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ABSTRACT
Semi-automatic segmentation of the prostate boundary is presented for the pre-operational images of the MRI-
guided ultrasonic thermal therapy of the prostate cancer. The specific deformable surface method is based on
firstly fitting an ellipsoid on the given manual landmark points, then modifying the shape of the initialization
surface mesh by masking out the regions of the separately segmented bladder and rectum, and finally adapting
the surface mesh by searching image for the edge boundaries in the direction of the surface normal. The
suggested segmentation method combines information from two types of pre-operational MR-images showing
different contrast for the tissue structure. Dice similarity coefficient (DSC) between the semi-automatic
segmentation and the manual reference was on average 0.89 for a group of N=5 patients having the MRI guided
ultrasound thermal treatment. The robustness of the surface fitting method was tested by simulating 30
randomized initialization sets of the landmark points for each patient, and the resulting standard deviation of
DSC was 0.01.
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1. INTRODUCTION
Recent studies have shown promising results on
applying the MRI guided high-intensity ultrasound
for the non-invasive treatment of the localized
prostate cancer, using an ultrasound applicator
inserted into the urethra to generate thermal
coagulation within the target region in the prostate
gland [Cho12a]. The prostate boundary identification
from the MR-images taken after placement of the
ultrasonic transducer is needed to provide exact
planning for the applied power and the rotational
speed of the multi-element transducer. The
segmented prostate boundary might then be used
additionally during the ultrasound treatment also, e.g.
in visualization of the MRI-thermometry measured

on-line temperature map, or in the post-analysis, to
estimate treatment outcome together with the
separately measured non-perfused volume of the
prostate gland.
Both T1- and T2-weighted MR-images are taken
during the pre-operational stage of the transurethral
ultrasonic treatment of the prostate cancer. They give
different contrast between tissue types, and in
general, the T1-weighted MRI measures the spin-
lattice relaxation time in the longitudinal direction of
the main magnetization field after giving the
transversal excitation RF-pulse, while the T2-
weighted MRI is measuring the spin-spin relaxation
time in the transversal direction using different
variants of the RF-pulse sequences.

Related work
The previous studies on the prostate segmentation are
in the most cases using statistical parameters trained
with a large set of diagnostic T2-weighted MR-
images. The anatomical volume and shape of prostate
varies  strongly,  as  well  as  the  MR  scanners  and
image acquisition protocols, affecting the image
resolution, quality and artefacts. For example, the
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Miccai 2012 conference challenge on the prostate
MR image segmentation (PROMISE12) provided a
training data set including 50 MR volume images,
collected from four different medical centers, and the
best scores were given by an active appearance
model (AAM) approach [Mic12a].
Unfortunately, limited number of cases of the
transurethral ultrasonic therapy prevents using AAM,
and the segmentation of the prostate boundary from
the related pre-operational MR images seems to be
even more challenging than on the diagnostic MR
images. The transurethral ultrasonic applicator causes
deformation of the flexible prostate gland, partly
intentionally, to bring the transducer into the optimal
position inside the prostate for delivering the
ultrasonic radiation for the treatment region
[NDj12a]. The pre-operational MR-images are taken
in  strict  time  limits  and  may  thus  have  reduced
resolution and less quality in comparison with the
diagnostic images. The ultrasonic device includes
metal parts and can cause also imaging artefacts.
Currently, we can only speculate that it might still
take several years until this specific treatment method
shall be in the clinical use, to provide sufficient
amount of training data e.g. for the AAM method.
Therefore, our approach is a semi-automatic
segmentation method, using manual landmarks on
the prostate boundary. It is also constrained in
topology by masking out the regions of the limiting
organs, such as bladder and rectum. With this prior
information, a surface model is fitted and
triangulated for a surface mesh, and then finally
adapted by moving the mesh nodes towards the
image edges, searched iteratively in the direction of
the deformed surface normal.

