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ABSTRACT
In this paper we present a chronological review of five distinct data structures commonly found in literature and ray
tracing systems: Bounding Volume Hierarchies (BVH), Octrees, Uniform Grids, KD-Trees, and Bounding Interval
Hierarchies (BIH). This review is then followed by an extensive comparative study of six different ray traversal
algorithms implemented on a modern Kepler CUDA GPU architecture, to point out pros and cons regarding per-
formance and memory consumption of such structures. We show that a GPU KD-Tree ray traversal based on ropes
achieved the best performance results. It surpasses the BVH, often used as primary structure on state-of-the-art
ray tracers. A carefully well implemented ropes based KD-Tree CUDA traversal can improve performance on a
12-39% approximate range. This suggests that, for critic real time applications, the ropes based KD-Tree traversal
is a more adequate option on GPU. However, this structure consumes at least 4x more memory space than BVHs
and BIHs. This disadvantage can be a limiting factor on memory limited architectures.
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1 INTRODUCTION
Research on ray tracing has been done for more than
four decades [App68]. This technique is commonly
applied to solve the problem of visibility [Whi80], by
searching for the nearest (thus visible) ray-object inter-
section of each ray emitted into the scene. An imme-
diate search algorithm can be defined by testing inter-
sections between the rays and all geometric primitives.
However, this brute-force approach makes the search
complexity to increase linearly with the number of ob-
jects present in the scene.
Since each of these ray-primitive intersections involves
costly multiple floating point arithmetic operations, this
exhaustive search algorithm becomes prohibitive for
different application scenarios, such as photo-realistic
image synthesis of complex geometric scenes and real
time ray tracing. Along time, different data structures
have been proposed capable of organize or group ge-
ometric primitives, in order to considerably reduce the
amount of intersection tests necessary to find the near-
est primitive.
Modern Graphics Processing Units (GPUs) are com-
monly used as a coprocessor for implementing highly
parallel algorithms, such as ray tracing. GPU program-
ming has become even more suitable for general pur-

pose problems since the programming model was uni-
fied by the NVIDIA Compute Unified Device Archi-
tecture [NVI14] (CUDA), which delivers a many-core
programmable solution containing parallel stream pro-
cessors.

In this paper we review ray traversal algorithms for five
different data structures: Bounding Volume Hieararchy
(BVH); Octree; Uniform Grid; KD-Tree; and Bound-
ing Interval Hierarchy(BIH). This work also exploits
the CUDA architecture to implement six highly effi-
cient ray traversal algorithms for these data structures.
Finally, our main contribution is a comparative study
of all of those traversals, showing their advantages and
limitations on a modern GPU architecture. To the best
of our knowledge, there isn’t yet a complete compari-
son between all these main data structures for ray trac-
ing on GPU in the literature.

This paper is organized as follows. Section 2 describes
the basic concepts related to acceleration structures for
ray tracing. Section 3 presents major previous work re-
lated to GPU ray traversals. Section 4 details the im-
plementation of the ray traversal algorithms. The com-
parative analysis is highlighted in Section 5. Finally,
Section 6 draws some conclusions and outlines future
work.



Figure 1: 2D examples of Acceleration Structures.

2 BACKGROUND
This section presents concepts related to data structures
that are used throughout this paper.

2.1 Acceleration Structures
When a data structure for ray traversals is used on a ray
tracer, only objects near or somehow related to the path
of the ray are tested. The increase in performance is
significant when compared to the brute-force approach,
since for most cases these close-by, related objects com-
prise a small fraction of the scene. For affine 3D mod-
els, these structures can reduce average search com-
plexity to a sub-linear level and consequently improve
ray tracing performance by one or more orders of mag-
nitude, being therefore commonly known as Accelera-
tion Structures (AS). The following subsections briefly
discuss main concepts of most AS found in literature.
Figure 1 shows a simplified 2D representation of all
evaluated structures.

