Supervised Force Directed Algorithm for the Generation of
Flow Maps

Alberto Debiasi

Fondazione Graphitech
Via alla Cascata 56/C
38123, Trento, ltaly

alberto.debiasi@graphitech.it

Bruno Simoes

Fondazione Graphitech
Via alla Cascata 56/C
38123, Trento, Italy

bruno.simoes@graphitech.it

Raffaele De Amicis

Fondazione Graphitech
Via alla Cascata 56/C
38123, Trento, Italy

raffaele.de.amicis@graphitech.it

ABSTRACT

Cartographic flow maps are graphical representations for portraying the movement of objects, such as people,
goods or traffic network, from one location to another. On the one hand, flow maps can reduce visual clutter by
merging single representations of movement. On the other hand, flow maps are also fast to produce and simple
to understand. In this paper, we present a new method for the automatic generation of flow maps. Our method is
based on a theoretically grounded physical system to describe the motion and forces of attraction and repulsion
between data points. Additionally, support for an optional supervision of the graph layout is also available. Finally,
the cost of our algorithm is evaluated and a comparison with existing implementations is provided. Results have
shown a good balance between computational complexity and the visual quality of the generated maps.

Keywords

Flow maps, force-directed algorithm, geovisualization, graphical interaction

1 INTRODUCTION

Flow maps depict the movement of phenomena be-
tween geographic locations [25]. Phenomena can repre-
sent the movement in geographical space of both tangi-
ble (e.g. people, bank notes, and goods) and intangible
objects (e.g. energy, ideas, and reputation). The links
in a flow map, called flow lines, describe the movement
of objects from one location to another. The way these
flow lines are aggregated or depicted is what makes a
given flow map’ algorithm unique.

The Sankey flow drawing technique [23] is an exam-
ple of a method to aggregate flow lines. It describes
the thickness of the aggregated flow lines to be propor-
tional to the sum of the flows’ magnitude they repre-
sent. Although the idea of defining the thickness to be
proportional to the magnitude was intensively used by
Matthew Sankey in 1898, other maps depicted this con-
cept many years before.

In this paper, we describe an automatic technique for
the generation of natural and high visual quality flow
maps using a force directed algorithm. On the one hand,
it provides an alternative to already available tools for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the generation of flow maps that shift the modeling ef-
fort to the user side [1]. On the other hand, our algo-
rithm gives also the possibility of supervising the layout
of the flow map during the creation process. Our algo-
rithm not only shows a good computational complex-
ity, but it also satisfies the following aesthetic criteria
for flow maps [19, 27]: C1. The use of smooth curves
for aesthetic purposes; C2. The possibility of aggregate
flows, reducing the visual clutter; C3. Emphasise the
main branches of the flow tree; straight lines are cor-
related to target destinations with high magnitude; C4.
The target destinations represented by geometrical fea-
tures such as circles are not overlapped with flow; and
C5. The flow is crossing-free.

This paper is structured as follows. The next section
surveys the relevant literature, both to see if similar
studies have been done, and to provide the framework
from which to evaluate the relevance and impact of this
study. The third section of the study explains the pro-
posed algorithm and covers all the implementation de-
tails. The fourth presents the benchmarks based on a
test case and explores the meaning of this study in terms
of visual appearance and performance. The last section
wraps up possible extensibility.

2 RELATED WORK

In this section, we describe relevant techniques to the
generation of flow maps and edge bundling algorithms,
commonly used in the graph drawing domain.

2.1 Flow map algorithms

The first flow map representation was created by Henry
Harness in 1837 [21] and then popularised by Charles
Minard around 1850 [22]. Minard is considered a pio-
neer in the use of graphics in engineering and statistics,
mainly due to his map on the subject of Napoleon’s dis-
astrous Russian campaign of 1812 [16]. In 1987, Waldo
Tobler designed the first software for an automatic gen-
eration of flow maps, called FlowMapper. This soft-
ware draws flow lines as simple straight lines connect-
ing both source and target points [26]. Although the
biggest issue of FlowMapper is the visual clutter it pro-
duces, there are techniques that can be used to improve
the final output. For example, we can sort flow lines
by flow magnitude, use transparency, and apply person-
alised filters based on their magnitude, length, etc. To
reduce the number of nodes, we can apply clustering
methods, e.g. based on geographic proximity or polit-
ical regions [7]. However, as we shall see, these tricks
are not always an acceptable solution.

