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ABSTRACT
This paper introduces the development of a new GPU-based database to accelerate data retrieval. The main goal
is to explore new ways of handling complex data types and managing data and workloads in massively parallel
databases. This paper presents three novel innovations to create an efficient virtual database engine that executes
the majority of database operations directly on the GPU. The GPU database executes a subset of SQLite’s SE-
LECT queries, which are typically the most computationally expensive operations in a transactional database.
This database engine extends existing research by exploring methods of table caching on the GPU, handling ir-
regular and complex data types, and executing multiple table joins and managing the resulting workload on the
GPU. The GPU database discussed in this paper is implemented on a consumer grade GPU to demonstrate the
high-performance computing benefits of relatively inexpensive hardware. Advances are compared both to existing
CPU standards and to alternate implementations of the GPU database.
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1 INTRODUCTION
The general purpose processing of graphics processing
units (GPUs) has begun to transform computing. GPUs
provide the ability to perform thousands of operations
on data at once, providing supercomputer like power in
a single package. This capability empowers develop-
ers to greatly increase the performance of existing sys-
tems that operate in serial order. The power of GPU
programming has been exploited in multi-node com-
puter systems in high-performance computing. Eight
of the top fifty supercomputers in the world [16] con-
tain GPUs to increase performance. Research in ap-
plying GPUs to solve parallel problems has been done
for numerous applications; graphics [8], hydrodynamic
solvers [18], differential evolution [17], etc.

A critical business application where the computational
power of the GPU can provide significant benefit is
database systems. A database system performs a sig-
nificant amount of repeated calculations on different
data. This can occur in table joins or in conditional
statements. Both of these database system functions
can require significant computation time, slowing sys-
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tem performance and providing an opportunity for GPU
programming to offer significant advantages. Tradi-
tional databases perform the steps of a query sequen-
tially using the CPU. It is possible to achieve some par-
allelism by using multiple cores in the CPUs. CPUs
have few cores, so attempting to exploit greater paral-
lelism requires the addition of costly additional CPUs,
and communication between large numbers of CPUs is
problematic; the developer must use some mechanism
to regulate the passing of data between CPU memory
spaces and the rate at which data is transferred is deter-
mined by either inexpensive but slow hardware, such as
Ethernet connections, or fast but expensive hardware,
such as Cray’s Gemini interconnects. A GPU database
is feasible due to the considerable inherent parallelism
in the way databases operate. A database query con-
sists of a set of operations that are performed on the
rows of one or more tables. Each of these operations
is repeated, potentially once for each row in the table.
Within the query, the execution of these operations is
largely data independent; the execution of operations
on one row usually does not affect the operations being
executed on another row. This exposes a large amount
of data parallelism. Each set of operations could be ex-
ecuted simultaneously on every row.

In this paper, we focus on three critical areas for
developing a database system on a GPU: data caching
to manage the data on the GPU, processing table joins
and managing the resultant workload on the GPU,
and handling irregular and complex data types. These



three areas comprise the fundamental remaining issues
with implementing databases on a GPU and addressing
them is critical to a successful and high-performance
database implementation. The solutions to these prob-
lems are presented in an implementation of the SQLite
database using a consumer grade GPU. Choosing
to use a common, open-source database like SQLite
ensures that the solution will be accessible to future
developers and will provide real world functionality.
Utilizing a consumer grade GPU demonstrates that
high-performance computing can be done at a very
low price. SQLite supports the SQL standard, which
further enhances the accessibility of the solution to
future developers. The system described in this paper
supports complex SQL options such as querying mul-
tiple tables, processing irregular data such as strings,
and caching tables using a novel caching scheme for
use on the GPU. This designed system is integrated
into an application that provides data mining and
visualizations of Digital Humanities data as a proof
of concept. Here, we note that our work can also be
utilized by other work (e.g., pattern recognition, virtual
reality, visualization, etc.) for efficient data processing.

Previous research into GPU databases has used data
processing primitives in some cases, and simplified im-
plementations of SQL in others. This paper introduces
a novel caching system to address the issue of data
transfer, providing a solution to the issues of data trans-
fer times and limited GPU memory space. This paper
also introduces a scheme for managing the workload of
processing data from many tables without overwhelm-
ing the GPU. It examines a method for throttling the
workload assigned to the GPU based on dividing the
required pool of threads into chunks to avoid overload-
ing the GPU. This paper adds the ability to do complex
joins, which are critical to the utility of a database in
large real-world applications. This paper also investi-
gates and demonstrates the use of strings and complex
data structures, where other work has focused on fixed-
length values. The fixed length values are excellent
for certain data, such as map data that contains coordi-
nate values, but do not provide the utility and flexibility
needed for more complex data.