BVH

The Bounding Volume Hierarchy (BVH) may be the
oldest AS for ray tracing [Rub80], or at least some of its
concepts, such as tight bounding volumes for early ray-
object intersection termination [Whi80]. This structure
partitions groups of objects into disjoint sets, as can be
seen in Figure 1. It’s usually implemented as a binary
tree, on which each internal node stores a tight bound-
ing volume that encloses all primitives it contains, and
also pointers for its child nodes. A leaf node stores the
bounding volume as well, but also the primitives this
volume contains.

Traversing a BVH node is straightforward: the algo-
rithm test intersections between the ray and the node’s
bounding volume. If it intersects, test the ray against the
child nodes and traverse them or, if it’s a leaf node, per-
form ray-primitive intersections. Otherwise, in case the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ray doesn’t intersect the node’s bounds, the algorithm
skips traversing that tree’s branch.

Kay and Kajiya [Kay86] proposed a top-down BVH
traversal algorithm, on which the ray is tested against
both bounding volumes from the child nodes. The near-
est child node from the ray’s origin is visited while the
farthest is stored in a priority queue like a heap, for a
future traversal. However, the authors didn’t show any
performance gains than a simple stack. In fact, Shirley
and Morley [Shi03] warned the negative impact of a
priority queue overhead. Therefore, our BVH traversal
implementation is stack-based, with optimizations from
the GPU BVH open-source implementation of Aila et
al. [Ail09][Ail12]. For details on our BVH implemen-
tation, see Section 4.

Octree
An Octree is a spatial 8-ary tree. Therefore, each in-
ternal node is split in eight subspaces, represented by
its child nodes, which usually have the same volumes.
A leaf node stores the primitives its subspace contains.
Figure 1 shows an Octrees 2D representative, the Quad-
Tree, since an Octree doesn’t exist in 2D dimensions.

The Octree was created to solve different problems
[Red78][Jac80], such as z-culling and sub-model rota-
tions. To the best of our knowledge, Fujimura et al.
[Fuj83] were the first to propose the use of Octree to en-
hance ray tracing performance. Later, Glassner [Gla84]
described his Octree building and traversal algorithms,
comparing timing statistics that show speedups above
13x than the brute-force approach. It is interesting to
notice the timing units in hours and minutes, for scenes
that today run in milliseconds on a modern architecture.

Revelles et al. [Rev00] proposed a more efficient ray
traversal algorithm for Octrees, based on how a ray
crosses the children of an internal node, and using sim-
pler arithmetic floating point computations. This algo-
rithm will be discussed with more details in Section 4,
since we implemented this approach for our compara-
tive study on GPU. This choice relied on the fact that
this Octree traversal algorithm is the fastest found in
literature. Furthermore, it is important to point out that
the Sparse Voxel Octree [Lai10], although its novelty
and efficiency on GPUs, only supports voxels as primi-
tives, and therefore isn’t part of our comparative study.

Uniform Grid
An Uniform Grid is conceptually simple: the structure
splits the whole scene space into equally sized axis-
aligned bounding boxes, commonly known as cells, as
can be seen in Figure 1. Each cell stores a list of primi-
tives it may contain.

Fujimoto et al. [Fuj85] proposed the first Uniform Grid
ray traversal algorithm, known as 3D Digital Differen-
tial Analyser (3D-DDA), an extension of Bresenham’s



algorithm, frequently used for line rasterization. How-
ever, they applied the 3D-DDA into traversing an Oc-
tree instead. In fact, each Octree subdivision can be
interpreted as an Uniform Grid of 2x2x2 cells.

The Bresenham’s algorithm defines the largest axis as
driving axis, defining the step size for the other (pas-
sive) axis. The main difference is that the ray traversal
algorithm needs to visit all the intersected cells, while
the Bresenham’s can miss some cells from the passive
axis.