In 2005, Phan et al. [19] developed an innovative
method to automatically generate flow maps. The
method is characterised by its aggregation technique
and curved edges. The authors defined a binary hierar-
chical clustering to formulate the layout in a simple and
recursive manner. During the rendering phase, paths
are drawn as cubic Catmull-Rom splines [8]. Then, in
a post creation phase, users are given the possibility
to alter the shape of the flow lines by moving their
control points. The advantage of this algorithm is
its computational complexity; a quadratic worst-case
time. For example, on a 1.4-GHz laptop, the creation
of a flow map has an order of magnitude of seconds.
However, the algorithm has also its limitations. On
the one hand, visual nodes are often moved from
their original position if their proximity is too small,
therefore losing their geographical reference. On the
other hand, if there are too many target nodes in a small
area, by forcing binary splits, it introduces too many
extra routing nodes that leads to an unreadable clutter.

Verbeek et al. [27] introduced a method to overcome
the aforementioned limitations by using directed angle-
restricted Steiner trees of minimum length, also known
as spiral trees. The creation of these spiral trees can be
computed in O(n-log(n)) time, where n is the number
of target nodes. The edges of the spiral trees are loga-
rithmic spirals, implemented as cubic Hermite splines.
Additionally, the flow tree is designed to avoid cross-
ing nodes, as well as user-specified obstacles. In or-
der to straighten and smooth the tree, a cost function
is defined. At each iteration, a new position of the in-
termediate nodes is computed and the cost function is
calculated. Then they apply the steepest descent to min-
imise the global cost function, which is the sum of the
cost function for each intermediate node. The layout

is updated accordingly to the magnitude of the flows.
Although the time complexity is not mentioned, it is
expected to be O(i-m-n), where i is the number of iter-
ations, proportional to the number of target nodes n, and
m is the set of all nodes. The time required to create a
flow map is described as a ’couple of minutes’ for large-
scale flow maps (hundreds of target nodes) and less than
a minute for localised flow maps (tens of target nodes).
In addition, the flow tree has a unique topology on a
given set of georeferred points. Hence, the same tree is
used to represent all temporal datasets where only the
magnitude varies. This bears some limitations since the
magnitude is considered only after the tree generation.

Nocaj et al. [18] proposed an approach based on a new
drawing style for the generation of flow maps called
confluent spiral drawings. Confluent spirals consist of
smooth drawings of each bundle in which edge direc-
tions are represented with smooth appearance. A se-
quence of spiral segments is used to represent an edge
between the origin and the target node, and the vor-
tex of each spiral corresponds to a target node. At the
first step, edges are partitioned in O(m - log/\), where
m is the number of edges and A is the maximum de-
gree of a vertex. The overall runtime of the main
step is O(k -n- A?), where k is the number of candi-
date points over each spiral used as possible starting
points for other spirals and # is the number of target
nodes. The target nodes do not cross the flows if the
edges are approximated with s segments. When an ob-
stacle overlaps a branching point, it will be branched
out in an earlier or later phase of the parent spiral to
miss that obstacle. The computational time required is
O(n-logn)+ O(s-log(n+sA)).

In 2013, a force directed algorithm [10] was introduced
to automatically generate flow maps. The algorithm
generates a set of intermediate nodes from the origi-
nal flow map and then performs nodes merging using a
force-directed strategy. The downsides of this approach
is the high time complexity and the number of parame-
ters, which consequently affects the final layout of the
flow map. Moreover, it does not implement a smooth
line model in its rendering phase. In this paper, we
have significantly improved those aspects, as well as
introduced novel features to support user supervision.
A study on the influence of the number of intermediate
nodes on the final result is presented as well.

2.2 Edge bundling techniques

Visual clutter is a common issue in the graph draw-
ing domain for small as well as large graphs [17].
Force-directed algorithms [15] can be used to rear-
range nodes’ positions. In a force-directed algorithm
the graph is represented as a physical system of parti-
cles with forces acting between them. At each iteration,
the energy of the system changes. The algorithm halts
when local minimum of the energy is found.

The combination of attractive forces on adjacent ver-
tices, and repulsive forces on all vertices, was first in-
troduced by Eades et al. [11]. A few years later, similar
methods were presented as an extension to this idea.
For example, Kamada and Kawai [14] introduced the
idea of using only spring forces between all pairs of
vertices, with ideal spring lengths equal to the vertices’
graph-theoretic distance.

