96],
albeit in a more theoretical-stochastic fashion, without
a discussion of specific splines or their mathematical
properties. Interpolation using three points was first
explored in [Dod97]. However, in their work only
functions of second degree were considered, and thus
it was not possible to construct an interpolating spline
and reach C1 continuity at the same time. Furthermore,
their interpolation scheme is symmetric, and uses a
point in the past for the first half of the interpolation
segment and a point in the future for the second half.
An interpolating spline which does not use future
but reaches a higher continuity than C0 has to be
asymmetric by definition.

Edwin Catmull and Raphael Rom introduced their
splines already in [CR74], and later publications built
on this initial approach, for example [DB88] or [KB84]
which explored the basic properties of the splines
further. The latter one even introduced an additional
relaxation term, with which C1 continuity can no
longer be guaranteed though. Both did not explore
more advanced parameterization techniques, which
were made possible by the introduction of recursive
evaluation forms in [JAW67]. Correct parameterization
has been proven to be a vital part of spline interpo-
lation, since uniform parameterizations can lead to
unwanted behavior like loops. Thus, a number of
different publications have examined this issue, often
based on the findings of [IDS99], where for the first
time a scheme was proposed to include non-uniform
parameterization in CR and similar splines. Two of the
most popular schemes are the centripetal [Lee89] and
the chordal [ML88] scheme, which have been applied
to CR in [NDH09]. The work described in [CYK11]
built on this further by applying methods introduced
in [DM96] and [Flo08] to prove that the centripetal
parameterization is the only scheme that guarantees no
self-intersections in CR.

1.2 Definitions

In this paper piecewise polynonmial interpolation is
considered over a number of control-points Pi, where
the current interpolation segment r is interpolating
between the control-points Pr and Pr+1. Although
only the properties of this segment are considered,
its properties apply to all other segments as well,
and especially the continuation between segments is
guaranteed if not stated otherwise.
The following definitions are used:

Da,b = Pa−Pb

for the difference vector (between two points),
and

l(t) = tDr+1,r +Pr, t ∈ IR

for the line spawned by the two control-points of
the interpolation segment.
The rest of this paper is organized as follows: section
2 introduces the uniform form of TPS interpolation,
section 3 its recursive version, section 4 shows how
control-points can be changed during an ongoing
interpolation (for both TPS and for CR), and section
5 concludes the paper. Proofs and Derivations can be
found in the appendix.
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Figure 1: Blending polynomials:
Upper row: Three-Point-Spline (left) and Catmull-Rom
(right): Red: polynomial for Pr−1, green: polynomial
for Pr and blue: polynomial for Pr+1; Catmull-Rom
includes an additional polynomial (cyan) for Pr+2; all
polynomials use an α of 0.5
Lower row: the polynomials for the difference vector
form (left) and their derivatives (right):
u(u−1)2 (red), u2(u−1) (blue) and u2(3−2u) (green)

2 DERIVATION OF THE UNIFORM
FORM

Taking the aforementioned mathematical properties
as constraints, the interpolation equations are set up
accordingly and lead to the following equation, with u
as interpolation variable, 0≤ u≤ 1:

FT PS(u) = (−αu3 +2αu2−αu)Pr−1
+ (2u3− (3+α)u2 +αu+1)Pr (1)
+ ((α−2)u3 +(3−α)u2)Pr+1

with α a parameterization value that can be chosen
freely. Figure 1 shows the blending polynomials, with
the ones from CR for comparison.
These equation can be rewritten to be based on the
differences of points rather than based on points:
FT PS(u) = αu(u−1)2Dr,r−1

+ αu2(u−1)Dr+1,r (2)
+ u2(3−2u)Dr+1,r
+ Pr

where the first two terms blend the derivatives at
points Pr and Pr+1 respectively, while being 0 at

both endpoints. The rest of the equation interpolates
between the two points of the segment, while having
a zero derivative at the endpoints (see also figure 1).
Thus, this form gives a good overview of how the
spline will behave (a similar form was already used in
[KB84] albeit not for TPS). For comparison, uniform
CR can be written in a similar way:

FCR(u) = αu(u−1)2Dr+1,r−1
+ αu2(u−1)Dr+2,r
+ u2(3−2u)Dr+1,r (3)
+ Pr

Note that CR includes an additional “future” point
Pr+2. The main difference between CR and TPS is
which difference vectors are used for the derivatives,
which has a high impact on how the splines behave.
Especially, using the same difference vector in the
second and the third term is exactly what gives the TPS
their rigid behavior.
Incidentally, the α values for the different segments
do not need to be the same, as long as they are the
same where the same segment is concerned, i.e. the α

value from the first term (in equation 2) needs to be the
same α value used for the second term in the previous
segment, or otherwise the interpolation will only be G1

continuous, which is true for both CR and TPS.
Of special interest is of course the maximal distance
dmax of the curve segment generated by TPS to the
line l(t), as already discussed in [Flo08] and [CYK11].
Also, this distance is needed to prove that TPS will
never generate loops (for parameterizations inside a
sensible bound), but might lead to overshots.
We define αa(u) = αu(u− 1)2, blending Dr,r−1, and
b(u) = u2((α − 2)u+(3−α)) (combining the second
and the third blending polynomials of equation 2),
blending Dr+1,r. Inserting these functions into the
point-line-distance equation yields (see also the ap-
pendix 7.1.2):

d(u) = ||Dr,r−1||αa(u)(1− cos2 θ)
1
2 (4)

with θ the angle between Dr,r−1 and Dr+1,r.
From the derivative d′(u) of equation 4 it is clear that
only one extreme point exists for 0 < u < 1, a maxi-
mum which lies at u = 1

3 , i.e. where the derivative of
a(u) becomes zero. Thus, the position of the maximal
distance of the curve segment from the line l(t) lies at
the same u-value in each segment and the maximum
distance can therefore be easily calculated.
The three points used for the current interpolation
segment (Pr−1, Pr, Pr+1) span a plane on which all
points of the generated curve for the current segment
lie (the special case where all lie on the line l(t) will be
discussed later). The plane also contains the line l(t).
As was shown earlier, the distance to this line depends
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only on the a-part of the interpolation function FCR(u)
(i.e. the b-part of the function lies completely on the
l(t)), which is non-zero for 0 < u < 1. Since a has no
zero-point in the interpolation interval all points of the
generated curve-segment lie on the same side of the
line.

Pr

Pr+1

Pr−1

Pr

Pr+1

Pr−1

Figure 2: the different behavior of the three-point-
spline with different αs: The interpolating curves (up-
per row) and the distance to the line l(t) (lower row)
a) (left) with α = 1, representing the case of 0 < α < 3
c) (right) α = 5, representing the case of α >= 4
The direction of the tangents in the respective extreme-
points (i.e. the maximum distances to l(t)) are visualized
by arrows; note that they are not in the same scale as the
curves for better visualization

The interpolation function can be divided into two
parts: a part e whose tangents are parallel to the
line (i.e. which blend the vector Dr+1,r) and a part f
whose tangents are perpendicular to the line. While
the f function-part only depends on the a-part of the
interpolation function (as was shown earlier), the e
function-part might depend on both a and b since
Dr,r−1 is not necessarily perpendicular to Dr+1,r.
If the generated curve has a loop, both function-parts e
and f change the signs of their tangents at some point
in the loop (i.e. move into one direction first, than into
the other, see also figure 2), which means that the loop
has to contain an extreme point for both e and f , i.e.
both function-parts need to have an extreme point in
the interval 0 < u < 1. It was already shown that the
a-function-part has a maximum, but since it is only
depending on one vector (i.e. all points generated by a

lie on a segment of the line through Pr−1 and Pr) this is
not enough to cause a loop, and whether a loop exist or
not depends on the extreme-points of b. Looking at the
derivative of b it becomes obvious that it contains one
at u = 0 (which it does by definition of the blending
functions), and another one that depends on the chosen
value for α:

α = 0: at u = 1
0 < α < 2: at u > 1
α = 2: at u = 0
2 < α < 3: at u < 0
α = 3: at u = 0
α > 3: at 0 < u < 1