A 3D-DDA extension was proposed by Amanatides and
Woo [Ama87]. Being a simple and efficient imple-
mentation, it’s the most popular Uniform Grid traversal
found in literature. Our Uniform Grid ray traversal is
based on this approach. For implementation details of
this algorithm, see Section 4.

KD-Tree
A KD-Tree [Ben75] is a particular type of a BSP tree
[Fuc80]. In a KD-Tree, each internal node is split in
two by an axis-aligned plane, defining disjoint bound-
ing boxes represented by its child nodes, as can be seen
in Figure 1. A leaf node stores a list of primitives its
volume contains, similar to an Octree’s leaf node. It is
one of the most referenced AS in literature, with at least
eight different ray-traversal algorithms. Figure 2 shows
different traversal schemes of these algorithms.

Kaplan [Kap85] introduced the first known KD-Tree
ray traversal algorithm, later referred as Sequential
traversal [Hav00]. This traversal executes a cyclic
top-down point search within the KD-Tree nodes, until
the leaf that contains the current search point is found.
After the leaf traversal, the point of interest is changed
to be inside the next leaf node and the search algorithm
goes back to the root node. Therefore, many internal
nodes are repeatedly visited.

Jansen [Jan86] proposed a recursive traversal algorithm
for KD-Tree. His method doesn’t visit a node more
than once, since the recursive calls handle the order-
ing of nodes to be visited. Aiming efficiency, Havran
[Hav00] presented an iterative version, named later
as KD-Standard traversal [Fol05]. The KD-Standard
traversal uses a stack in order to store the child node
located most far away. Each stacked node is visited
later, when all other near child nodes have been visited.
Therefore, the stack guarantees that the traversal occurs
at the same order than the recursive approach.

MacDonald and Booth [Mac90] proposed the concept
of neighbor-links between a leaf and its neighbors
nodes for Octrees and BSP-Trees. A traversal al-
gorithm can then use these links to directly access
adjacent nodes, reducing the number of visited internal
nodes. This technique follows the same concept of
"ropes" [Hun79] in a Quad-Tree (see the dashed lines
in Figure 2). In the strict sense, this structure isn’t

a tree anymore, since it has cyclic connections, a
consequence of more than one possible path from some
nodes to other. Havran et al. [Hav98] described how to
build and traverse a KD-Tree with ropes. It’s worth to
mention the stackless nature of a traversal with ropes,
since the neighbor-links of the leaves are enough to
find the next tree branch to be traversed. On a GPU,
a stackless algorithm reduces high latency memory
bandwidth usage [Pop07]. Therefore, a ropes-based
traversal algorithm is an important reference for
modern GPU KD-Tree implementations, including our
previous work [San12].

Havran et al. [Hav97] modified Jansen’s traversal al-
gorithm through statistical analysis of ray-node inter-
section cases, lowering traversal cost for more proba-
ble traversal situations. Moreover, this traversal leads
to less numerical errors, and consequently less visual
artifacts. Compared to KD-Standard traversal, their im-
plementation on a Pentium architecture achieved up to
2x of speedup.

BIH
The Bounding Interval Hierarchy (BIH) [Wac06] is a
binary tree that, similar to BVH, partitions a group of
objects into disjoint subgroups, as shown in Figure 1.
However, the BIH uses two axis-aligned planes instead
of complete bounding boxes. These splitting planes are
aligned to the same axis, being then represented by just
two floating point values. One represents the end limit
of the left node, while the other the start limit of the
right node. Its main advantages are high efficiency of
construction and very low memory usage compared to
most of the others structures.

The BIH is a relatively recent data structure, with few
related publications on GPU, with some positive results
in related areas such the work of Kinkelin [Kin09] in
Volume Raycasting, focussed on voxels from 3D im-
age textures. To the best of our knowledge, our work
is the first in literature to compare GPU ray tracing per-
formance between BIH’s ray traversal and other algo-
rithms.