In recent years we have seen an increasing interest on
force-directed algorithms, mainly in edge bundling. In
edge bundling, the edges of a graph are bundled to-
gether if certain conditions are met. Holten et al. [13]
presented a force-directed algorithm in which edges
were modelled as flexible springs that can attract each
other while node positions remain fixed. This algo-
rithm was extended to separate opposite-direction bun-
dles, emphasising the structure of the graph [24]. Cui et
al. [9] described a mesh-based edge-clustering method
for graphs. Control mesh generation techniques were
used to capture the underlying edge patterns and to
generate informative and less cluttered layouts. Ersoy
et al. [12] created bundled layouts of general graphs,
using skeletons as guidelines to bundle similar edges.
Pupyrev et al. [20] proposed an edge routing algorithm
based on ordered bundles. With this technique the
edges are placed in parallel channels to avoid overlap.

One drawback of edge bundles is that they "hide" ex-
plicit node to node links. Hence, it is not easy to un-
derstand which are the nodes connected to a certain ori-
gin. Although, the main objective of these techniques
is the reduction of the visual clutter, at the stage of
the research, bundling methods cannot be used for the
creation of Sankey flow maps; they do not accurately
represent the total magnitudes flowing and they do not
merge.

3 SYSTEM DESIGN

In this section, we describe the four components that
characterise our application, see Figure 1. The first
layer, entitled Basic Structure Generation, is responsi-
ble for the generation of the flow tree. Once the tree
structure is generated, a second layer - Flow Graph
Layout - is responsible for applying interaction forces
to nodes and then for updating the tree structure accord-
ingly. As described later, this phase is executed for a
number of iterations. Then, the third layer - Rendering
- depicts the flow map. Finally, the layer Interaction
is designed to give users the possibility to modify the
output by means of simple user’s actions.

The algorithm receives as an input the geographic po-
sition of the origin, that is, the root node r of the tree
¢t and n geographical destinations corresponding to the
leaves Iy,0,...,1l,, respectively with flow magnitudes

mgn(ly), mgn(l), ..., mgn(l,).

Y Ya N
Basic Structure Generation Layer
A _J

K Flow Graph Layout Layer \
)
AN NN J

Figure 1: Overall system diagram.

Interaction Layer
Rendering Layer

3.1 Basic Structure Generation Layer

Initially each flow line, i.e., the line that connects the
root r with a leaf node /;, is a straight line. The first step
is to divide each flow line in sub-segments of length
d composed by the intermediate nodes m; ;. The in-
dex i identifies the leaf node /; of the original seg-
ment. This index takes into account the position of
the leaves in clockwise order. The sorting operation re-
quired to obtain such indexes has a computational cost
of O(n-log(n)). The index j identifies the order of
the intermediate nodes associated to /;. At a distance
d from the root r, there will be the intermediate nodes
mi,1,ma1,...,My 1. At a distance 2d, the set of nodes is
mip,my2,...,My 2, and so on, see Figure 2. Therefore,
the number of intermediate nodes m; ; is proportional
to the distance between a leaf /; and its root r. Each
intermediate node m; ; is tagged with the following in-
formation:

e the parent node; initialised as pred(m; j) =mj ;1.

e the child nodes; where next(m; ;) = {mj jy1} is the
initial set.

o the interacting nodes; a set containing the surround-
ing nodes. int(m; j) = {mit1 j,mi—1 ;} is the initial
set. Leaves cannot be interacting nodes.

o the magnitude: mgn(m; ;) = mgn(l;).

Figure 2: Nodes representation: m3 3, mgn(ms3) =
mgn(l3), pred(m33) = m32, next(ms3) = {m34} and
int(m33) = {m;3,ma3}.

When a node m; ; does not have as interacting node the
node m;_1 ; (due to the fact that the distance from m; ;
to r is greater than the distance from /;_; to r), it will be
substituted with the first of the previous ones, as shown
in Figure 2. The same applies to the absence of the node
m;y1,j. Consequences are explained in Section 4.1.

3.2 Flow Graph Layout Layer

This layer aims at computing the flow graph layout.
Figure 3 illustrates the evolution of a tree structure dur-
ing the execution of the algorithm. The two steps that
define this layer are executed in sequence, and for a
number of iterations.