The remainder of this paper is organized as follows.
Section 2 provides background information on GPU ar-
chitecture and SQLite. Related work is discussed in
Section 3. Section 4 provides details of the new GPU-
accelerated database engine. Section 5 gives the experi-
mental results for the improvements made in this paper.
Section 6 concludes this paper.

2 BACKGROUND
In this section, the architecture of the GPU and the inner
workings of the SQLite are briefly discussed.

2.1 GPU Architecture
A GPU contains hundreds of individual cores organized
into streaming multiprocessors (SMX); e.g., NVIDIA
680 GPU has 1536 cores organized into 8 streaming
multiprocessors with 192 cores each. The GPU ex-
ecutes functions, called kernels. These kernels are
launched by the CPU, using a programmer-specified
number of thread blocks, which contain a specified
number of threads per block. These thread blocks
and their threads are divided into 32-process warps
and scheduled on the streaming multiprocessors as free
cores become available. Global memory on the GPU
is of much higher latency than typical GPU memory.
The GPU masks this latency by context switching from
warps whose threads are waiting for a memory access
to warps that have the required data currently available.
This is made possible by extremely low latency context
switching, which allows the process scheduler to swap
the warps running on a streaming multiprocessor. This
functionality assumes that a significantly greater num-
ber of processes than cores are being executed on the
GPU, so that there are always ready warps to switch to
in order to hide memory latency.

In addition to the GPU having a different design than
the CPU, the GPU is a separate ecosystem from the
CPU and contains GPU-specific memory, scheduler,
and processors. Data must be explicitly moved to the
GPU, and the GPU can only access data stored in the
GPU memory. Conversely, the CPU cannot directly
access the GPU memory. In order to access CPU re-
sources, the GPU must work through the CPU. This
separation of systems requires extra steps for transla-
tion, instruction, and control.

The limitations on CPU and GPU interaction impose
special complications for database processing on the
GPU. The distinct memory spaces of the two systems
require mechanisms for translating data structures. In
the case of databases, this requires both the transforma-
tion of irregular data such as strings and the processing
of the table data structure. The smaller size of GPU
memory also requires a system for managing the data
that is transferred to and retained on the GPU.

2.2 SQLite
SQLite is an open-source database system that is
widely used for embedding a database in applications
on computers, smartphones, and tablets. Unlike other
databases such as Oracle, SQLite can be compiled
directly into the source code and run as part of a pro-
gram instead of being called as a service that runs as a
separate process. SQLite is public domain software and
is one of the most commonly used database systems in
the world. SQLite supports the standard SQL syntax.
SQL is an easy-to-use language that is ubiquitous in
industry. It is commonly used not just by programmers



but by business professionals of all types. Supporting
such a common interface ensures that the barrier to
entry to use the GPU database system is trivial.
SQLite allows the use of complex logic in queries of
the database, allowing disparate tables to be joined to-
gether by common values and a selection of results to
be chosen based on user-defined criteria. The joins are
of critical interest, as the process of finding matching
values between rows of data in two tables can be very
repetitive and computationally expensive. Likewise, the
task of finding rows that meet certain criterion is also
a repetitive and computationally taxing task. Both of
these tasks are ideal for GPU assistance.
SQLite processes queries by converting the SQL query
into an opcode program that runs on a virtual machine,
not unlike the way Java programs are transformed to
run on the Java Virtual Machine. Each SQLite op-
code can have up to five parameters which provide addi-
tional information needed for the opcode to execute on
the virtual machine, which is referred to as the Virtual
Database Engine (VDBE). The output from the virtual
machine is returned as rows of data to the calling pro-
gram. The standard Virtual Database Engine, as a key
aspect of the database system, was replaced with a vir-
tual engine designed to run on the GPU.