2. STUDY DESCRIPTION
Measurement protocol
MR  images  for  altogether  five  subjects,  having  the
MRI guided ultrasound thermal therapy for the
prostate cancer, were used in this study for the
prostate segmentation. The patients are numbered as
P1,  P2,  P4,  P5  and  P6,  because  data  for  the  third
patient enrolled was not available. The data was
collected during years 2012 and 2013 at the
Sunnybrook Health Sciences Centre, Toronto, using
3.0-T Philips Achieva MR-unit. The subjects had
given their voluntary acceptance for the study, and
they were selected as being scheduled for the radical
prostatectomy of the prostate cancer after the
ultrasonic therapy.
The prostate treatment and the MR-imaging followed
the protocol described in the reference [Cho12a].
Firstly, a T1-weighted preparation image was taken
to localize the position of the manually inserted
transurethral ultrasonic transducer. After the
transducer was re-positioned into the correct location

using an intermediate MR imaging, a T2-weighted
planning image was  taken  to  provide  the  final
operation parameters for the ultrasonic transducer.
During the ultrasonic treatment, sequences of 2D
MR-images, using the proton resonance frequency
shift thermometry, were scanned continuously to
have the on-line temperature maps of the ultrasound
operation in the orthogonal plane with the transducer
elements. After the treatment, two T1-weighted 3D
MR-images were taken before and after
administration of the contrast agent to show the non-
perfused volume of the coagulated matter.
The prostate segmentation presented in this paper is
targeted for the T2-weighted planning image, but
also the T1-weighted preparation image is  used  to
provide additional information about the prostate
boundary. The images have different MR scanning
parameters for the origin, field of view and
resolution, but they are resampled afterwards for the
prostate segmentation. The resampled isotropic
images have the resolution of 0.5 mm and volume
sizes of 519x519x198 (ap, rl, fh). The reference
manual segmentation of the prostate boundary from
the planning image was done by an expert using a
preliminary software version for the 3D visualization,
and  is  shown  with  the  red  contour  in  the  figures  of
this paper.

Contrast of prostate boundary
A major problem on the segmentation of the prostate
from the T2-weighted planning image is the large
variation in the MRI signal intensity of the prostate in
comparison with the surrounding tissue. Figure 1
shows the  planning image for  the  subject  P1  for  the
orthogonally oriented slices, which are selected from
the center location of the ultrasonic transducer. The
dashed lines show the crossing position of the
selected slices, and the coronal plane is placed
orthogonally with the straight lined transducer
element. The ultrasonic transducer inside the urethra
is found as a low intensity, about 5 mm thick region,
in parallel with the dashed crossing lines (a dot in the
first coronal slice, the horizontal line in the transverse
slice and the vertical line in the sagittal slice).
The manually segmented prostate boundary is shown
with a red colored contour line in each orientation.
For this example graph, the 12 landmarks needed for
the initialization of the semi-automatic segmentation,
are selected by placing four landmarks on each
orthogonal central slice, distributed with equal 90
degrees angles from the slice crossing point as an
origin.
Figure 1 shows that the grayscale difference of the
planning image across the prostate boundary may
have an opposite direction in the different regions.
For example, the image intensity is decreasing for the
inwards  direction  of  the  prostate  at  the  upper



(anterior) side of both the coronal and transverse
oriented slices, while at some surface regions at the
bottom (posterior) side of the graphs the intensity is
increasing. This variation in the contrast of the
prostate boundary in the T2-weighted MRI is caused
firstly by different structure of the surrounding tissue,
and secondly on the imaging artefacts, which can be
caused i.e. by the ultrasonic transducer device in the
urethra.
Figure 2 shows the T1-weighted preparation image of
the subject P1 with the same manual segmentation
contour and landmarks as in Figure 1. On the upper
side of the graphs the intensity gradient across the
prostate boundary is increasing, while for some other
regions there seem to be no significant contrast
across  the  prostate  boundary.  Figure  3  shows  a
similar comparison for the patient P6 but for two
slice orientations only. In this case, the prostate
boundary is again visible for the planning image in
the top graphs, although the grayscale intensity
behaves somewhat differently over the prostate gland
in comparison with Figure 1. The bottom graph
preparation images of Figure 3 do not show good
contrast on the prostate boundary. Also, the boundary
between the prostate and bladder is not well aligned
between the preparation and planning images, shown
with arrows.
In conclusion, the T2-weighted planning image
shows a good contrast all over the prostate boundary,
but with a variable gradient vector direction, while
the T1-weighted preparation image shows the
prostate consistently with a similar or higher
grayscale intensity than the surrounding tissue, but
the prostate can be misaligned, or the boundary
contrast is not sufficient in some regions.

