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ABSTRACT
Due to the proliferation of mobile devices and cloud computing, remote simulation and visualization have become
increasingly important. In order to reduce bandwidth and (de)serialization costs, and to improve mobile battery
life, we examine the performance and bandwidth benefits of using an optimizing query compiler for remote post-
processing of interactive and in-situ simulations. We conduct a detailed analysis of streaming performance for
interactive simulations. By evaluating pre-compiled expressions and only sending one calculated field instead
of the raw simulation results, we reduce the amount of data transmitted over the network by up to 2/3 for our
test cases. A CPU and a GPU version of the query compiler are implemented and evaluated. The latter is used
to additionally reduce PCIe bus bandwidth costs and provides an improvement of over 70% relative to the CPU
implementation when using a GPU-based simulation back-end.
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1 INTRODUCTION

In modern computer-aided engineering (CAE), com-
pute-intensive simulations are more and more often run
on remote cloud or high-performance computing (HPC)
infrastructures. To avoid downloading large simulation
results to a local client machine, solutions for remote vi-
sualization and remote post-processing are needed. Al-
though the option of using a standard visualization tool
via a video streaming system such as Virtual Network
Computing (VNC) [Ric+98] is attractive, it is desirable
to keep latencies to a minimum to increase usability
[TAS06]. By transferring (partial) floating point simula-
tion data instead, operations such as probing or changes
in color mapping can be performed locally with min-
imal latency. Similarly, by transferring geometry or
point data in 3D, smooth camera interaction becomes
possible [Alt+16].

In particular, we aim to answer the following questions:

1. Can compiler technologies be used to decrease vi-
sualization latencies in a remote scientific visualiza-
tion system?
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Figure 1: Network, bus and memory bandwidths rel-
evant to streaming a GPU-based simulation. The two
most limiting factors are the network bandwidth and the
PCIe bus bandwidth.

2. Can GPU-based simulations running at interactive
rates profit from GPU-based query compilation?

When individual result fields of a simulation are visu-
alized, data can simply be streamed from the server
running the simulation. When viewing derived values
that depend on multiple fields such as the total energy
density v2

2 + gz+ p
ρ

in an Eulerian computational fluid
dynamics (CFD) simulation, a different solution is re-
quired, as transferring all data would be prohibitive, es-
pecially when considering comparatively slow mobile
connections (see Fig. 1) and mobile power consump-
tion.

A simulation service could provide a fixed set of de-
rived values. However, the derived values a user wants
to visualize often depend not only on the physics do-
main, but also on the application domain. Therefore,
compiling such a fixed set requires domain knowledge
and is very likely to be incomplete and insufficient for
the user to perform his or her work. For stationary sim-
ulations, a server-side interpreter for user queries is en-



tirely sufficient, as each query only has to be processed
once. For interactive simulations, i.e., time-dependent
simulations running at several frames per second, or the
in-situ visualization of a long-running solver, however,
this approach becomes costly due to the repeated inter-
pretation overhead.

To avoid these costs, we examine the performance
and bandwidth benefits of using optimizing compiler
technologies for remote, in-situ post-processing and
visualization of simulations running at interactive rates.
The implemented query compiler has a native CPU
back-end (x86 and x86-64) as well as a GPU back-end
(NVIDIA PTX). The latter is used to extend the
bandwidth savings to the PCIe (Peripheral Component
Interconnect Express) bus in addition to the network
interface, further improving performance when using
GPU-based simulation algorithms. Our approach is
easily extended to all platforms supported by LLVM
[LA04].

2 RELATED WORK
This section describes existing methods that are related
to our approach and briefly shows their benefits and
drawbacks.