3 RELATED WORK
This paper advances prior work done in the field of
high-performance, massively-parallel databases. Some
prior work focused on fixed length data types such
as integers and doubles, often coupled with straight-
forward single table queries. Other work focused on
using primitives that are not a component of standard
SQL databases. In this section, some of the key work in
the research area are briefly discussed.
As mentioned previously, the area of GPU databases
has been a growing area of research. At one end of
the spectrum is work in adding bolt-on GPU database
modifications. Work with PostgreSQL [7] has explored
this possibility. External procedures, such as those de-
veloped by Bandi et al. [4] provide examples of off-
loading processing work to GPU functions. Proof-of-
concept work has been done to examine specific aspects
of massively parallel databases, without a full database
implementation behind it. Relational join [12] and effi-
cient sorting algorithms [13, 14, 15, 5, 10] are two areas
where proof of concept work has been done. Databases
that do the full processing of the query on the GPU have
been researched by Bakkum et al [3] in their work on
SQLite databases, which with the work by Chang et
all [6] served as an inspiration for this paper. This paper
extends their work by adding caching, more complex
join and query operations, demonstrating a method for
handling workload management, and handling irregu-
lar data. Methods of handling complex data were ad-
dressed by Bakkum et al. [2] using an approach they

refer to as Tablets. Tablets collect groups of rows into
a single tablet, and coalesce the rows into a column-
oriented format. Thus, while all of a row will appear
in a single tablet, the entire column will not. We note
that our work takes a different approach, collecting the
entire column into a single data structure in order to
optimize operations such as joins and conditional that
match to a specific single column. The cost of data
transfer, which motivates our caching system, was ex-
plored in a paper by Gregg and Hazelwood [11]. A
GPU database that exists entirely in memory and never
leaves the GPU [9, 1] can alleviate this data transfer is-
sues, but is limited in scope.

4 NEW GPU-ACCELERATED SQLITE
This paper introduces three novel innovations to create
an efficient virtual database engine that executes the
majority of database operations directly on the GPU.
The GPU database executes a subset of SQLite’s
SELECT queries, which are typically the most com-
putationally expensive operations in a transactional
database.

4.1 New Design
Three new improvements are examined in this database
system; a caching strategy to handle the storage of ta-
bles in GPU memory, a method for handling irregular
data and complex data structures on the GPU, and a pro-
cess for handling complex joins on the GPU and man-
aging the resultant workload on the GPU.

4.1.1 Caching Strategy
Data storage in this design is handled at three different
levels. The lowest and slowest level is the hard drive,
which is the long-term storage for the database. Above
this is the CPU memory space, into which tables are
loaded when they are needed and retained for future
use. The top level is the GPU main memory, which
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holds the tables being used in the current query, with
any remaining space used to retain tables used in previ-
ous queries. This top level contains the catching strate-
gies that are of interest to this paper.

There are a number of variables that influence the catch-
ing scheme that are known in advance. The size of any
given table is known in advance and the sizes of the ta-
bles are non-uniform. The relatively small number of
tables in a database means that the usage for all tables
can be tracked, establishing which tables are more fre-
quently used and which are more recently used. The
cache replacement scheme implemented in this system
takes advantage of this knowledge as shown in Fig. 1.
When more space is needed on the GPU for a query,
the system selects a table for replacement by scanning
the tables on the GPU and building a pool of candidates
based on which tables on the GPU have been least re-
cently used. From this pool, the candidate with the least
number of uses is selected for replacement. Space avail-
ability is then checked again. If additional space is still
required, a new pool of candidates is selected and the
process is repeated. This continues until enough space
is available on the GPU for the tables.

An assumption has been made in the current design of
this system. That assumption is that the tables required
for the query will fit into the memory space available
on the GPU. (Modifying the database to handle tiling
of tables to encompass queries too large for the GPU
memory is an area for future work.)

4.1.2 Irregular Data and Complex Data Objects
Processing irregular data, or data whose size is not con-
stant from one instance to the next, requires special so-
lutions to overcome specific obstacles that the uncer-
tainty of the data size creates. The issues of arrays of
separate memory allocations must be resolved by co-
alescing these arrays into single memory allocations.
The issue of transferring complex data objects assem-
bling disparate metadata information is resolved by cre-
ating special CUDA functions to assemble data on the
GPU side. Finally, a solution to the coalescing of result
data must be created that avoids race conditions.

Coalescing Irregular Data: The issue of arrays of sep-
arate memory allocations most often comes in the form
of strings. A string is not a discrete object in C/C++,
but rather is a pointer to an array of characters. Cre-
ating an array of strings results in creating a pointer to
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Figure 2: Coalescing Strings into a Superstring

an array of other pointers to arrays. This is problematic
because memory locations in the CPU memory space
have no relation to memory locations in the GPU mem-
ory space. Passing an array of pointers simply passes
an array of gibberish as far as the GPU memory space
is concerned.

The solution is to coalesce all these different arrays into
a single array, as shown in Fig. 2. The individual ar-
rays are retained as separate virtual entities by provid-
ing starting indexes and lengths of each individual ar-
ray within the coalesced array. The number of arrays
needed transforms from an N arrays to two arrays; one
for the array offsets and lengths, which has a length of
2N, and one which contains all the values of the sep-
arate arrays concatenated together which has a length
equal to the sum of the lengths of the N arrays.