Segmentation evaluation methods
For the results section in this paper, the quality of the
suggested semi-automatic segmentation of the
prostate boundary was measured using the dice
similarity coefficient (DSC), which shows the spatial
overlap between the segmented and the reference
prostate volumes. DSC varies between 0, where no
spatial overlap exists, to 1, with a complete overlap
[Dic45a, Zou04a].
To evaluate some basic statistics, we simulated 30
different initialization sets of the landmarks for each
patient. Each landmark set included 12 points placed
randomly over the manually segmented reference
surface for the prostate boundary. However, the
variation in the location of the landmarks was
restricted by the following means. Firstly, the
landmarks were divided into three groups, including
four landmarks placed on each pre-defined plane in
the coronal, transverse and sagittal orientation.
Figure  1  shows  an  example  of  the  placement  of  the
landmarks into three orthogonal slices. The origin of

Figure 1. T2-weighted planning image for patient
P1. Red contour shows manual segmentation and

yellow ‘o’ label the landmarks.

Figure 2. T1-weighted preparation image for P1.
The manual segmentation and landmarks are

defined for the planning image in Figure 1.

Figure 3. T2-weighted planning image for P6 in
top graphs and T1-weighted preparation image in
bottom graphs. Bladder is marked with arrows
and prostate boundary against bladder has moved
in between images in top and bottom graphs.



slices was set a priori for each patient directly at the
center position of the ultrasonic transducer. Based on
the origin, each landmark was selected by choosing a
point  on  the  reference  prostate  contour  for  a  set  of
direction angles. These four angle values are at
{-3/4, -1/4, 1/4, 3/4}*  radians in Figure 1.
In the randomized simulation, both the slice origin
position and the direction angles were varied. The
slice origin was altered in each orthogonal direction
from the default origin position using uniformly
distributed random variable in the range of ±10
voxels, which corresponds with ±5 mm range for the
resampled isotropic images. The position of the slice
origin is randomized with such narrow bounds,
because in the final application the origin will be set
by the middle position of the US-transducer array,
which naturally is adjusted carefully into the target
position. The four direction angles were varied
separately for each orthogonal slice using also
uniformly distributed random variable, but by taking
care that the distance in between the randomized
direction angle values was at least /8 radians.
We suggest that by this way we can estimate the
robustness of the segmentation method on variable
position of the landmarks. The segmentation results
were compared by calculating the dice similarity with
the reference manual segmentation, and finally
showing both the averages and standard deviation
values for each patient, over the N=30 simulation
runs with different landmarks.

3. SEGMENTATION ALGORITHM
The suggested prostate segmentation method is based
on having an accurate initialization surface. The
landmarks are placed on the prostate surface

boundary, to create firstly an ellipsoid surface.
Additional seed points are needed for both bladder
and rectum, one for each, to generate anatomical
mask regions to clamp the ellipsoid into a reduced
initial surface. Finally, the surface mesh is deformed
in a controlled way towards potential boundaries in
the image, using similar kind of the energy
minimization with edge functional as defined for the
snakes [Kas88a].
The specific deformable surface method applied in
here has been developed originally for the
segmentation of the uterine fibroid from T1-weighted
post-treatment images of the MRI-guided ultrasonic
therapy of the fibroid [Ant14a]. The method is
renamed as Surface Normal Deformable Model
(SNDM) to be more specific. The algorithm seeks for
the edges in the direction of the surface normal
vector, with the additional constraint for having an
increasing  intensity  for  the  inwards  direction  of  the
initial surface. As the surface bends during iteration,
the searching direction for each mesh node varies
correspondingly.
As discussed already for Figure 1, the assumption
about the increased intensity for the segmented object
is not correct for the prostate images. Therefore, our
hypothesis is, that the surface can be adapted into the
prostate boundary by using the edges in the T2-
weighted planning image, which gives sufficient
contrast across the prostate boundary, but the
accuracy can be improved by using also the T1-
weighted preparation image as guiding information
for the searching direction in the applicable regions.
Figure 4 shows the segmentation pipeline including
the intermediate initial surface, and two alternative
segmentation results original and guided SNDM,

Figure 4. Graph of segmentation pipeline. Left hand side shows generation of initial surface.
Testing of original SNDM method using only one MR volume image is shown with dashed arrow,

and suggested guided SNDM method using also additional MR volume image for re-directing
gradient vector field is shown in right hand side with grey background.
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which shall all be evaluated in the results section of
this paper.