2.1 Compiler Technologies for Visualiza-
tion

Previous applications of compilers and domain-specific
languages (DSLs) to scientific visualization mostly
center on volume visualization and rendering itself
[Chi+12; Cho+14; Rau+14]. These systems therefore
represent the entire visualization pipeline. In the
streaming architecture presented in this paper, data is
transformed on the server and rendered on the client.
Therefore, the aforementioned systems are not directly
applicable. This split corresponds to the two stages
“Data Management” and “Picture Synthesis” in the sys-
tem architecture used by [Duk+09]. However, they use
an embedded DSL (eDSL) based on Haskell [Pey03].
As client code must be considered untrusted by the
server, a general-purpose language and any eDSL
based on such a language pose a great security risk.
In the area of visual analytics, MapD Technologies
[Map16] have recently used LLVM/NVVM [NVI16]
and GPU computing with great success [MŞ15]. In
contrast, we aim to bring the advantages of using com-
piler technologies to the field of scientific visualization,
with a focus on interactively changing datasets from
either in-situ or interactive simulations.

2.2 Compression
Another approach to reduce bandwidth requirements is
to apply floating-point data compression. For struc-
tured data, lossy methods such as the one presented in
[Lin14] achieve good results. Structured data occurs in

a significant subset of simulation domains and such a
method would be widely applicable. However, lossy
compression before calculation of desired derived val-
ues can lead to larger errors in the compounded result.
For general data, a method such as the one presented in
[OB11] could be used. Their method is a lossless com-
pression method and implemented on the GPU, mak-
ing it applicable to reducing network as well as PCIe
bus bandwidths and to arbitrary simulation domains.
As compression is orthogonal to the method presented
in this paper, any suitable compression algorithm can
be chosen and combined with our approach. However,
all compression methods incur an additional computa-
tion cost. A good overview of existing compression
techniques for floating-point data is given in [RKB06],
showing compression ratios as well as compression and
decompression times.

2.3 Application Sharing
Although we present a method to reduce the amount
of data transferred when the client performs part of the
necessary calculations to reduce perceived latency, it is
worth mentioning that transmitting the content of single
applications or the entire desktop as an image or video
stream is still a common way to visualize server appli-
cations on (thin) client machines across a local network
or the Internet. Microsoft’s Remote Desktop Proto-
col (RDP) [Mic16] or the platform-independent Virtual
Network Computing (VNC) [Ric+98] are two popular
implementations of this concept. Good results have also
been achieved in the area of video streaming for games
[Che+11]. However, mobile networks, especially 3G
networks, can add several hundreds of milliseconds of
latency [Gri13].

As shown in this section, many approaches for remote
visualization exist in the context of scientific visualiza-
tion and visual analytics. However, the potential of
compiler technology in the field of remote visualiza-
tion of interactive simulations has not been discussed
yet. Especially in modern high performance comput-
ing (HPC) or cloud environments, these techniques can
greatly improve usability by optimizing data transmis-
sion and increasing update rates on the clients, while
minimizing server overhead and latency. Existing com-
pression algorithms can be applied independently to de-
crease the required bandwidth even further. However,
the resulting increase in encoding and decoding time
has to be kept in mind.

3 CONCEPT AND IMPLEMENTATION
In this section, we present our prototype visualization
system, which consists of:

1. an interactive simulation back-end running on the
server



2. a visualization front-end running on the client

3. an application-specific streaming protocol

4. the query expression compiler

Using the streaming protocol, simulation data is trans-
mitted at interactive rates from the server to the client.
By transmitting data instead of images, many interac-
tions, for example color map changes, become possi-
ble on the client without incurring network round trip
and transmission latency. When the user wants to vi-
sualize values that are not a direct output of the simu-
lation back-end, the query expression compiler is used
to efficiently transform data on the server, reducing net-
work bandwidth requirements. The prototype is based
on a CFD simulation back-end, however, the method
is directly applicable to other physical domains such as
computational solid mechanics (CSM), computational
aero-acoustics or computational electrodynamics. For
easy reuse with other simulation back-ends, the query
compiler is designed as a shared library with a simple
interface.

In the following, we briefly outline the simulation back-
end as well as the visualization front-end and detail the
streaming protocol as well as the query compiler.

3.1 Simulation Back-End
Our query-based streaming prototype is based on an in-
teractive, Eulerian 2D/3D-CFD code for staggered reg-
ular grids using a multigrid solver based on the one pre-
sented in [Web+15]. All computational kernels are im-
plemented in CUDA [Nic+08]. Therefore, GPU-CPU
transfers are only required for data that is sent to the
client.