While it is possible to create many individual arrays
and pass each one individually, the overhead of numer-
ous data copies from the CPU memory space to the
GPU memory space rapidly degrades performance. Co-
alesced arrays reduce this overhead from O(n) to O(1).

Complex Data Structures: The multiple objects
copied over to the GPU must be assembled into a
single complex object; the arrays of database values
must be reassembled into table objects that are then
reassembled into the database object. This assembly
must take place on the GPU because only the GPU can
interpret or access GPU memory spaces. The pointers
to those memory spaces are currently only known to
data objects on the CPU, yet only GPU functions can
manipulate the GPU memory spaces they refer to.

The solution to this issue is to create linking functions
that attach one data object to another. For example,
the CPU instructs the GPU to make a database object.
This object contains pointers to table structures. Ini-
tially these pointers do not point to anything. The CPU
then instructs the GPU to create a table object. The
CPU has no mechanism to tell the database object’s ta-
ble pointers to point to the table object. This issue is
resolved by the creation of the linker function. A linker
function accepts two pointers as arguments and attaches
the second to a specified pointer contained in the object
the first pointer refers to.

The process for loading a table is shown in Fig. 3. The
table object is allocated on the GPU and initialized.
Then a column types array is created. Next, a linker
is called to attach the array to the table object. The pro-
cess then begins for each column. The columns of the
table are processed sequentially. For each column, the
data value array is allocated on the CPU, copied to the
CPU, and then a linker function is called to attach it to
the table object. For string data, which is of varying
length, the "value" contains the starting index of each
sub-array, or string of characters, in the coalesced ar-
ray, which is called a superstring. For this string data,
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each superstring is allocated, copied, and attached by
a linker, and then the array of sub-array lengths is also
allocated, copied, and attached by a linker function. Fi-
nally, the table object itself is connected to the database
object. This means that a single reference can be passed
to refer to the database, instead of a large, arbitrary, and
potentially unworkable number of references that point
to the assorted columns of all the tables in the database.

Coalescing Results: With varying sized input, the out-
put is also potentially of any size, both in number of
results and in the size of each result entry itself. This
introduces two levels of uncertainty, and it is the sec-
ond level of complexity that requires a new solution.

The traditional way of handling result sets is not robust
enough to handle varying length data. The traditional
way to coalesce result sets is to allocate an array of re-
sult elements for the results and have each thread claim
a slot in the array as needed. This handles one level
of uncertainty, the number of result elements, but relies
on the fixed length of each result set to calculate the
start point of any particular slot. Without knowing the
lengths of elements, it is impossible to find a slot in the
result set until all prior result sets have been calculated.

case OP_ResultRow
{

i n t R e s u l t S i z e = 0 ;
/ / d _ R e s u l t S i z e i s t h e g l o b a l r e s u l t s i z e

/ / C a l c u l a t e s t r i n g l e n g t h
f o r ( i n t t = S t a r t R e g i s t e r ; t <= S t a r t R e g i s t e r +

R e g i s t e r C o u n t ; t ++)
R e s u l t S i z e += R e g i s t e r S i z e ;

/ / Get End p o i n t and up da t e g l o b a l r e s u l t
p o i n t e r

i n t S t a r t P o i n t = atomicAdd ( d _ s i z e R e s u l t s ,
R e s u l t S i z e ) ;

/ / C o l l e c t r e s u l t s e t .
f o r ( i n t t = S t a r t R e g i s t e r ; t <= S t a r t R e g i s t e r +

R e g i s t e r C o u n t ; t ++)
R e s u l t S e t += R e g i s t e r C o n t e n t s + S e p a r a t o r ;

/ / P lace r e s u l t s e t i n t o r e s u l t c o l l e c t i o n
a t S t a r t P o i n t

Resu l tCopy ( R e s u l t C o l l e c t i o n , S t a r t P o i n t ,
R e s u l t S i z e , R e s u l t S e t ) ;

/ / Update t h e c o u n t o f t o t a l r e s u l t e n t r i e s
atomicAdd ( d_numResul ts , 1 ) ;
break ;

}

Figure 4: Atomic Coalescing of Results

The solution to this problem requires atomically claim-
ing space in the result set. Each thread calls an atomic
adding function that adds the length of the result set
it contains to a global variable. This function also re-
turns the starting value of the variable before the ad-
dition takes place. This allows each thread to claim a
unique portion of the result set, using the initial value
of the global variable as the starting point and the length
of the result set it is processing as the end point. Pseu-
docode for this process, as contained in the ResultRow
opcode, is shown in Fig. 4.