This means that for 0 <= α <= 3 b does not
have an extreme point in the interpolation interval and
thus the generated curve will not contain a loop.
For α > 3, the first derivative of the b-function-part
will be negative in the beginning of the interpolation
segment, and become positive after the extreme-point.
If this extreme point lies after or at the extreme-point
of a (which is located at u = 1/3), the generated curve
will contain a loop. Inserting u = 1/3 int b′ yields:

b′
( 1

3 )
= ( 4

3 −
1
3 α), (6)

Which means that the generated curve will con-
tain a loop for α >= 4. The interval 3 < α < 4 would
need further analysis, but this is omitted here since the
interval 0 <= α <= 3 is deemed to be large enough,
since larger αs lead to curves with a large maximal
distance to l(t), and are therefore of limited use. Also,
note that in CR freedom of loops is much harder to in-
troduce, in fact only centripetal CR fulfills it [CYK11];
the reason for the comparable large range of possible
parameterizations of TPS which are guaranteed to be
free from loops lies in the rigid behavior of TPS.
Unfortunately, the case where all points of the current
segment lie on the line l(t) is harder to examine. For
Dr+1,r and Dr,r−1 pointing in exact opposite directions
the generated line will contain a segment where the
interpolation function moves into one direction first,
than in the other. If Dr+1,r and Dr,r−1 are pointing in
the exact same direction this depends on the length
of these two vectors, and on the value chosen for
α . On a side-note, setting α = 1 means that the
function will behave like a linear blending function
for Dr,r−1 = Dr+1,r (as with Catmull-Rom for α = 0.5
and Dr,r−1 = Dr+1,r = Dr+2,r+1), which means it will
interpolate with a constant first derivative i.e. it will
move with a constant speed if interpolating over time.
Since the distance to l(t) depends on α , setting α to a
low value will lead to a curve that deviates only slightly
from l(t). However, this will also result in large changes
of the length of the tangent vectors (i.e. changes in the
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a) b)

c)

Figure 3: Comparison of CR and TPS with different parameterizations:
a) Left: CR with α = 0.5 (red), TPS with α = 0.5 (green), α = 0.7 (cyan) and α = 1 (blue)
Right: zoomed in on the light-gray circle:
b) Top right: CR and c) Bottom right: TPS, both with parameterizations of α = 0.5 (green), α = 0.7 (cyan) and
α = 1 (blue)

speed if used for animations or robot movement), since
a small α results in short tangents in the control-points,
but not all terms are bound by α (see also equation
2 and figure 1, to the right). Thus the tangents in the
middle of the curve segments would be comparably
large. Depending on the applications, limits can be
determined on how far each curve segment is allowed
to stray from l(t), and how large changes of the lengths
of the tangent-vectors are allowed to be, and thus a
good value for α can be determined.
It is interesting to look at the derivative of TPS for
α = 1.0:

F′T PS(u) = (3u2−4u+1)Dr,r−1 +(4u−3u2)Dr+1,r
= (4u−3u2)(Dr+1,r−Dr,r−1)+Dr,r−1

Thus, the derivative becomes an interpolation itself,
between the derivatives at the point Pr and Pr+1.
A positive α value means also that Pr−1 and the
point with the maximum distance to l(t) will ly on
opposite sides of l(t). This means that if Pr+2 lies
between l(t) and the generated curve segment, the
next curve segment will cross the current one, thus
generating a self-intersection in consecutive segments.
For more than two dimensions, the points Pr−1, Pr,
Pr+1 and Pr+2 need to lie in the same plane for this
self-intersection to happen, since each curve segment

of course lies completely in the plane spanned by
the three points it uses for the interpolation. The
reason for these possible self-intersections lies in the
fact that it does not include a term containing the
next interpolation segment (e.g. Dr+2,r). Without this
information, it is of course impossible to construct a
curve that is guaranteed to be free of self-intersections
in consecutive segments. Note that this applies even to
the recursive form shown in the next section.
A comparison between different parameterizations of
TPS and CR is given in figure 3. Although TPS do not
lead to loops like CR, it introduces other artifacts in the
form of overshots. Taking a look at the distance of the
generated curve to the line l(t) (equation 4), it becomes
clear that it depends on the length of the last segment
Dr,r−1 rather than on the length of the current segment
Dr+1,r. Thus, if a long line segment is followed by
a much shorter line segment the interpolation will
unfortunately always overshoot in the shorter segment.
A better parameterization to conquer this issue will be
developed in the next section.