3.2.1 Nodes merging phase

This phase was designed to update the structure of the
tree £, which becomes obsolete after the merging proce-
dure. The following pseudo-code describes the merging
steps:
for each intermediate node m; ; do
for each s € int(m; ;) do
if samePosition(m; j,s) & Pred(m;;j) =
Pred(s) then
createNode(s,m; ;)
removeNode(s)
removeNode(m; ;)
end if
end for
end for

The function samePosition requires a threshold d to
define whenever two positions are equivalent. The ex-
istence of a common parent for s and m; ; is a necessary
condition to maintain the structure as a tree and not only
as a directed acyclic graph. The function createNode
inserts a new node. The new node shares the parent
node of s and m; ;; the child nodes of s and m; ;; has
as interaction nodes the interaction nodes of s and m; ;;
has as magnitude the sum of the magnitudes of s and
m; j; and has as position the middle position between s
and m; j. The function removeNode(k) deletes the in-
termediate node k from the system. The computational
complexity of this phase is O(m) in each iteration.

3.2.2 Nodes moving phase

This phase aims at readjusting the position of interme-
diate nodes. The behaviour of each intermediate node
depends on two forces: the attractive and the stress
force. The attractive force is calculated only between
the node and its interactive nodes, within a certain dis-
tance d,. The attractive force Fy, is given by the equa-
tion:

mgn(s) 1 n
Fa(mij) = (mjj—s)
alimi j Semzt‘;ii‘j mgn(s) +mgn(m; ;) Hmw _S” ij
ey

The notation A and ||A|| gives respectively the unit vec-

tor and the norm of A. The factor (m;;—s) gives

the direction of the force vector andm the force
0L,j—

length; the closer the two nodes are, the higher is the
force between them. mgn(s) and mgn(m; ;) are respec-
tively the magnitude of s and m; ;. Without the factor
mgn(s)
mgn(s)+mgn(m; ;)
tance of the interacting nodes but not their magnitude.

We want nodes of smaller magnitudes to be attracted by
nodes of higher magnitude. Moreover, we want flows
with higher magnitude to have straighter shapes than
the ones with lower magnitude.

the formula takes into account the dis-

In addition to the attractive force, a stress force F; is
applied to each intermediate node, to keep a *middle-
aligned’ position from the parent node, as well as from
the child nodes.

mgn(s)
Filmi) = (previm;) —mi)+ Y. 250 S
s i,] 1,] 1] SEn;mi'j mgn(mi,j)

2

The condition defined in Equation 2 ensures that nodes
move always towards children of higher magnitude.
mgn(m; ;) is the magnitude of the current node, that
is, the sum of the magnitude of all children. mgn(s)
is the magnitude of a child node. In order to avoid os-
cillations, the stress force is applied only if the force is
greater than a threshold #: Fy(mi,.,-) > t. The final for-
mula to compute the force corresponds to the sum of
the stress and the attractive forces:

Finat(mi j) = Fu(m; ;) + kg - Fg(m; ;) 3)

where the constant k; is the oscillation that defines the
stress force. In this context, the concept of force is the
one of displacement applied to a node.

The total force of the system is equal to the scalar sum
of all forces applied to the intermediate nodes. After
each iteration the total force decreases, firstly because
the number of nodes is reduced, and then because the
interacting nodes becomes out of range (i.e. when the
distance from their associated node is greater than d;).

The tree structure is marked as ready once a stable to-
tal force is reached. Unfortunately, the tree structure
does not have into consideration the overlap of nodes,
one of the criteria that this algorithm aims to achieve.
Hence, the objective of the next step is to apply a re-
pulsive force F; to intermediate nodes within a certain
distance d, from the leaf nodes. The displacement is ap-
plied only at the end because otherwise it would affect
the evolution of the tree 7.

-1
e
mi ;=1

l€leaves !

Fy(mjj) = m;;—1) 4)

(m; j—s)

Figure 3: Tree structure during the generation of the flow map.

The repulsive force is equal to the opposite of the at-
tractive force without the factor that takes into account
the magnitudes. Additionally, we add the stress force to
guarantee that the position of children nodes is updated
properly once the node location changes, see Figure 4.

r~
| J

& -
® o o o o @ °

L]
.

Figure 4: (left) Overlapping between a flow line and
a leaf node. (right) Repulsive and stress forces are ap-
plied to avoid overlapping.

In pseudo-code the operations of this layer are de-
scribed as follows:

for each intermediate node m; ; do
if SystemlsStable == FALSE then
displ(mi ;) = Fe(m,;)
else
displ(mi,j) = Fr(mi,j) +ks- Fs(mi-,j)
end if
end for
for each intermediate node m; ; do
position(m; j)+ = displ(m; ;)
end for
SystemlsStable = checkStability()

In summary, the execution of the algorithm runs in two
steps: first Equation 3 is applied until the total force of
the system is stable. Then the attractive force is substi-
tuted with the repulsive force to avoid overlapping with
destination nodes. At the end, the intermediate nodes’
position is updated.