4.1.3 Workload Management and Complex Joins

The process of joining multiple tables creates a mul-
tiplicative increase in the number of permutations that
must be evaluated. Each row in a table must be com-
pared to every row in the joined table in order to connect
that data in the tables together correctly. Good SQL de-
sign and the addition of indexes can minimize the num-
ber of comparisons that need to be done in many cases,
but there will always be instances where a table join
must be done in the simple, brute force manner. In all
circumstances where the number of permutations to be
evaluated exceeds the capacity of the GPU to process
the entire set at once the workload assigned to the GPU
must be managed.

The workload management is also influenced by con-
tention for memory resources. There may be cases
where memory access is the constraining factor and the



Line Opcode P1 P2 P3
7 Rewind 0 22 0
8 Rewind 1 22 0
9 Rewind 2 22 0
10 Column 0 0 1
11 Column 1 0 2
12 Column 2 0 3
13 Lt 1 15 3
14 Le 2 19 3
15 Column 0 0 5
16 Column 1 0 6
17 Column 2 3 7
18 ResultRow 5 3 0
19 Next 2 10 0
20 Next 1 9 0
21 Next 0 8 0
22 Close 0 0 0
23 Close 1 0 0
24 Close 2 0 0
25 Halt 0 0 0

Table 1: Join of Three Tables

GPU is capable of managing more threads computa-
tionally. In such cases, the assigned workload to the
GPU must be throttled to avoid resource starvation.

This need for workload management most often occurs
when joins of multiple tables are done, using multi-
ple criteria. The more tables joined, the more complex
work must be done. It is not sufficient to simply as-
sign one thread to each table permutation. An example
of such a section of a SQLite program where the num-
ber of combinations requires workload management is
shown in Table 1. In this table, the presence of three
Next opcodes indicates that there are three levels of
nested loops, each one of which executes the inner loop
multiple times. The number of iterations of the inner
loop is equal to as much as the number of rows in the
inner table times the number of rows in the middle tale,
times the number of rows in the outer table. If each
table has only a thousand rows, then the innermost in-
structions are executed a billion times.

The solution to managing this vast amount of process-
ing is to divide the workload into chunks. Each chunk
consists of a grid of threads. How data is assigned to
threads in a chunk is critical due to the need to max-
imize the impact of indexing, and minimize memory
accesses and individual thread processing time.

The assignment of data is begun by dividing tables
into two groups. The code for this division is shown
in Fig. 5. Tables that are not indexed, which are
ephemeral, are selected to belong to the static group
that have each row in the table assigned to a separate
thread. Tables are selected without regard to the total
number of threads allowed in a grid or the number
of rows they contain. All tables that are not assigned

/ / Get a l l row s i z e s o f t a b l e s we are u s i n g .
f o r ( i n t t =0 ; t <numTables ; t ++)

tab leRows [ t ] =
d b P r o f i l e . t a b l e I n f o [ t a b l e M e t a [ t ] .

indexOnCPU ] . rows ;

i n t b l o c k s i z e = SQLCUDA_BLOCKSIZE ;
i n t t a b l e I n d e x = 0 ;

/ / S k i p t o f i r s t non−Ephemeral t a b l e .
whi le ( t a b l e M e t a [ t a b l e I n d e x ] . ephemera l )

t a b l e I n d e x ++;

i n t g r i d s i z e =( i n t ) c e i l ( t ab leRows [ t a b l e I n d e x ]
/ ( double ) b l o c k s i z e ) ;

t a b l e I n d e x ++; / / S k i p t o n e x t t a b l e . The
f i r s t one i s a l r e a d y hand led .

/ / P r o c e s s a l l t h e non−Ephemeral t a b l e s l e f t .
f o r ( i n t t = t a b l e I n d e x ; t < t a b l e C o u n t ; t ++)
{

i f ( ! ( t a b l e M e t a [ t ] . ephemera l ) )
{

i f ( g r i d s i z e < 2000000 && ( g r i d s i z e ∗
t ab leRows [ t ] ) < 2000000)

g r i d s i z e ∗= tab leRows [ t ] ;
e l s e t ab leRows [ t ] = 0− t ab leRows [ t ] ;

}
e l s e t ab leRows [ t ] = 0− t ab leRows [ t ] ;

}

Figure 5: Division into Processing Groups

to the static group are assigned to the iterate group.
Programmatically, the static group is indicated by
a positive number of rows and the iterate group is
indicated by the row count being negative. Tables in
the static group are not iterated through; a single thread
processes a single row and only iterates through tables
in the iterate group. If there are no tables in the static
group, a table from the iterate group is promoted to the
static group. In the database engine, a boolean value
is set based on whether the row count is positive or
negative and stored in the moveCursor variable for the
cursor. This boolean is then used by the Next opcode
(shown in Fig. 6) to determine whether the virtual
database engine should advance the cursor a row and
jump the program counter to the indicated line.