3 RECURSIVE EVALUATION FORM
AND PARAMETERIZATION

Using TPS, one might be tempted to simply vary the
different α values depending on the length of the
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Figure 4: Different recursive formulations, with sr =
||Dr+1,r||β : a) (top) CR, b) (bottom) TPS

segment, but this can lead to unwanted side-effects,
especially it would no longer be guaranteed that the
α values would be inside the bounds established
earlier. Instead, here one of the main ideas behind
chordal, centripetal and other related parameterizations
is used, namely varying the interpolation interval with
the distance between the different points, using the
interpolation variable v:

0≤ v≤ sr = ||Dr+1,r||β , (7)

Conventionally, recursive CR-formulations are de-
fined regarding to the sum of the lengths of the
interpolation segments:

s′0 = 0

s′r =
r−1
∑

i=0
s′i + ||Dr,r−1||β (8)

However, this more common formulation for re-
cursive CR can be easily received from the one given
here, and vice versa.
Using the formulation of (equation 7) reveals that the
derivative of recursive CR in point Pr is no longer a
simple scalar product of Dr+1,r−1 multiplied by the
interpolation parameter α but becomes:

F′CR,rec(v=0) =
sr

sr−1
Dr,r−1+

sr−1
sr Dr+1,r

sr−1+sr
(9)

(similar for v = sr since it is still C1 continuous.)
The centripetal and similar parameterizations of CR
are facilitated by the fact that they can be expressed
by a recursive evaluation form. Thus, to be able to
use similar parameterizations of TPS they are first
expressed in a recursive form as well, which is given in
figure 4b), with the corresponding form of CR in figure
4a), and example interpolations in figure 5.

The function of the distance to the line l(t) (equation 4)
becomes for recursive TPS:

d(v) = ||Dr+1,r||β ||Dr,r−1||1−β a′(v) (1− cos2 θ)
1
2

with a′(v) =
v
sr
( v

sr
− 1)2 (10). (See also the appendix

7.2.1 for a more detailed derivation.)
Thus, β can be seen as a blending factor of how
much the length of the current segment influences
the distance to the infinite line l(t), and how much the
segment before it influences this distance. For β = 1
the distance to l(t) is only depending on the length of
the current segment, and not at all on the length of
the segment before. For β = 0 it behaves exactly like
equation 2 for α = 1, i.e. it becomes a uniform param-
eterization. In the same way, the recursive formulation
of CR becomes the uniform parameterization with
α = 0.5 by setting β to 0.
Since the distance to l(t) is now bounded by the length
of the current segment the generated curves do not
overshoot anymore while interpolating comparably
small segments, as can be seen in figure 5, which shows
CR and TPS with different parameterizations. Also,
an additional curve was added (in magenta) which
uses different values for β , depending on the length
of the segment. The idea behind this is to minimize
the ||Dr+1,r||β and ||Dr,r−1||1−β factors (and thus the
distance to l(t))as much as possible.
Again it is possible to use different β values for dif-
ferent segments, just as it is to use different α valuess
in the uniform versions, but again the same β value
has to be used for the same segment, i.e. the β value
used to blend Dr,r−1 has to be equal to the β value
used to blend Dr+1,r during the interpolation of the last
segment, to maintain C1 continuity. This applies to
both TPS and CR, however for CR only the centripetal
(β = 0.5) parameterization is guaranteed to be free
from loops. For TPS β can be chosen freely, without
risk for self-intersections (in the same interpolation
segment), as will be shown next.
Similar as in section 2 the places of the extreme
points can be found of the distance function to l(t)
for recursive TPS, and again only one extreme point
exists, a maximum at v = 1

3sr
, i.e. again after 1

3 of the
interpolation interval, which is not surprising taking
the similar derivatives of the blending weights for
Dr,r−1 into account. From the derivative it becomes
obvious that the blending function b′v for Dr+1,r is
always positive in this point, i.e. the interpolated
curve will never contain any loops, independent of
which value β has (See also the appendix 7.2.1 for
a more detailed derivation.). It should be pointed
out however that whereas centripetal CR is also free
from self-intersections in neighboring segments, this
property cannot be introduced to the TPS, due to the
fact that it is missing a term for the next segment in its
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a) b)

c)