3 RELATED WORK
A CPU packet ray traversal algorithm [Bou07] groups
the search computation of such rays in vectorized
Single Instruction Multiple Data (SIMD) instructions.
On the other hand, a GPU Single Instruction Multiple
Threads (SIMT) architecture [NVI14] directly paral-
lelizes a serial algorithm without the requirement of
manual code adaptations into a vectorized one.

Several GPU ray traversal implementations appear in
prior work. Purcell et al. [Pur02] showed how to im-
plement a GPU ray tracing pipeline over a stream pro-
gramming model. They used an Uniform Grid as AS,
extending their ray tracer on stream programming.



Figure 2: Traversal order example for different KD-Tree Traversal algorithms. The red circles represent two leaf
nodes that, must be traversed in order. The main difference between KD-Tree traversals is how they go from the
red circle to the other. The dashed lines represent the ropes.

Foley and Sugerman [Fol05] proposed new KD-Tree
traversal algorithms in GPU as competitive replace-
ments to the Uniform Grid traversal. They altered the
KD-Standard traversal algorithm (see Section 2.1), cre-
ating two new ones, KD-Restart and KD-Backtrack.
These techniques don’t require a stack for the traver-
sal, since the available graphics cards had very limited
programmable stack memory at that time.

The KD-Restart algorithm starts over (restart) the
traversal to the tree root every time it reaches a leaf
node, in a similar manner as the Sequential traversal
algorithm. This operation repeats until the ray leaves
the scene volume or some primitive intersection is
found. The cost of this search becomes higher than
of the KD-Standard algorithm, since multiple internal
nodes are revisited.

The KD-Backtrack algorithm uses pointers to parent
nodes and their axis-aligned bounding boxes (AABB)
data in order to perform a bottom-up backtrack, return-
ing to the last visited node that has another child to be
visited, not requiring a stack. However, KD-Backtrack
may need about an order of magnitude of primary mem-
ory than the KD-Standard approach, since it has to store
six extra floating point AABB data plus one parent
pointer, per node [San12].

In order to reduce the number of revisited nodes, some
modifications of the KD-Restart were proposed by
Horn et al. [Hor07]. Their Push-Down algorithm
changes the root search node to the last one where
the ray hits only one of its children. Since the other
child will never be visited, this internal node can safely
become the new root search node. Then, when a restart
event is triggered, the search goes back to this node
instead of the root node of the tree.

Horn et al. [Hor07] also described the Short-Stack al-
gorithm, a hybridization of the KD-Standard and KD-
Restart traversals. Instead of a large, tree-depth sized
stack, the Short-Stack uses a small circular array rep-
resenting a short stack, with a length that considers the
resources limits of the hardware architecture. On Short-
Stack traversal, if the stack is non-empty, the next node
to be visited is popped from the stack, similar to the
KD-Standard traversal, and thus avoiding re-visitation

of some nodes. Otherwise, a restart event is processed
in the same way as KD-Restart. Finally, to the best of
our knowledge, Horn’s GPU ray tracing implementa-
tion is the first one that achieved interactive rates.

Popov et al. [Pop07] proposed a CUDA KD-Tree
packet ray traversal based on the ropes stackless al-
gorithm (see Section 2.1), showing interactive framer-
ates. Concomitantly, Günther et al. [Gün07] presented
a CUDA BVH packet ray tracer. They concluded that
the BVH ray traversal achieved similar or better results
than the KD-Tree approach. We show in our work that
in most scenes this is not the case anymore.

In order to enhance the efficiency of ray traversals over
the CUDA architecture, Aila et al. [Ail09][Ail12] pro-
posed the use of persistent threads controlling a kernel
to greatly reduce the amount of idle threads in a CUDA
block. Our traversal kernels are entirely based on per-
sistent threads, since they provide considerable increase
of performance and can be used with any AS.