3.2 Visualization Front-End
Two streaming clients have been implemented:

1. A graphical client running on a desktop machine
shown in Figure 2.

2. An HTML5+JavaScript client for streaming perfor-
mance measurements shown in Figure 3.

The former allows user interaction such as selecting the
results to show, or entering an expression combining
multiple result fields. Furthermore, the color mapping
can be interactively modified by manipulating the color
ramp widget with the mouse. The latter was developed
to determine feasibility of a web client by evaluating
streaming performance including deserialization. Both
can be used to stream regular 2D and 3D grids. How-
ever, visualization is limited to 2D slices in the proto-
type.

Figure 2: The graphical streaming client. The user can
choose which result field to view or enter an expression
combining multiple fields. Color mapping can be mod-
ified interactively by clicking and dragging the color
ramp widget.

Figure 3: The web-based streaming client can be run in
a web browser on desktop computers or mobile devices
without installing additional software and provides a
simple user interface including 2D visualization and ba-
sic logging functionality.

3.3 Streaming Protocol
The streaming protocol is based on Protocol Buffers
(ProtoBuf) [Goo08] for serialization and deserializa-
tion. ProtoBuf is a platform-independent open source
framework that generates serialization and deserializa-
tion code from a declarative message description, which
greatly simplifies modifications to the protocol. Imple-
mentations of ProtoBuf are available for a large number
of programming languages, including C++ (as used by
our server) and JavaScript. To minimize overhead, the
fields of physical values are marked as packed repeated
fields, as shown in Listing 1. This prevents ProtoBuf
from inserting type tags between each value and ensures
that values are transmitted contiguously. The generated
messages are transmitted using the WebSocket proto-
col.

Although WebSockets are based on TCP and have a
greater overhead than using UDP, they have several ad-
vantages. First, WebSockets ensure that message order
is preserved and that all messages are received unless
the connection is lost entirely, simplifying client and
server implementation. Second, an increasing number
of mobile applications are provided as HTML5 web ap-
plications and WebSockets are supported by all current
browsers, while TCP and UDP are not accessible from
JavaScript. This ensures portability of our streaming
solution to HTML5+JavaScript.



Listing 1: Main streaming message definition (Proto-
Buf [Goo08]), showing the use of a packed repeated
field for physical values to reduce overhead.

message PostGridFields
{

required Header header = 1;

required int32 gridSizeX = 2;
required int32 gridSizeY = 3;

repeated int32 posted_fields = 4 [packed=true];
repeated float values = 5 [packed=true];

optional Statistics statistics = 6;
optional int32 gridSizeZ = 7;

}

While streaming, the client sends frame request mes-
sages whenever a simulation time step (frame) is re-
ceived, causing the server to send the most current time
step that has been computed since sending the previous
one. This ensures that no more messages are sent than
can be transferred, which would lead to buffer overruns.
To prevent bandwidth from being wasted due to the la-
tency of requesting a new frame only after the previous
one has been received, two frames are requested when
a new connection is established, which corresponds to
double buffering. A larger number of frames could be
pre-requested as well (triple buffering or more) to over-
come larger transient bandwidth changes. A full evalua-
tion over varying buffer sizes was not performed within
the scope of this paper. Using the double buffering ap-
proach as described leads to an improvement in band-
width exploitation of up to 50% compared to the naïve
implementation.

Which fields are streamed to the client is determined
by a query. The streaming prototype currently supports
two query types:

1. Any number of result fields, e.g., VelocityX and Ve-
locityY.

2. A query expression combining multiple fields into
one.

The former is used when individual results are viewed
by the user, and when post-processing is performed on
the client for evaluation. The latter is forwarded to our
query compiler or an interpreter that was implemented
for comparison. A query expression consists of iden-
tifiers for the respective available results fields, opera-
tors or functions combining them, and parentheses for
controlling operator order. The identifiers are specific
to the simulation back-end and characteristic of the re-
spective physical domain, e.g., VelocityX, VelocityY
or Pressure for fluid simulations, or DisplacementX,

StressXX or StressXY for structural mechanics simula-
tions. These identifiers can be used to evaluate com-
binations of multiple fields such as (VelocityX^2 +
VelocityY^2) / 2 + Pressure, which corresponds to
|~v|2
2 + p, the sum of kinetic and static energy densities

of a fluid with density ρ = 1.