Figure 5: Comparison of centripetal CR and the recursive TPS with different parameterizations:
Left: centripetal CR (red), TPS with β = 0.5 (green), β = 0.7 (cyan) and β = 1 (blue)
a) Right: zoomed in on the light-gray circle:
b) Top right: CR and c) Bottom right: TPS, both with parameterizations of β = 0.5 (green), β = 0.7 (cyan) and
β = 1 (blue)
An additional curve was added for a TPS with a variable parameterization, which uses β = 0.5 for the long
segments and β = 1 for the short segment. Note that it in this example follows (and overlaps) very closely either
the curve created by the TPS with β = 0.5 or the one with β = 0.7, depending on the segment.

equation, as already discussed in section 2. Thus, TPS
will generate a self-intersection in two neighboring
segments if the next control-point after the current
segment lies in between l(t) and the interpolation curve
of the current segment and on the plane spanned by the
three control-points used during the current segment.
Finally, since the recursive formulation of TPS behaves
similar as the uniform version with α = 1, the deriva-
tive of the recursive formulation of TPS is a blending
function itself, of the derivatives at point Pr and Pr+1
(see also the appendix 7.2.2):

F′T PS,rec(v) = (1−h(v))
Dr,r−1
||Dr,r−1||β

+h(v)
Dr+1,r
||Dr+1,r ||β

with h(v) = 4 v
sr
−3( v

sr
)2 (11)

For a comparison in computation time both the uni-
form and the recursive version of both TPS and CR
were implemented. For a fair comparison, each was
implemented in different, hand-optimized ways and
the respective fastest version was used; the reached
optimizations should be comparable. The same
α = β = 0.5 were used for all the different interpola-
tion methods and the same 1 000 000 randomly chosen
control-points between which 100 intermediate points

for each segment were interpolated. This was done on
an Intel Core i7-6700 CPU running at 3.40GHz with 16
GBytes of RAM and gcc 5.4.0 with full optimization.
The results are given in table 1.
It is counter-intuitive that the recursive version of TPS
is faster than the uniform version, especially since it
involves square roots - however with modern comput-
ers and compilers square roots can be computed very
efficiently (in fact it took less than 4.5 s to calculate all
the s values needed during the comparison) and need to
be calculated only once for each interpolation segment.
The remaining computation of the recursive version of
TPS contains very few operations, less than needed for
the uniform version. However, for the uniform version
the minimal number of operations needed depends
highly on the value chosen for α , and in fact for α = 1
the uniform version needs fewer operations and thus
performs marginally faster than the recursive version.

Computation uniform uniform centripetal recursive
time CR TPS CR TPS

in seconds 1295 908 2009 699
in percent 65 45 100 35
Table 1: Timing results for the different methods.
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P Pr+1,new

Pr

Pr+1,org

Figure 6: Example of a change of control-points during
an ongoing interpolation:
A course is planned for a robot with centripetal CR
(red) and recursive TPS (with β = 0.5, in blue) through
a number of points given by the circles. However, dur-
ing its run the robot notices a new obstacle (visualized
by the gray rectangle) in point P. The robot plots an
evasion course through point Pr+1,new and thus is able
to reach its destination without the need to stop for a
replanning. The course it actually took is shown with
solid lines, the planed one with dotted lines (note that it
is partly overlapping with the robots actual course.)

4 CHANGE OF CONTROL POINTS
DURING AN ONGOING INTERPO-
LATION

Here, it will be shown how it is possible to change
the next control-point (Pr+1) during an ongoing in-
terpolation, without losing any of the mathematical
properties, for both TPS and CR. This is useful in
many real-time scenarios, an example might be a robot
which encounters a previously unknown obstacle that
it needs to circumvent.
The basic idea is to stop the ongoing interpolation,
and start a new one in the current point P, which thus
becomes Pr,new. The derivative in this point P′ = P′r,new
is calculated using the current interpolation interval,
and a new new destination point Pr+1,new is chosen.
The derivative of the recursive formulation of TPS in
point v = 0 is:

F′T PS,rec(0) =
1

||D0,r−1||β0
D0,r−1 (12)

Thus, setting D0,r−1 = P′ and β0 = 0 for the new
interpolation segment maintains C1 continuity. (Alter-
natively, if β0 is chosen freely the generated curve will
be G1 continuous in point P.)
In a similar way the next control-point can be changed
during an ongoing interpolation using recursive CR.