Initial surface
The initial surface is firstly generated by fitting an
ellipsoid for the landmark points with the least
squares method [LiQ04a]. The ellipsoid surface is
discretized with a triangular mesh, and then further
modified to avoid entering into the masked out
regions of the bladder and rectum. The latter
deforming operation for the initial surface mesh was
found to be essential especially on the posterior side
boundary of the prostate gland against the rectum,
which could not be sufficiently modelled by an
ellipsoid.

The anatomical mask regions were defined separately
for both the bladder and rectum, by firstly giving a
manual seed point for each. These both organs have a
good  contrast  on  the  images,  and  the  mask  regions
could be segmented with the RegionGrowing()
function from the Matlab™. The incorrect regions
were cleaned out with the morphological operations
like the opening to remove thin connections and the
filling of holes, and finally the main body of the
segmented volume was selected based on the position
and volume size. It might be possible to fully
automatize this part of the segmentation, because the
position of the ultrasonic transducer inside the
urethra is a priori known, and so forth the expected
positions for both the bladder and rectum could be
used for the initialization of the segmentation.
Figure 5 shows an example for the generation of the
initial surface. The ellipsoid, fitted on the 12
landmarks, is shown with the yellow color, and it
follows the red colored manual segmented prostate
sufficiently well. However, the ellipsoid model
surface  differs  more  on  the  boundaries  against  the
bladder and rectum. The bladder is the bright high
intensity region in the top left corner of the transverse
slice in Figure 5. The rectum is the dark low-intensity
region in the bottom side of both the coronal and
transverse slices. When testing the direct use of the
ellipsoid as an initial surface for the following
SNDM algorithm, we ended up to high uncertainty
on the final segmentation accuracy, because the
ellipsoid follows poorly the corners of the actual
prostate boundary. The reduced initial surface, with
the light blue colored contour, is clamped in between
the masked out regions, and gives an improved shape
for the initialization model.
The algorithm to modify the ellipsoid surface mesh
for the reduced initial surface follows a free-form
deformation (FFD) method, and has been originally
developed to register an anatomical surface model,
including lungs, myocardium and heart ventricles,
into  a  MRI volume image of  the  human upper  torso
[Löt99a]. The algorithm uses a multi-resolution
pyramid of the MRI volume image to improve both
processing efficiency and robustness. The FFD
method was further developed by [Koi04a], to enable
using discrete sampling points instead of the
anatomical surface model. We applied this by using
automatically sampled additional points, to prevent
the initial surface to enter into the masked out
regions. We firstly calculated intersection between
the ellipsoid and the mask region, selected pairs of
the landmarks having the intersection surface in
between, and finally added three equidistant
sampling points on the intersection surface in
between each pair of landmarks.
Figure 6 shows an enlarged view for the coronal slice
of Figure 5. The masked out region of the rectum is

Figure 5. Manual segmentation, ellipsoid fit and
reduced initial surface for patient P5. Bladder and

rectum are pointed with arrows.

Figure 6. Patient 5 coronal slice from Figure 5 and
additional sampling points (blue ‘o’), which are

placed in between landmarks (yellow ‘o’).



the dark low intensity region in the bottom of the
graph, and the initialization ellipsoid is with the
yellow colored contour. Three additional points,
shown with the blue ‘o’ marks, are automatically
sampled on the intersection surface contour of the
rectum and ellipsoid, placed in between the
corresponding pair of landmarks shown with the
yellow ‘o’ marks. The reduced initial surface is
shown with the bright blue colored contour, and as it
approaches the red colored prostate boundary, it
gives an improved initialization model for the final
SNDM algorithm.