3.4 Query Compiler
The query compiler prototype consists of an expression
parser and an LLVM-based, optimizing back-end. Ad-
ditionally, an interpreter has been implemented. The
compiler is packaged as a shared library, for easy reuse
on both client and server.

For many optimizations, especially vectorization, the
optimizer must have knowledge if pointers to data:

1. ... may alias or not. Aliasing occurs if the same ad-
dress in memory is reachable via different pointers.
Aliasing prevents vectorization, as it can introduce
additional dependencies between loop iterations if a
pointer to data that is being read from can alias a
pointer to data that is written to.

2. ... are aligned or not. Aligned data is allocated with
at an adress that is a multiple of a specific power
of two. This information is relevant as many vector
instruction sets require loads and stores to be aligned
to achieve maximum throughput.

3. ... are captured or not. A captured pointer is stored
somewhere and may later on be accessed via a dif-
ferent call. This is mostly relevant to callers of a
specific function to know if a piece of data remains
accessible.

4. ... point to data that is read, written or both. This
information is mostly relevant to callers who may
want to reorder function calls.

Such information can be passed to LLVM via the use
of function and parameter attributes. To maximize the
number of optimization opportunities, the CPU back-
end generates LLVM intermediate representation code
(LLVM-IR) annotated with the appropriate parameter
and function attributes according to the LLVM Per-
formance Tips for Frontend Authors1 (see Listing 2).
Specifically, annotating input pointers with the read-
only and nocapture attributes and the output pointer
with noalias. However, nocapture and readonly can
be inferred by the compiler and did not affect optimiza-
tion. In previous LLVM versions, the use of noalias
was necessary to ensure that vectorizing optimizations
are not blocked by alias analysis. In the current LLVM

1 http://llvm.org/docs/Frontend/PerformanceTips.html



top-of-tree as of March 2016 vectorized code is gen-
erated independent of the presence of the noalias at-
tribute. To do so, LLVM adds runtime aliasing checks
and a non-vectorized version of the code. However, this
increase in code size and the additional check showed
no measurable effect on time measurements in our use
case. Additionally, alignment annotations (align n)
can be used so that aligned moves are emitted instead
of unaligned moves. Evaluations in a separate test en-
vironment with a result field of 40962 values did not
result in any change in performance on either an Intel
Xeon E5-2650 v2 CPU or an Intel Core i7-3770 CPU.
In light of this result and as using alignment in the com-
plete process would have required changes to the simu-
lator’s allocation strategy, alignment attributes were not
used in the final evaluation.

For the GPU back-end, the LLVM NVPTX target
was chosen. Alternatively, NVIDIA’s proprietary
NVVM-IR or OpenCL’s SPIR could have been used,
as both are based on LLVM-IR as well. NVVM-IR
is used with libnvvm [NVI16], NVIDIA’s compiler
library. libnvvm supports additional proprietary opti-
mizations, which can lead to improved performance.
SPIR can be used with OpenCL to support both AMD
and NVIDIA GPUs. However, both NVVM-IR and
SPIR are based on older LLVM versions. Therefore,
using either would mean using two different versions
of LLVM for CPU and GPU code, or not having the
full range of CPU optimizations, such as vectorization
in the presence of potential aliasing, and instruction
sets supported in current versions available. In the
future, the addition of SPIR-V [Kes15], the binary
intermediate representation introduced with Vulkan
and OpenCL 2.1, as an additional target for LLVM
[Yax15] will make targeting all platforms that support
OpenCL significantly simpler.