The second step is the assignment of the static group
to chunks. The size of the grid in each chunk is de-
pendent on the number of nested loops in the opcode
program. More nested loops are more likely to result
in slower execution, so a correspondingly lower num-
ber of threads need to be assigned to the GPU in each
chunk. Each row of a non-indexed static group table is
assigned a thread in a chunk. This results in a single
thread only executing for a single unique combination
of rows from each of the static tables. The row to be
executed in each thread is calculated from the threads
block, grid, and chunk numbers. Chunks are then ex-
ecuted sequentially, which means that threads assigned



case OP_Next :
{

i n t p1= cur ren tOp −>p1 ;

i f ( moveCursor [ p1]&&( cursorRows [ p1 ]+ row [ p1 ]
== −1) )

{
pc = cur r en tOp −>p2−1; / / S e t program

c o u n t e r t o l i n e P2 .
row [ p1 ] + + ; / / Move c u r s o r t o n e x t row i n

t a b l e .
}
break ;

}

Figure 6: Next Opcode

to the same warp, block, or grid will be accessing the
most spatially local rows in a table.

5 EXPERIMENTAL RESULTS
Several different techniques were used to evaluate
the performance of these improvements. A database
querying and caching simulator was built to compare
different caching strategies. The performance of the
GPU database was compared with GPU-level caching
turned on and turned off. Queries of increasing com-
plexity were run to compare cached GPU performance
to standard SQLite cached CPU performance. Irreg-
ular data performance was compared to regular data
performance, using strings and integers respectively,
and database engine execution time was measured for
returning irregular and regular data using the same
method. Finally, cached GPU performance was com-
pared to standard SQL CPU performance for several
complex SQL statements.

The test machine used in the caching tests is a Pentium
i7 920 running at 2.67 GHz with an NVIDIA GeForce
GTX 660Ti with 2 GB of memory. This GPU has 1344
cores arranged into 7 streaming multiprocessors. GPU
to CPU comparisons were performed on a Pentium i7-
3920k running at 3.2 GHz with 64 GB of memory and
an NVIDIA GeForce GTX680 GPU. This GPU has
1536 compute cores, arranged into 8 streaming multi-
processors, and 2 GB of memory. The database was
stored on an Intel 240GB SSD. Both systems run Win-
dows 7 and both GPUs support Compute Capability
3.0. The database program was written using CUDA
version 5.0 and C++ with Microsoft Visual Studio.

5.1 Testings on Caching Strategy
The caching strategies used in this system were tested
in two different ways. To determine an optimal cache
replacement algorithm, a caching simulator was built
to simulate a wide variety of database configurations,
drawing on past experience as a database administrator.
Once a caching scheme was chosen, the impact of that
caching scheme on performance was determined.

Strategy Hit Count Hit Bytes
Random 79.3 79.7
LRU 79.9 80.6
Least Used 78.6 83.1
Biggest First 84.4 81.0
Biggest of Least Used 82.9 77.2
Least Used of LRU 82.4 84.3
LRU of Least Used 78.7 79.2
Biggest of LRU 82.8 76.8

Table 2: Caching Strategies (Pool Size: Six)

Caching Strategy Selection: Table 2 shows the results
of one run of the cache simulator. Various databases
were modeled. Different database configurations cause
an alteration in the percentages of hits, “Least Used of
LRU" model was typically the most efficient model. A
variety of pool sizes were evaluated, and a pool size
of six was consistently the best performing. The “Hit
Bytes" is the most critical number, as the cost of trans-
ferring table data is the dominant factor in our caching
benefits, not the number of tables in the cache.

It should be noted that database systems can be mod-
eled that result in strategies other than “Least Used of
LRU" being the most optimal. These test models were
in the minority of the test cases generated and required
significant tweaking of the simulator parameters before
this behavior was present.

Caching Strategy Performance: The performance of
the caching system in overall performance is shown in
Table 4. This table shows the change in query execution
time when a table is not cached on the GPU compared
to when it is cached on the GPU. The more frequently
a cache hit occurs, the greater the speedup of the query
due to caching. The table shows a baseline 100% hit
rate and can be scaled from there.