3.3 Rendering Layer

The classes responsible for redering the maps on the
screen are defined in the Rendering layer. The 3D ren-
dering library used is JOGL, a binding of OpenGL for

Java, which has been released by Oracle for Windows,
Solaris, Linux and Mac OS platforms. Maps can be vi-
sualised both in 3D and 2D.

For aesthetic purposes, curves

were preferred over straight

P ° lines during the rendering
° phase [6]. Xu et al. published

‘ | a study to empirically evaluate

P their effectiveness on common

” graph-related tasks [28]. In

® “ our implementation, we used

® natural Cubic Splines for the
depiction of the flow lines.
We decided for this kind of
curve representation because
it interpolates the intermediate
nodes and its design dynamics
are intuitive. The line width is
proportional to the magnitude
of the intermediate nodes that compose the flow.
Moreover, for each split the starting point of the child’s
spline is shifted by a distance proportional to their

width, in a direction perpendicular to the edge’ vector,
see Figure 5.

-

Figure 5: Splits
of flow lines. Un-
filled circles shows
the starting point of
the child’s spline.

Additionally, leaf nodes are marked as circles whose
size is proportional to their magnitude. It is possible to
visualise the tree structure as well; intermediate nodes
are depicted in red if they have more than one child
node and black otherwise.

3.4 Interaction Layer

The interaction layer enables the possibility of interact-
ing with the structure of the flow graph tree, and con-
sequently can improve its visual quality. At the current
state of the research, automatic methods for the gener-
ation of flow maps do not support supervised layouts
before concluding the generation process. Manual up-
dates are possible once the layout is generated.

The interaction layer supports two scenarios: the auto-

matic generation of a flow map and the supervised step-
by-step layout generation. The latter option gives users

additional control over the final layout. Hence, a given
area can be progressively refined, for example, by mov-
ing certain intermediate nodes to a different location.
After applied the translation force, the system takes it
into account and recomputes the new flow graph tree.

The user interface has three input components to con-
trol the generation process. A button next to compute
the node merging phase and the node moving phase for
the next step. Since the number of iterations can be in
the order of ~ 1000, the user has also the possibility
to run it in batches. At any moment, the user has the
possibility to manually modify the attractive, stress and
repulsive forces and decide when its time to stop the
algorithm execution.

As described in Section 3.2, the algorithm is responsi-
ble for the management of all the forces involved in the
system.

(a) Automatically generated flow map.

(b) Flow map generated with the supervision of the user.

Figure 6: Flow maps illustrating the migration from
California between 1995-2000. Intermediate nodes are
visible only during the supervised mode. The ovals
identify the areas where the user requested the aggre-
gation of flows.

The use of the supervised mode is useful when a flow
map is composed by a large number of branches. In
such scenario, the user can ’drag & drop’ intermediate
nodes with the goal of activating new attractive forces to
reduce the number of branches of the tree structure. The
Figure 6 shows a geographical dataset depicted with
and without the user supervision.

4 EVALUATION OF THE ALGO-
RITHM

In this section, we compare our algorithm to existing
implementations. We also provide an evaluation of its
computational cost. Results have shown a good balance
between computational complexity and the visual qual-
ity of the generated maps.

4.1 Comparison with existing algorithms

Table 1 provides a description of the most relevant
methods for the automatic generation of flow maps ac-
cordingly to the aesthetic criteria defined in Section 1.
The Y/N letters stand for Yes/No and the properties
marked with a star have limitations that are also ex-
plained.

Methods Cl1/C2| C3| C4| C5| Time Complexity

Flow Map Lay- | Y Y*[N | N [o(n?)

out

Flow Map Lay- | Y Y¥| Y | Y | O - log(n) +

out via Spiral O(i-m-n)

Tree

Confluent Spi- | Y N¥|'Y | Y | O - log(n)) +

ral Drawing Ok -n-A) +
O(s - log(n +
sA))

Force Directed | Y Y | Y| Y*| O(n - log(n)) +

Flow Map Lay- O(i-m-n)

out

Table 1: Table for the comparison of the algorithms for
automatically generate flow maps.