In our previous study [San09][San12], we compared
the performance of eight KD-Tree ray traversal algo-
rithms, all of them implemented in CUDA. We showed
that the KD-Standard traversal algorithm can be effi-
ciently implemented on GPU, even with a large stack,
surpassing in performance other simplified algorithms,
such as KD-Restart and Short-Stack. It seems that
these adaptations made for old GPUs can do more harm
than good on a modern hardware architecture. More-
over, we showed that, although the high performance
of KD-Standard traversal, the Ropes algorithm, due to
some optimizations, performed better for all scenes. We
noticed that the amount of slow memory accesses of
bounding boxes data could be reduced by half, fetch-
ing only three floating point values necessary to com-
pute the exit parametric value of the ray-box intersec-
tion, differently from the original ray-box algorithm,
that has to load the entire six floating point box data
to compute the exit point. Therefore, our comparative
study includes these two best KD-Tree ray traversal al-
gorithms.

Zlatuška and Havran [Zla10] compared the perfor-
mance of three AS implemented on GPU: Uniform
Grid, BVH and KD-Tree. They showed that, for



primary rays, a BVH traversal is generally faster than
a stacked KD-Tree traversal. Their work is the closest
one in literature to ours, showing similarities, but
also divergent results to ours. Since it’s an important
reference, we discuss more aspects of their work in
Section 4.

Laine [Lai10b] and Hapala et al. [Hap11] separately
proposed different algorithms that allowed stackless
traversals on BVHs. Like in our previous work on KD-
Trees [San12], both papers show that the cost of the
revisited nodes overweights the benefits of these algo-
rithms on current GPU architectures. Laine suggests,
however, that maybe in other and future architectures
this approach could be beneficial by avoiding problems
such as cache trashing.

4 ALGORITHM IMPLEMENTATIONS
Our ray tracing system (named as Real Time Ray
Tracer or simply RT2) builds the AS on CPU, while the
ray tracing process is done entirely on GPU, through
a CUDA [NVI14] programming model. RT2 supports
primary and secondary rays, following Whitted’s
[Whi80] simple model, and therefore supports visibil-
ity tests, reflections, refractions and hard shadows. We
tested both recursive and iterative versions of Whitted’s
method. The RT2 uses the latter, since it led to higher
performance on CUDA. Moreover, RT2 optionally
supports diffuse soft shadow rays and a plethora of
geometric primitive types, such as triangles, cylinders,
spheres and parametric surfaces.

4.1 Ray Tracer CUDA Kernel
All of our ray tracing stages are integrated into a single
CUDA kernel, since in our experiments, a multi-kernel
implementation led to poor performance due to addi-
tional costs of memory writes and reads from a ker-
nel to another, at least for real time ray tracing with-
out a large amount of incoherent rays. Moreover, our
kernel uses the concept of persistent threads [Ail09] to
avoid idle threads inside a block. Instead of defining
thousands of blocks to be processed, we create only the
necessary to fully occupy the stream multiprocessors of
the GPU. These persistent blocks have therefore fixed
groups of warps that, through atomic add operations,
dynamically schedule rays to be processed. Later, Aila
et al. [Ail12] reported that the persistent threads tech-
nique wasn’t more beneficial than default CUDA sched-
uler on Fermi, since this architecture has better hard-
ware work distribution. However, in our tests, even on
Fermi cards the persistent threads approach still pro-
vided up to 11% of performance improvement. The
best configuration found was the smallest possible warp
batch: 32 tasks per atomic operation.

The primary rays are grouped in tiles of 16x32 pixels.
To improve access locality, these tiles are ordered using

a z-order Morton code on screen space. When a CUDA
warp schedules a batch of 32 rays, the first job is to
identify which tile, sub-tile and pixel each task belongs
to. Then, the camera’s frustum and pixel’s coordinates
are used to define the origin and direction of each pri-
mary ray. After ray initializations, the kernel enters the
iterative Whitted-style ray tracing loop. The first step
on this loop is the ray traversal of the scene. The in-
tersection result is then stored and the ray’s origin is
shifted to the point of intersection. They’ll be used on
the next stage, shading. Our shader supports hard and
soft shadows, texture fetches using ray differentials for
sample anti-aliasing, Phong shading, and normal maps.
The shader then compute de final color contribution of
the current ray, adding it to the global pixel color vector.