The greatest performance increase comes from single
table queries. The first query demonstrates this effect.
In this query, there is little additional computation done
to slow down the query, either in joins or in conditional
statements. Additionally, there is no optimization done
to minimize data access by the database system which
would add overhead.

The second query demonstrates the impact of optimiza-
tions. The Publication table is much smaller than the
Document table; thus, it provides only a small impact
to the penalty for no caching. The extra computations
required to do the join amortizes the penalty of not
caching, reducing the speedup. It is worth noting that
the ordering of the SQL statement has an impact on the
performance of the SQL, and a different formulation of
the same query will result in a slightly slower query.

The final query demonstrates that, even in an instance
where a significant amount of computation is occur-
ring, the impact of caching is still felt. A significant



amount of optimization is done by the database system
in a query this complex, such as the creation of dynamic
indexes to replace tables, which will negate the need
to load some tables. Even joining five tables, three of
which are large, and with a complex conditional clause,
the additional of caching provides a speedup of 1.34.

5.2 Testings for Irregular and Complex
Data

Irregular Data performance was evaluated in two ways;
by comparing string performance of the GPU database
against string performance of the CPU database, and
by comparing string performance of the GPU database
against numeric performance of the GPU database. The
first comparison demonstrated that the GPU database
exceeded the CPU implementation. The second com-
parison showed that the string implementation was ef-
ficient and did not suffer serious performance degrada-
tion due to the use of varying sized data.

Performance comparisons were made between the CPU
and GPU databases using two categories of SQL state-
ments. The first category was SQL statements with se-
lection criteria, using both single and compound crite-
ria. The criteria used strings to select the rows to be
returned. The third category was SQL statements with
joins, using both single and complex joins. These state-
ments used strings both in criteria to select rows and in
the return values. The tables used were the Authors and
the Document tables. These tables were selected be-
cause they contained a large volume of string data and
they represented both medium and large sized tables.

The SELECT queries with conditional clauses showed
a performance gain by the GPU database over the CPU
database. The execution times for these queries are
shown in Table 5. The single criteria of Query 1 and
Query 2 demonstrated the speedup achieved with string
condition clauses. These queries also demonstrated that
larger tables, which have more processing to perform,
achieved a greater speedup. The multiple conditional
clauses of Query 3 and Query 4 demonstrated that a
greater speedup was achieved when more conditions
were evaluated. This indicates that each string con-
dition statement was faster in the GPU database than
in the CPU database, and additional condition state-
ments would result in an even greater speedup. Query
5 showed the performance with multiple joins between
the CPU database and the GPU database still reflected
a significant speedup.

String performance must be comparable to integer per-
formance in the GPU database. This was evaluated by
comparing the performance of similar queries on the
GPU database. The conditional clauses of the state-
ments were written with one version using strings to se-
lect records and the other version using numeric values
on the same table. The results are shown in Table 7 and

demonstrated that the string performance of the GPU
was similar to the numeric performance. The queries
demonstrate that the performance between string and
numeric SQL SELECT statements was well within an
order of magnitude, and was less than a factor of two in
difference.
The performance of coalescing the results when vary-
ing length data was present was determined by compar-
ing the performance of fixed data results with varying
length data results. This comparison was done with two
representative tables; the Authors table and the Docu-
ment table. One field was selected in each statement,
returning either a fixed length value (id) or a varying
length value (firstname and title). The execution time
of the virtual database engine itself was evaluated, with-
out consideration for other issues such as caching, data
transfer time, or table setup.
The performance of the coalesced varying length data
matched the performance of the fixed length data. The
Authors table showed slightly faster execution time for
the varying length data. This was appropriate because
there was slightly less data to process when coalesc-
ing the results. In the much larger Document table, the
VDBE took almost twice as long to run. However, this
statement returned five times as much data, which must
be coalesced into the result set. The larger result set ex-
plains the longer run time, indicating the success of this
coalescing method.