Cl1. All methods evaluated in this section use smooth
lines. The flow map layout algorithm [19] uses Catmul-
Rom splines, Flow Map Layout via Spiral Tree [27]
uses cubic Hermite splines and Confluent Spiral Draw-
ing [18] uses logarithmic spirals. Our algorithm uses a
natural Cubic Spline to represent flow lines.

C2. The first two methods compute the aggregation of
flow lines through the creation of binary splits. Unlike
the first, the second method can recursively perform bi-
nary splits that are then merged if the distance meets
a certain threshold. Confluent Spiral Drawing and our
algorithm do not impose such limitation.

C3. The criterion states that the flow magnitude should
affect the layout of the generated map. However, such
condition is not completely satisfied by the first three
algorithms. In the first two algorithms only the posi-
tion of the intermediate nodes is affected meanwhile the
structure of the tree remain unmodified. The authors
justify such restriction with the claim that it helps the
comparison across different time periods. In the third
algorithm the magnitude is not taken into considera-
tion. Although the authors claimed the possibility to
use other attributes instead of only the distance from
the root node, their paper not goes into details describ-
ing this aspect. Nevertheless, it can be useful to have

a dynamic tree typology to give emphasis to flow lines
with greater flow magnitude.

magn(ly) > magn(ls)

] [
(@ (b)
Figure 7: Representation of a flow maps with different
magnitudes

magn(ly) < magn(ls)

As showed in Figure 7, our method can depict a flow
tree with a structure specifically designed to account for
the magnitude of each destination node, that is, it takes
into consideration the magnitude factor in the force be-
haviours.

C4. The leaf nodes are not overlapped for all the meth-
ods except the first; a buffer is used to distance the flow
lines from the nodes. In our algorithm if the number of
intermediate nodes is not sufficient some overlapping
can occur - i.e if the d, is less than d/2.

CS5. In our algorithm the overlap of flow lines depends
on the criteria used to define the interacting nodes. If
the rule is to assign for each m; ; the nodes m;_; ; and
miy1,; (if they exist) as interacting nodes, the tree is
crossing-free. On the other hand, if we extend the
rule as described in section 3.1 (for example the node
my 3 € int(m33) in Figure 2), the overlapping is permit-
ted but the quality of the generated output is improved.
In Figure 8 is possible to assess the benefits of this de-
cision. However by increasing the number of interme-
diate nodes we can reduce considerably the possibility
of such scenario.

Figure 9 shows the comparison of flow maps depicted
with Flow Map Layout, Flow Map Layout via Spiral
Tree, as well as with our algorithm. The output of the
first algorithm contains many crossings, the grouping
of nodes is somewhat unnatural, and the edges are often
difficult to follow. The other outputs can be considered
aesthetically pleasing, although no methodology exists
to evaluate flow maps generated automatically.

4.2 Evaluation of the computational com-
plexity and visual quality

To decide the number of intermediate nodes to gener-
ate, we need to set the distance d between the inter-
mediate nodes. We define the parameter f, to be the
maximum number of intermediate nodes in a flow line.
Then we assign d = dygy/(fn + 1) where dyqy is the
length of the longest flow line. This parameter con-
sequently affects the performance and visual quality of

Figure 8: This example highlights a weak case in terms
of visual quality and how it is solved. A flow map
where the absence of overlapping is guaranteed (top),
flow map with the possibility of overlapping but with
better visual quality (bottom).

the flow map. Figure 10 compares the number of nodes,
time and iterations for a flow map that depicts the top
30 exports of Whisky from the UK. Let f, = 30 and
m = 338 be the initial number of intermediate nodes,
then the algorithm stops after 2,51 seconds and 1597 it-
erations. With f, = 60 and m = 695, the algorithm halts
after 9,46 seconds and 2487 iterations. For f, = 100
and m = 1177, the algorithm stops after 23,1 seconds
with a total of 4240 iterations. Note that a small num-
ber of intermediate nodes does not guarantee that all
flows are cross-free or the absence of crossing with the
leaf nodes, see respectively the second and first map in
Figure 10.

The plot depicting the total force illustrates when the
algorithm finds a local minimum of the total force and
when it applies the repulsive force instead of the attrac-
tive force to its nodes; for each of 3 cases the force has
a pick and then it decreases until a minimum is reached.
It is possible to notice that the convergence is fast using
the total force of the system as cost value.

In the plot depicting time, when the stress repulsive
force is introduced to overcome the overlapping of des-
tination nodes, the function increases the time; in the
first step the time complexity is in the order of O(i - n),
meanwhile in the second step the destination nodes
must be considered, making the time complexity in the
order of O(i-m-n). Our algorithm performs a flow map
with intermediate nodes in the order of one thousand in
less than a minute.