LLVM’s optimization pipeline consists of a set of
passes which take LLVM-IR as input and produce
transformed LLVM-IR as output, as well as a number
of analysis passes. One such pass is the instruction
combining pass, which replaces complex instruction
sequences by simpler instructions if possible. Among
these are transformations that convert calls of math
library functions such as powf to calls of faster func-
tions such as sqrtf for powf(x, 0.5) or individual
floating point instructions for powf(x, 2). However,
these functions are identified by name and NVIDIA
libdevice math library prefixes all names with __nv.
To make full use of the instruction combining pass for
GPU code as well, we generate code using unprefixed
calls and run a subset of optimizations (primarily
inlining and instruction combining) before retargeting
call instructions to the prefixed versions and linking
libdevice. After linking, the full set of optimization
passes is run.

Listing 2: LLVM IR generated by the query compiler
before optimization for an expression equivalent to a
saxpy-operation.

; Function Attrs: alwaysinline nounwind readnone
define private float @kernel(float, float, float)

#0 {
entry:
%3 = fmul float %0, %1
%4 = fadd float %3, %2
ret float %4

}

; Function Attrs: nounwind
define void @map(i64, float* noalias nocapture,

float, float* nocapture readonly, float*
nocapture readonly) #1 {

entry:
%5 = icmp ult i64 0, %0
br i1 %5, label %body, label %exit

body: ; preds = %body, %
entry

%6 = phi i64 [ 0, %entry ], [ %13, %body ]
%7 = getelementptr inbounds float, float* %3, i64

%6
%8 = load float, float* %7
%9 = getelementptr inbounds float, float* %4, i64

%6
%10 = load float, float* %9
%11 = call float @kernel(float %2, float %8,

float %10)
%12 = getelementptr inbounds float, float* %1,

i64 %6
store float %11, float* %12
%13 = add nuw i64 %6, 1
%14 = icmp ult i64 %13, %0
br i1 %14, label %body, label %exit

exit: ; preds = %body, %
entry

ret void
}

attributes #0 = { alwaysinline nounwind readnone }
attributes #1 = { nounwind }

Unlike a general purpose, Turing complete program-
ming language, the simple nature of our query expres-
sions ensures that security is easy to maintain. A gen-
eral purpose language would require sandboxing to dis-
allow certain operations, and ensure that illegal code
does not crash the entire system. Additionally, time-
outs would be necessary to prevent infinite loops and/or
deadlocks from affecting the server. Expressions with
no explicit looping constructs and access only to math-
ematical functions are inherently secure. The only nec-
essary limit is the length of the expression, as an arbi-



trarily long expression can result in an arbitrarily large
amount of work.

4 RESULTS
In this section, we analyze the performance of our
streaming protocol and our query compiler.

4.1 Hardware Setup
For the evaluation, the simulation server was set up on
a dual Intel Xeon E5-2650v2 server (two octa-core pro-
cessors running at 2.66 GHz) with two NVIDIA GRID
K2 graphics cards (4 GPUs total) and 64 GiB RAM
running Ubuntu Linux 13.10. The graphical client was
installed on an Intel Core i7-2600 (quad-core proces-
sor running at 3.4 GHz) desktop workstation with an
NVIDIA Geforce GTX 580 GPU and 16 GiB RAM
running Windows 7. For the HTML5 client, tests were
additionally performed on a OnePlus One smartphone
with a Qualcomm Snapdragon 801 CPU (quad-core
processor running at up to 2.5 GHz) and 3 GiB RAM
running Cyanogen OS 12.1 (based on Android 5.11).
To cover both major mobile platforms, tests were also
performed on an Apple iPhone 6S with an Apple A9
CPU (dual-core processor running at up to 1.85 GHz)
and 2 GiB RAM running iOS 9.2.

4.2 Network Performance and Bandwidth
Limitations

Figures 4 and 5 show the system’s performance in terms
of data throughput and frames per second when trans-
mitting one, two or three fields with different network
bandwidths. In this particular example, these fields
were Pressure, VelocityX and VelocityY with a size
of 10242 floating point values each. Bandwidth limit-
ing was realized on the server side using Linux Traffic
Control tc. Only outgoing bandwidth is limited, but the
messages sent by the client are only tens of bytes in size
and should therefore not affect the results.