SNDM iteration loop
The edge tracking external energy functional of the
SNDM algorithm uses the gradient of a volumetric
image I. The gradient is calculated with the 3D Sobel
operator. The search is constrained with a directional
term  D  to  track  only  for  the  edges  which  have  the
gradient flow in the expected direction of the initial
surface normal vector:

                     (1)

Term D is calculated as a dot product between the
initial surface normal vector and the normalized
gradient vector.
The processing is discretized by using the
triangulated surface mesh structure. The surface
normal vectors (NV) are calculated for each mesh
node. The correct inwards-handedness of  the  NV  is
defined already when the initial surface mesh
triangulation is constructed from the fitted ellipsoid.
Then, the profile vectors with a limited length are
defined for each node in parallel with the NV,
extended both for inwards and outwards of the
surface. Based on equation (1), the local energy
minima are searched over the voxels defined by each
profile vector, and the largest consistent deforming
region over all the mesh nodes is selected to be
modified. The shape of both the selected surface
region and the neighborhood is finally regularized by
a spatial smoothing, to apply the needed internal
energy functional for the method. The goodness-of-
fit is determined as the sum of the gradient intensities
for the voxels in each mesh node locations, and the
fitting process is run iteratively until convergence, or
if the maximum number of the iterations is reached.
[Ant14a]
The original SNDM segmentation method was
evaluated also for the results in this paper, by using
directly the gradient volume of the T2-weighted
planning image as an input for the iteration loop,
which is shown with a dashed arrow in Figure 4.
For the suggested guided SNDM method, shown with
the grey background in the pipeline graph, the T1-
weighted preparation image is used to improve the
prostate segmentation in the following way: 1)
preparation image is smoothed with a Hanning

window of the size (15x15x15) voxels, and gradient
of the smoothed image is calculated with the Sobel
operator, 2) the regions with sufficient gradient
intensity are selected by a constant threshold value,
3) in the applicable regions, the planning image
gradient vectors are re-oriented for the direction of
the preparation image gradients, to be used in the
SNDM iteration loop. By this way, the good contrast
of the T2-weighted planning image is preserved, but
where applicable, the T1-weighted preparation image
is guiding the searching direction of the SNDM
algorithm. The smoothing of the preparation image is
needed firstly to prevent adaptation on the smallest
details, and secondly to allow some misalignment
between the preparation and planning images.
The constant threshold level of 15, for the gradient
intensity of the smoothed T1-weighted preparation
image in the guided SNDM method, was selected
heuristically in purpose to mask out image regions in
which the poor signal to noise ratio would lead to
unreliable searching direction. The percentage of the
selected image region over all five subjects varied in
the range of 31.1 % … 37.2 %, with the average
value of 34.5 %. The units of both the gradient
intensity and the threshold value are corresponding
with the original T1-weighted preparation image,
having integer values in the range of 0 … 4095.

4. RESULTS
The segmentation quality is measured with dice
similarity coefficient (DSC) between the calculated
and manually segmented prostate boundary. The
comparison is given for three different surfaces:

Figure 7. T2-weighted image for patient 1 with
prostate segmentations in comparison. Green

contour shows original SNDM fitting for prostate
boundary, based on T2-weighted planning image
only, and blue contour shows suggested guided

SNDM fitting method using T1-weighted
preparation image also.



firstly for the initial surface, secondly for the original
SNDM method from [Ant14a], using the planning
image gradient only, and finally for the suggested
guided SNDM method, by firstly re-orienting the
planning image gradient direction with the gradient
of  the  smoothed  preparation  image.  Figure  7  shows
the segmentation results for the patient 1 data. The
manual segmentation is shown with the red colored
contour and the landmarks are placed in this example
figure for their default positions. The original method
is shown with the green contour and the suggested
guided SNDM method is shown with the blue
colored contour.
Table  1  shows  both  the  average  DSC  and  the
standard deviations over 30 simulations of the
randomized landmark positions for each patient data.
The initial surface gave already quite good dice
similarity result, having the average of 0.85, but
sufficiently high variance. Weakest results gave the
original SNDM method, assuming incorrectly always
an increasing gradient for the planning image across
the prostate boundary. For the case P04 the original

method gave the worst average result and also
resulted into the largest variance over the
simulations. The best result, in both terms of the
average DSC and the smallest variance over the
landmark simulation, was given by the suggested
guided SNDM method.
Figure 8 shows the boxplot graph over the patient
data and with the simulated landmark positions. The
box middle line shows the median value, and the box
range is the lower and upper quartile of data (Q1 and
Q3). The whiskers extension from the box is defined
as 1.5 times the interquartile range between the Q1
and Q3, unless the maximum or minimum of data
values is reached. The outliers exceeding the
whiskers are shown with the red dots. The initial
surface fits already quite well with the reference
prostate boundary based on the median DSC value of
0.86, but the original SNDM segmentation method
fails and decreases the DSC value. The suggested
guided SNDM segmentation improves the median
DSC, and also shows smallest variation over the
randomized landmark simulation. The range of the
outliers is large already for the initial surface, but
with the guided SNDM method the outliers are
improved to be almost within the whiskers range.