Equation 9 describes the derivative for CR and v = 0.
We set again the β0 for segment Dr,r−1 to zero, as well
as equation 9 F′CR,rec(0) = P′, and solve for Dr,r−1:

Dr,r−1 =
(1+sr)P′−

Dr+1,r
sr

sr
(13)

Note that in contrast to TPS, in CR setting β0 to
another value but zero will not lead to G1 continuity,
but will rather have no higher continuity than C0.
Setting β0 = 0 however means using an uniform
parameterization, albeit for only one segment, which
might lead to unwanted behavior (especially loops
in the case of CR). However, although no proof for
the existence or non-existence of such unwanted
behavior can be presented, none were found during the
experiments with neither CR nor TPS (i.e. no large
overshoots either). An example of this method can be
found in figure 6.
Of course, if the necessity to change the control-points
becomes known beforehand (i.e. before entering the
segment containing an afflicted control-point), no
measures need to be taken in case of TPS. For CR, this
is only the case if both the current and the next segment
are not affected.

5 CONCLUSION / FUTURE WORK
Three-Point-Splines (TPS) have been introduced
which have similar mathematical characteristics as
Catmull-Rom (CR). However, in contrast to CR and
similar splines TPS do not rely on the knowledge of
future points. Thus TPS enable spline interpolation
even in real-time scenarios where no future values are
known. Also, it was shown that TPS can be computed
faster than CR.
TPS are more rigid than CR and because of that are
trivially free of self-intersection (inside the inter-
polation segment) without the need for a particular
parameterization to avoid this. Thus the parameteri-
zation of TPS can be adapted to the application, but
ideal values for different applications still need to be
found. For CR, only one parameterization, centripetal,
fulfills this property. However, centripetal CR is also
free from self-intersections in directly consecutive
segments, a property that cannot be introduced to TPS
due to the fact that they do not include knowledge of
future points.
Also, a method was presented how to change the next
control-point during an ongoing interpolation, for both
TPS and CR, rather than having to do a computational
expensive replanning. However, although no such
behavior was observed in the experiments, it is not
completely clear yet if this can lead to unwanted
behavior like self-intersections (in the case of CR) or
overshots (in the case of TPS).
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7 APPENDIX - PROOFS AND DERIVA-
TIONS

In the following excessive use is made of the fact
that ||P|| =

√
PP (note that since this describes a

norm always the positive root has to be selected), and
especially ( P

||P|| )
2 = PP

(
√

PP)2 = 1.

7.1 Properties of the Uniform Version

7.1.1 Formulation and Derivative

Separating equation 2 in two terms, one blending Dr,r−1
and one blending Dr+1,r yields (with 0 <= u <= 1):

FCR(u) = αu(u−1)2Dr,r−1

+ u2((α−2)u+(3−α))Dr+1,r +Pr

= αa(u)Dr,r−1 +b(u)Dr+1,r +Pr

With the derivative:

F′CR(u) = α(3u2−4u+1)Dr,r−1

+ (3(α−2)u2 +2(3−α)u)Dr+1,r (14)

= αa′(u)Dr,r−1 +b′(u)Dr+1,r

7.1.2 Distance to l(t)

Inserting FCR(u) into the point-line-distance function
becomes:

d(u) = ||(FCR(u)−Pr)− ((FCR(u)−Pr)Dr+1,r)Dr+1,r||

= || (αa(u)Dr,r−1 +b(u)Dr+1,r)

− ((αa(u)Dr,r−1 +b(u)Dr+1,r)
Dr+1,r
||Dr+1,r ||

)