Increasing the available network bandwidth also
increases the client’s data throughput as well as the
achievable frames per seconds, as more data can be
transmitted across the network. At the same time,
the server’s throughput and frame rate drop slightly,
because more time is spent serializing messages
instead of calculating new results. This decrease could
be compensated by implementing double buffering
and performing simulation and serialization asyn-
chronously. However, this would lead to increased
memory requirements. In all cases, the server’s
performance is a natural upper limit for the client that
cannot be exceeded. When transmitting more than one
field, this limit only becomes relevant for client-server
configurations in a LAN setup with more than 1 Gbit/s.
For a single field, 500 Mbit/s are sufficient to reach full
performance. The fixed bandwidth limit itself is never

Time [ms]
Number of Fields 1 2 3
Serialization 8.81 18.9 30.0
Native (Desktop) 7.89 14.5 20.2
Chrome (Desktop) 86.5 174 254
Firefox (Desktop) 115 221 380
Chrome (Android) 435 841 1202
Safari (iOS) 233 346 516

Table 1: Serialization and deserialization times for var-
ious platforms for a varying number of fields. Even on
desktop machines, deserializing a single 10242 field in
JavaScript takes approximately 0.1 seconds.

reached, as the limit is applied at the TCP level and the
effective bandwidth only includes floating point data
and neither other data nor WebSocket and ProtoBuf
encoding overheads.

4.3 Serialization and Deserialization
Costs

Another criterion for good performance and smooth vi-
sualization is the time required to serialize the results
produced on the server and to deserialize the incom-
ing messages on the client. Table 1 shows the serial-
ization and deserialization costs for one, two and three
fields with a size of 10242 floating point values per
field (as in Section 4.2). Each measurement represents
an average over 500 simulation steps. Note, that new
frames are only transmitted to the client if the process-
ing of the previous frame is finished. For the client,
we also tested different scenarios with desktop and mo-
bile environments. As all fields are concatenated for
serialization, the required time increases linearly in all
cases. While serialization and deserialization take be-
tween 7 and 30 milliseconds when using ProtoBuf in a
native C++ application, performance decreases signif-
icantly when switching to browser-based applications
using JavaScript. Although Chrome 47.0 outperforms
Firefox 42.0, deserialization times of 86 to 254 millisec-
onds on a desktop workstation make it challenging to
reach interactive frame rates for more than one field.
On mobile devices, deserialization times of 435 or 233
milliseconds for Chrome 46.0 and Safari 601.1, re-
spectively, make interactive frame rates effectively im-
possible and raise the need to investigate alternative
(de)serialization methods (see Section 6).

4.4 Query Compiler
To analyze the performance of our query compiler,
compile times and average evaluation times were
measured for three query expressions of varying
complexity involving a varying number of results
fields:

1. The absolute pressure |p|:
abs(Pressure)
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2. The absolute velocity |~v|:
sqrt(VelocityX^2+VelocityY^2)

3. The total energy density v2

2 +gz+ p
ρ

with g = 0 and
ρ = 1:
(VelocityX^2+VelocityY^2)/2 + Pressure

These expressions were compiled and executed on the
server described in Section 4.1. Although this set of
example expressions is not exhaustive, it consists of
common expressions entered by a user. The absolute
value of the pressure can be of interest when the re-
sults of a compressible simulation are viewed, as the
amplitude of a approximately periodic wave may be of
greater interest than its absolute phase. The absolute
velocity as the magnitude of a vector field is frequently
required and most visualization systems include it as a
built-in option. The isocontours of the total energy den-
sity are an alternative to streamlines, as according to
the Bernoulli equation the total energy density must re-

main constant along each streamline for incompressible
fluids.
All measurements in this section were performed and
averaged over 80 runs of simulations on a 10242 grid
running for 500 frames for each expression. Note that
calculation is only performed for frames actually trans-
mitted to the client and that compilation is performed
once per simulation run. Therefore, the sample size for
the average compilation time is 80 per expression and
less than 40000 for the average calculation time.
The measured compile times are shown in Table 2. CPU
compilation is completed within less than 10ms and
only shows a slight increase depending on expression
complexity. Although marginally slower compilation
is expected due to the repetition of some optimization
passes (see Sec. 3.4), GPU compilation is much slower
at over 77 ms and is dominated by a constant compo-
nent. Further analysis shows that 33% of that time is
spent linking libdevice and 61% is spent on the final set
of optimization passes. A likely reason for the signif-