In addition to f, and distance d between intermediate
nodes, we have the following parameters: the threshold
d, that defines when two positions are equivalent; the

distance d, for the attractive force; the distance d, for
the repulsive force; and the constant oscillation k; that
varies between 0 to 1. After performing several tests we
concluded empirically that 0.1 is an optimal value.

Figure 11 depicts the effects of varying the main param-
eters of the algorithm. On the top there are three flow
maps varying the number of intermediate nodes, on the
left the factor f, is 12, in the center f, is 50 and on the
right the value is 100.

We observed that in situations were the number of
nodes is low, the merging of flow lines is reduced and
the result is often not satisfactory. We have also noticed
that after a certain threshold the algorithm produces no
significant improvements.

On the bottom we see what happens if the factor that
takes into account the magnitude is removed from For-
mula 1 (center image) or from Formula 2 (right image).

The first case generates sparser results. In the former
case, the position of each split does not follow the di-
rection of the lines, see for example, the main branch
on the right of the origin. In the bottom left the range
for the attractive force is reduced (low d.), the number
of branches is increased mainly near the origin.

The datasets used in this paper can be retrieved online
from: the Scotch Whisky Association in Edinburgh [4],

(®)

(d)
Figure 9: Maps illustrating migration from Texas 1995-2000. The output of [19] (a), the output of [27] (b), the
output of [18] (c) and the output of our algorithm (d).

Statistics Norway [5] and U.S. Census Bureau, County-
to-County Migration Flows [2].

All flow maps depicted in this paper were computed
and visualised on a Intel laptop with 1.64 GHz and 2
GB of RAM. The algorithm was initially developed us-
ing a 2D Java canvas, but was later ported to 3D and
integrated in NASA WorldWind [3]. Hence, both 2D
and 3D views are supported.

S CONCLUSION AND FUTURE
WORK

This paper describes a force-directed algorithm for the
unassisted and automatic generation of flow maps. The
algorithm for computing the flow map iteratively min-
imizes the energy of a system composed by a set of
forces that characterise a well-drawn flow map.

The main aspect is that the flow tree, as well as the flow
lines, are mainly based on the magnitude of the desti-
nations. The second aspect is the possibility to super-
vise the output during each iteration. Even if the visual
quality of our algorithm was not proved to be the best
compared with the previous work, it depicts high qual-
ity flow maps. Moreover the method is of easier im-
plementation and the time requested for the execution

—— n=100

Total Force

——fn=60

——fn=100

Number nodes

—— fn=60

—— fn=100

Time
—— fn=60 fn=30

800
20 \
15 800
o ‘\\ 400
5 N ko 200 |
o kkk—kJ* [‘

[800 1500 2400 3200 4000 [800 1600

Figure 10: On top: flow map with f, = 30 (left), flow map with f,, = 60 (centre), flow map with f, = 100 (right).
On bottom: the x axis represents the number of iterations and the y axis the total force of the system (left plot), the
number of nodes (central plot), and the execution time (right plot).

(@) fu=12

(d) low d,
equation 1

(®) fu=50

(e) the magnitude factor is removed from

() fn=100

(f) the magnitude factor is removed from
equation 2

Figure 11: Various results of our algorithm with different parameters.

is in the order of seconds for flow maps of thousand of
intermediate nodes.

As a further improvement, we could use a quadtree to
store the position of each node and to reduce the time
needed to avoid crossings between leaf nodes and flow
lines. The algorithm could also be extended to sup-
port multi-origin representations. The use of a 3rd di-
mension can be another challenging direction for future
work.

6 ACKNOWLEDGEMENTS

This research has been supported by the European
Commission (EC) under the projects i-Scope (Grant
Agreement N. 297284), SUNSHINE (Grant Agreement
N. 325161) and GEPSUS. The project GEPSUS is
funded by NATO-OTAN (North Atlantic Treaty Or-
ganization) within the Science for Peace and Security

Programme. The authors are solely responsible for
the content of this paper. It does not represent the
opinion of the European Community, and the European
Community is not responsible for any use that might
be made of information contained herein.

7 REFERENCES

[1] Adobe illustrator. http://www.adobe.com/
it/products/illustrator.html. Ac-
cessed: 2014-04-24.