5. DISCUSSION
Most of the referenced prostate segmentation
methods could not be applied in here, being based on
the statistical shape or appearance parameters which
would need a large training data set [Lit14a]. The
specific Surface Normal Deformable Model (SNDM)
is developed here to restrict the searching space by
using both a priori information and sufficiently
accurate initialization surface model. The SNDM
uses a discrete polygonal mesh as the surface
structure, while the original snakes and related
volumetric surface methods use spline functions.
Other studies using the polygonal meshes allow
usually a more generic adaptation, and may have to
refine the mesh structure by adding or removing the
nodes during the iteration, which is not necessary in
the SNDM method. The constrained search in the
direction of the surface normal makes the SNDM
method even more rigid. Directional search has been
applied also in the scope of the Gradient Vector Flow
(GVF),  which  leads  to  a  generic  method,  but  with
increased computational complexity due to GVF
calculation. [Mon11a]
The semi-automatic algorithms are often selected in
the segmentation of the medical images for the
practical reasons. The user input for the initialization
of the segmentation normally leads to a reliable
result, and thus might reduce the manual work
needed in the validation of the segmentation result.
Also, if the semi-automatic segmentation result is
found not valid in a certain region, it can be
improved interactively by adding landmark points on

Figure 8. Boxplot graph showing dice similarity
coefficient over all N=5 patients and N=30

randomized landmark simulations. Median value
is the red middle line inside the box, and first and

third quartiles set bottom and top of the box,
correspondingly. Red dots show the outliers.
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P01 0.85 0.03 0.80 0.03 0.90 0.01
P02 0.83 0.03 0.74 0.03 0.87 0.01
P04 0.84 0.04 0.71 0.04 0.89 0.01
P05 0.88 0.02 0.77 0.02 0.91 0.01
P06 0.87 0.02 0.78 0.03 0.89 0.01
tot 0.85 0.03 0.76 0.03 0.89 0.01

Table 1. Dice similarity coefficient with
randomized landmark positions over N=30

simulations for each patient



the critical boundary regions and rerunning the
segmentation procedure.
The computational efficiency of the suggested
method was not yet thoroughly tested in this study, as
the  main  processing  was  run  with  a  Matlab  code
which was not optimized for the speed and memory
efficiency. However, excluding the manual setting of
the landmark points, the average processing time for
a patient data was 390 seconds with a HP EliteBook
8450w laptop (Intel Core i7 CPU, 2.80 GHz, 8GB
RAM, 64-bit  Windows 7).  Normally,  the  processing
efficiency can be improved by more than two orders
of magnitude with the C++ code, parallel thread
computation and optimized compiler parameters, so
we expect to reach computing time less than half
minute.

6. CONCLUSIONS
We describe a semi-automatic segmentation method
for the prostate boundary from the pre-operational
MR volume images of the transurethral ultrasonic
therapy of the prostate cancer. Two types of MR
images were combined in the segmentation method,
i.e. the T2-weighted planning image and the T1-
weighted preparation image. The results were
evaluated with data collected from five patients, and
the random landmark positions were simulated to test
the robustness. The initial surface model is defined
based on the landmarks and anatomical topology, and
the final surface deformation is done in the iterative
loop  by  tracking  the  edges  in  the  direction  of  the
surface normal, which improved the dice similarity
coefficient between the reference segmentation. This
specific semi-automatic segmentation approach has
the benefit of adapting to the MR images having high
variation in the quality. Significant changes in the
MR scanning protocol might require some re-design
of  the  method,  although  the  constraints  set  by  the
anatomical topology are valid for the prostate
segmentation in general.
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