Time [ms]
Expression Interp. CPU GPU
Expr. 1 0.03 6.60 77.1
Expr. 2 0.04 7.22 77.1
Expr. 3 0.04 9.37 77.2

Table 2: Average compile times for the three example
expressions in Sec. 4.4. The times for the interpreter
only include expression parsing.

Time [ms]
Expression Interp. CPU GPU
Expr. 1 14.1 8.91 4.49
Expr. 2 53.1 13.1 4.27
Expr. 3 63.1 17.1 4.38

Table 3: Average execution times for the three example
expressions in Sec. 4.4.

CPU GPU
Expression Calc. Copy Calc. Copy

Expr. 1 ms 1.99 1.04 0.10 0.98
% 65.7 34.3 9.2 90.8

Expr. 2 ms 2.20 1.98 0.13 0.97
% 52.6 47.4 11.6 88.4

Expr. 3 ms 1.13 3.02 0.16 0.99
% 27.2 72.8 13.6 86.4

Table 4: Decomposition of evaluation time into calcu-
lation and GPU-CPU transfer times.

Break-even [Frames]
Expression CPU GPU

Expr. 1 Interp. 2 (1.27) 9 (8.02)
CPU — 16 (15.95)

Expr. 2 Interp. 1 (0.18) 2 (1.58)
CPU — 8 (7.91)

Expr. 3 Interp. 1 (0.20) 2 (1.31)
CPU — 6 (5.33)

Table 5: Break-even points of using CPU or GPU JIT
compilation instead of an interpreter and GPU instead
of CPU JIT compilation for the three example expres-
sions in Sec. 4.4. The numbers are computed from the
measurements in Tables 2 and 3 and rounded up to the
nearest integer. Break-even before rounding is shown
in parentheses.

icant increase in optimization time is the much larger
module due to the size of libdevice.

The measured calculation times are shown in Table 3. It
can be seen that the timings for the GPU version are ap-
proximately constant for all three expression, whereas
for the CPU version they grow with the number of fields
used in the expression. To determine the reasons for this
behavior, additional measurements decomposing the to-
tal evaluation time into computation and data transfer
times were performed. Table 4 shows the results of
these measurements that were performed on a desktop
machine equipped with an Intel Core i7-3770 CPU with
3.40 GHz and an NVIDIA GeForce GTX 580 GPU. In

the case of CPU evaluation, all relevant fields have to
be copied from the GPU depending on the expression
used. This is reflected in the linear increase in copy
times and explains the dependency seen in Table 3. For
GPU evaluation, only the derived field has to be copied
to system RAM. As the GPU evaluation times are dom-
inated by the expression-independent copy component,
the total evaluation time is approximately constant, as
seen in Table 3 and leads to an improvement of up to
72.3% for Expr. 3.

The total time to process n simulation frames (time
steps) is tc + nte, where tc is the compilation time, te
is the average execution time per frame and n is the
number of frames executed. Therefore the break-even
between two methods a and b can be computed as
n =

⌈
tc,a−tc,b
te,b−te,a

⌉
. Table 5 summarizes the different break-

even points of using just-in-time (JIT) compilation in-
stead of an interpreter. In all but the first case, the cost
of compilation for CPU is amortized within the first
frame, as the sum of compilation and execution time
for one frame is less than the execution time for the in-
terpreter. Due to the large compilation overhead, the
break-even point of using the GPU instead of the CPU
occurs significantly later. The break-even point of using
the GPU instead of the CPU is reached after less than
10 frames for Expressions 2 and 3. As compilation time
is independent of field size and execution time depends
linearly on it, the break-even point will be reached even
more quickly for larger simulation domains.