5.3 Testings for Complex Joins
Join performance was evaluated based on the perfor-
mance of the GPU SELECT statements that contained
joins. The performance of the query on the GPU
database was compared to the performance of the
query on the CPU database. Queries that join tables
based on indexes and without the benefit of indexes
were compared. The results of these queries are
displayed in Table 8.
The effectiveness of a query without the use of a dy-
namically created index was demonstrated in Query 7.
This query joins two tables on a text field. The results of
this query showed a significant increase in performance
of the GPU database over the CPU database. The ex-
ecution of Query 8 allowed the testing of a large data
set where indexes were used to accelerate the join. The
query showed significant speedup on the GPU database
compared to the CPU database, indicating the success
of the join methods used in the GPU database. The
results of Query 9 also showed a significant speedup,
but the speedup was not as great as the speedup of
the smaller join statement. This reflected the relatively
large time cost of creating indexes compared to the rela-
tively small cost that execution of that index brings; in-
dexes are extremely fast but making them can be slow.
In Query 9 more indexes are created, and this has a
small negative effect on the efficiency of the query.



ID SQL Statements
1 SELECT * FROM Authors WHERE lastname = ’Campbell’
2 SELECT * FROM Document WHERE title = ’Population’
3 SELECT id FROM Authors WHERE fullname = ’Edna F. Campbell’ OR firstname = ’Jim’
4 SELECT id FROM Document WHERE title = ’Population’ OR pagerange = ’pp. xxxviii-xxxix’
5 SELECT a.id FROM Document d, DocumentAuthors da, Authors a, PubEdition pe, Publication pu

WHERE (d.id=da.documentid AND a.id=da.authorid AND pe.id=d.pubeditionid AND pu.id=pe.pubid)
AND ((da.documentid=81372 AND d.repositoryID = 1) OR pu.title =’The Scientific Monthly’ OR
pu.title=’Scientific American’ OR a.firstname=’John’ OR d.title=’Rural Conditions in the South’

6 SELECT d.title FROM Publication pu, Document d WHERE pu.title=d.title AND d.title=’Campbell’
7 SELECT * FROM Document d, Authors a WHERE d.title=a.firstname
8 SELECT d.id FROM Document d, DocumentAuthors da WHERE d.id=da.documentid AND da.documentid=813
9 SELECT a.id FROM Document d, DocumentAuthors da, Authors a, PubEdition pe, Publication pu

WHERE (d.id=da.documentid AND a.id=da.authorid AND pe.id=d.pubeditionid AND pu.id=pe.pubid) AND
((da.documentid=81372 AND d.repositoryID = 1) OR pu.id < 2 OR pu.publisherid<2 OR
a.id<2 OR d.pubeditionID<2)

Table 3: Samples of Tested SQL Statements

SQL No Cache (ms) Cached (ms) Speedup
2 62.443 1.963 31.8
6 63.185 4.827 11.94
5 225.156 168.259 1.34

Table 4: GPU Caching Performance
SQL GPU (ms) CPU (ms) Speedup

1 6.73 33.61 4.99
2 7.44 298.78 40.16
3 5.01 47.69 9.51
4 8.13 386.92 47.59
5 271.36 8341.45 30.74

Table 5: CPU vs. GPU with Selection Criteria

6 CONCLUSION
In this paper, we have shown several improvements to
existing GPU database research. A number of caching
strategies to manage data storage on the GPU were ex-
plored and the most effective solution was evaluated,
and a method for managing the workload on the GPU
was presented. A method for coalescing and managing
variable length data, both in moving data to the GPU
and in retrieving results, was demonstrated and shown
to perform almost as well as simpler, fixed-size solu-
tions. A method for moving complex data structure
to the GPU was demonstrated. Finally, complex joins,
including those involving irregular data, were demon-
strated in the GPU database.
Future work in this system will require expanding the
database implementation to tile databases that are too
large for the system into the GPU memory. Even with
the advent of direct GPU memory access in CUDA 6,
direct management of the GPU memory spaces will
yield much better performance results.
Caching could also be improved by using a predictive
pre-caching scheme. This would expand the opportu-
nities to benefit from the performance improvements
of caching. In interactive systems, preemptive caching

based on user input as SQL statements are being en-
tered could also increase performance by allowing the
caching to be done before the SQL statement is exe-
cuted.

The database can be expanded to further implement
SQL features on the GPU. These additional features,
such as INSERT, UPDATE, and DELETE statements,
which are now handled purely by the CPU, may reveal
new challenges when coupled with joins and varying
size data types. The ability to add stored procedures
to the GPU database, written to run on the GPU, allow
user-implemented complexity. This feature is already
available in some other systems.

The investigation of alternate methods of accessing
GPU’s programmatically is another area of future
research. CUDA only supports NVIDIA video cards,
and ATI cards have a strong reputation for better integer
performance than NVIDIA cards. The use of alternate
programming models, such as DirectCompute or
OpenCL, may also provide altercate solutions to some
of the problems that have been addressed specifically
with CUDA.
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