[2] County-to-county migration flows. http:
//www.census.gov/population/www/
cen2000/ctytoctyflow/index.html.
Accessed: 2014-04-24.

[3] Nasa worldwind. http://worldwind.arc.
nasa.gov/Jjava/. Accessed: 2014-04-24.

(4]

(5]

(6]

(7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Statistical report 2012. http://www.
scotch-whisky.org.uk/media/ 62024/
2012_statistical_report.pdf. Ac-
cessed: 2014-04-24.

Statistics norway. http://www.ssb.no. Ac-
cessed: 2014-04-24.

M. Bar and M. Neta. Humans prefer curved visual
objects. Psychological science, 17(8):645—648,
2006.

I. Boyandin, E. Bertini, and D. Lalanne. Us-
ing flow maps to explore migrations over time.
In Geospatial Visual Analytics Workshop in con-
Junction with The 13th AGILE International Con-
ference on Geographic Information Science, vol-
ume 2, 2010.

E. Catmull and R. Rom. A class of local interpo-
lating splines. Computer aided geometric design,
74:317-326, 1974.

W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li.
Geometry-based edge clustering for graph visu-
alization. Visualization and Computer Graphics,
IEEE Transactions on, 14(6):1277-1284, 2008.

A. Debiasi, B. Simoes, and R. De Amicis. Force
directed flow map layout. In 5th International
Conference on Information Visualization Theory
and Applications, pages 170-177. SCITEPRESS,
2014.

P. Eades. A heuristics for graph drawing. Con-
gressus numerantium, 42:146—160, 1984.

O. Ersoy, C. Hurter, F. V. Paulovich,

G. Cantareiro, and A. Telea. Skeleton-based edge
bundling for graph visualization. Visualization
and Computer Graphics, IEEE Transactions on,
17(12):2364-2373, 2011.

D. Holten and J. J. Van Wijk. Force-directed edge
bundling for graph visualization. In Computer
Graphics Forum, volume 28, pages 983-990. Wi-
ley Online Library, 2009.

T. Kamada and S. Kawai. An algorithm for draw-
ing general undirected graphs. Information pro-
cessing letters, 31(1):7-15, 1989.

M. Kaufmann and D. Wagner. Drawing graphs:
methods and models, volume 2025. Springer,
2001.

C. J. Minard. Carte figurative des pertes succes-
sives en hommes de I’Armée Frangaise dans la
campagne de Russie 1812-1813. Graphics Press.,
1869.

T. Munzner. H3: Laying out large directed graphs
in 3d hyperbolic space. In Information Visual-
ization, 1997. Proceedings., IEEE Symposium on,
pages 2—10. IEEE, 1997.

A. Nocaj and U. Brandes. Stub bundling and con-

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

fluent spirals for geographic networks. In Graph
Drawing, pages 388-399. Springer, 2013.

D. Phan, L. Xiao, R. Yeh, and P. Hanrahan. Flow
map layout. In Information Visualization, 2005.
INFOVIS 2005. IEEE Symposium on, pages 219—
224. IEEE, 2005.

S. Pupyrev, L. Nachmanson, S. Bereg, and A. E.
Holroyd. Edge routing with ordered bundles. In
Graph Drawing, pages 136—147. Springer, 2012.

A. H. Robinson. The 1837 maps of henry drury
harness. The Geographical Journal, 121(4):pp.
440-450, 1955.

A. H. Robinson. Early thematic mapping in the
history of cartography. University of Chicago
Press Chicago, 1982.

M. Schmidt. The sankey diagram in energy and
material flow management. Journal of Industrial
Ecology, 12(1):82-94, 2008.

D. Selassie, B. Heller, and J. Heer. Divided edge
bundling for directional network data. Visualiza-

tion and Computer Graphics, IEEE Transactions
on, 17(12):2354-2363, 2011.

T. A. Slocum, R. B. McMaster, F. C. Kessler, and
H. H. Howard. Thematic cartography and geovi-
sualization. Pearson Prentice Hall Upper Saddle
River, NJ, 2009.

W. R. Tobler. Experiments in migration map-
ping by computer. The American Cartographer,
14(2):155-163, 1987.

K. Verbeek, K. Buchin, and B. Speckmann.
Flow map layout via spiral trees. Visualization

and Computer Graphics, IEEE Transactions on,
17(12):2536, 2011.

K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and
P. H. Nguyen. A user study on curved edges in
graph visualization. Visualization and Computer
Graphics, IEEE Transactions on, 18(12):2449—
2456, 2012.