· Dr+1,r
||Dr+1,r ||

||

Simplifying this equation leads to:

d(u) = || αa(u)Dr,r−1 +b(u)Dr+1,r

− αa(u)
Dr,r−1·Dr+1,r
Dr+1,r ·Dr+1,r

Dr+1,r

− b(u)
Dr+1,r ·Dr+1,r

||Dr+1,r || ||Dr+1,r ||
Dr+1,r||

= αa(u)||Dr,r−1−
Dr,r−1·Dr+1,r

||Dr+1,r || ||Dr+1,r ||
Dr+1,r||

= ||Dr,r−1||αa(u)

· || Dr,r−1
||Dr,r−1||

− Dr+1,r ·Dr,r−1
||Dr+1,r || ||Dr,r−1||

Dr+1,r
||Dr+1,r ||

||

= ||Dr,r−1||αa(u) (
Dr,r−1·Dr,r−1

||Dr,r−1|| ||Dr,r−1||

− 2 Dr+1,r ·Dr,r−1
||Dr+1,r || ||Dr,r−1||

Dr+1,r
||Dr+1,r||

Dr,r−1
||Dr,r−1||

+ (
Dr+1,r ·Dr,r−1

||Dr+1,r || ||Dr,r−1||
)2 Dr+1,r ·Dr+1,r
||Dr+1,r || ||Dr+1,r ||

)
1
2

= ||Dr,r−1||αa(u)(1− cos2 θ)
1
2

with θ the angle between Dr,r−1 and Dr+1,r (4)

7.2 Properties of the Recursive Version
7.2.1 Formulation and Derivative
From figure 4 the equation for the recursive version of
TPS can be derived, for 0≤ v≤ sr = ||Dr+1,r||β :

FT PS,rec(v) = − v
sr−1

(1− v
sr
)2Pr−1 +

v
sr−1

(1− v
sr
)2Pr

+ (1− v
sr
)Pr +

v
sr

Pr

− v
sr
(2 v

sr
− v2

s2
r
)Pr +

v
sr
(2 v

sr
− v2

s2
r
)Pr+1

= v
sr−1

(1− v
sr
)2(Dr,r−1)

+ v
sr
(2 v

sr
− v2

s2
r
)(Dr+1,r)+Pr

= sr((
v
sr
−2( v

sr
)2 +( v

sr
)3)

Dr,r−1
sr−1

+ (2( v
sr
)2− ( v

sr
)3)

Dr+1,r
sr

+Pr

And from that the derivative:

F′T PS,rec(v) = (1−4 v
sr
+3( v

sr
)2)

Dr,r−1
sr−1

+ (4 v
sr
−3( v

sr
)2)

Dr+1,r
sr

= (4 v
sr
−3( v

sr
)2)(

Dr+1,r
sr
− Dr,r−1

sr−1
)

+
Dr,r−1
sr−1

7.2.2 Distance to l(t)
Inserting FT PS,rec(v) in equation 4 (with a(v) =

sr
sr−1

( v
sr
( v

sr
−1)2)) leads to:
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d(v) = ||Dr,r−1||
||Dr+1,r ||β

||Dr,r−1||β
( v

sr
( v

sr
−1)2)(1− cos2 θ)

1
2

= ||Dr+1,r||β ||Dr,r−1||1−β a′(v)(1− cos2 θ)
1
2

with 0≤ a′(v) =
v
sr
( v

sr
−1)2 ≤ 1

7.3 Equation and Derivative of recursive
Catmull-Rom

The following is needed to be able to change
the control-points during an ongoing interpola-
tion as described in section 4. Again we use
0≤ v≤ sr = ||Dr+1,r||β .

7.3.1 Formulation

FCR(v) =
s2
1v−2srv2+v3

sr−1sr(sr−1+sr)
Dr,r−1

+ (
sr−1srv+2srv2−v3

srsr(sr−1+sr)
+ srv2−v3

srsr(sr+sr+1)
)Dr+1,r

+ v3−srv2

srsr+1(sr+sr+1)
Dr+2,r+1

+ Pr

7.3.2 First Derivative

F′CR(v) = s2
r−4srv+3v2

sr−1sr(sr−1+sr)
Dr,r−1

+ (
sr−1sr+4srv−3v2

srsr(sr−1+sr)
+ 2srv−3v2

srsr(sr+sr+1)
)Dr+1,r

+ 3v2−sr2v
srsr+1(sr+sr+1)

Dr+2,r+1
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