5 CONCLUSION
Using the query compiler introduced in Section 3.4,
only one result field has to be sent to the client. This
ensures that a high visualization frame rate can be
achieved with bandwidths as low as 500 Mbit/s (see
Sec. 4.2), allowing the user to view more current data.
Additional latency and computation costs due to dese-
rialization are avoided as well, making HTML5 clients
feasible on desktop workstations (see Sec. 4.3). By us-
ing an optimizing compiler, server CPU and GPU times
are reduced by a factor of up to 14 compared to the
naïve approach of using an interpreter (see Sec. 4.4).
As computation time and required bandwidth directly
affect visualization latency, research question 1 “Can
compiler technologies be used to decrease visualization
latencies in a remote scientific visualization system?”
can be answered positively.

The second research question “Can GPU-based sim-
ulations running at interactive rates profit from GPU-
based query compilation?” can be confirmed as well.
By computing derived expressions directly on the GPU,
a significant amount of time can be saved. By only
copying a single field independent of the number of
fields used in the expression, the amount of data trans-
ferred over the PCIe bus can be reduced, as shown in



Sec. 4.4. Additionally, computation speed is increased
by a factor of up to 20 compared to the CPU.

In summary, we have performed a detailed analysis of
streaming performance and shown that optimizing com-
piler technologies such as LLVM can be used to sig-
nificantly improve performance and reduce bandwidth
costs for streaming visualization of interactive simula-
tions. By additionally moving data transformation work
to the GPU, the costs of PCIe bus transfers can be min-
imized as well for GPU-based simulation back-ends.

Compared to MapD (see Sec. 2.1) we have taken a sim-
ilar approach of leveraging compiler technologies for
visualization, but applied it to interactive scientific vi-
sualization instead of visual analytics. The range of
available options is currently significantly smaller, but
further enhancements are outlined in the following sec-
tion.

Compared to application sharing (see Sec. 2.3) our
approach of pre-transforming simulation data on the
server before transmitting it to the client for final visual-
ization has both benefits and drawbacks. Many interac-
tions relevant during exploration of simulation results,
including color map changes and panning/zooming in
2D or camera position in 3D, can now be performed
without any network round trip latency using our ap-
proach. Application sharing always incurs at least one
network round trip for all user interactions. However,
the time to first image is potentially higher, as floating
point simulation data is frequently larger than the result-
ing image compressed using a video codec. This also
decreases the number of frames per second that can be
transmitted given a limited bandwidth. This drawback
can be offset by applying compression methods as well
(see Sec. 2.2). Furthermore, the portion of simulation
data that is transmitted could be limited to the visible
part and resolution, however this limits panning/zoom-
ing or can create temporary holes in the visualization
that are fixed as soon as an updated frame is received.

6 FUTURE WORK
Several potential extensions could be implemented to
improve performance further or increase flexibility.
Compression algorithms including those presented in
[OB11] or [Lin14] can be added to further reduce band-
width requirements at the cost of additional processing
on both client and server. Queries could be extended
to support subfields, i.e., named boundaries or subdo-
mains, for instance an inlet in a CFD simulation or a
specific component in a CSM simulation. Especially
in combination with reductions, for example averages
or maximums of fields, such subfield queries could be-
come useful. However, parallel reductions as required
by the GPU back-end require reimplementation of
many scalar optimizations such as common subexpres-
sion elimination, as parallelism can not be expressed

directly in LLVM-IR. Expressing parallelism in LLVM
is a topic of ongoing research (see, e.g., [Kha+15]).
Furthermore, calculations involving matrices and
tensors would be useful for several physical domains,
including CSM. Fields could also be annotated with
physical units to detect mistakes due to adding fields
with mismatched units.

Considering the bad JavaScript performance, alterna-
tive serialization formats promising lower deserializa-
tion costs such as Cap’n Proto [San16] or FlatBuffers
[Goo16], or JavaScript’s native JSON (JavaScript ob-
ject notation) format could be investigated. However,
these typically come at an increased bandwidth cost.
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