At the end of shading step, the ray direction is changed
based on possible reflections and refractions caused by
the surface’s material properties. If there’s no reflection
or refraction, or the loop reached a maximum depth, the
ray tracing loop is interrupted. Finally, the global pixel
color vector is written on a CUDA surface attached to
an OpenGL 2D texture used to exhibit the image result.

4.2 Ray Traversal Implementations on
GPU

The following subsections briefly discuss how the al-
gorithms used in this comparative analysis have been
implemented.

BVH
Our BVH traversal starts with a standard intersection
between the ray and the scene’s bounding box. If
there’s no intersection, there’s no traversal and we re-
turn a null intersection. Otherwise, the minimum and
maximum parametric values of the bounding box inter-
section are stored. They represent the entry and exit
points of the root node traversal. Then, the algorithm
creates an iterative loop that does the job of a recur-
sive traversal. As already mentioned, recursive calls
are being avoided in due to significant overhead cost
than a straight iterative stacked version, especially on
current GPU architectures. Traversing a BVH internal
node consists in intersection tests between the ray and
the child nodes. A child node is visited only if the ray
intersects its bounds and the nearest entry point of this
child is near than the closest ray-primitive intersection
point found at the time. This avoids visiting nodes that
can’t possibly have closer ray-primitive intersections.
When both child nodes are intersected, the one with the
farthest entry point is pushed on the stack and the other
is visited.

This node traversal stage occurs in another inner loop,
which stops only when we reach a leaf. In this case,
ray primitive intersections are performed. After reach-
ing a leaf node, a node is popped from stack to be vis-



ited. If the stack is empty, then the traversal has fin-
ished. It’s worth mentioning that we implemented two
different versions of this iterative BVH traversal algo-
rithm. The first one was using a node that stores its
bounding box and a stack that keeps three variables per
element: the node index and the two parametric inter-
vals it has. However, we experienced an approximately
20% of performance improvement using the approach
described in the open source code of the work of Aila
[Ail09], and therefore our BVH traversal implementa-
tion for this comparative study is based on his method.

Aila stores the children bounding boxes on the parent
node. In our tests, this memory layout was more ef-
ficient, since when internal node is visited, the chil-
dren bounds always have to be loaded from memory.
Then, putting these data in a contiguous memory ad-
dress has benefits for the L1 and L2 cache usage. More-
over, Aila’s stack stores only the node index, computing
or having on the fly the minimum and maximum inter-
vals of the current node. This is also important, since
the stack is stored on cached, but slow Local Memory
CUDA space. We also used the optimized ray bounding
box intersection with intrinsic CUDA PTX instructions
vmin and vmax proposed by Aila et al. [Ail12].

Octree

Our Octree ray traversal implementation is based on
the work of Revelles et al. [Rev00]. They proposed
a top-down traversal algorithm based on index com-
putation of the child nodes to define the traversal or-
der. However, the original algorithm is recursive, with
8-branches factor. We implemented it using template
based pseudo-recursion. We used his optimization de-
tails, which consists in computing the parametric val-
ues of the ray intersection against the three subdivision
planes using only floating point add and multiplication
by half operations, since the Octree nodes are always
subdivided in half dimensions. Moreover, our imple-
mentation also take advantage of computations made in
previous nodes, avoiding redundant operations.

Uniform Grid

As mentioned in Section 2.1, our Uniform Grid traver-
sal implementation is based on the 3D-DDA exten-
sion proposed by Amanatides and Woo [Ama87]. They
don’t define a special driving axis like the original dif-
ferential analyser, meaning that all axes can be now
considered as a driving axis.

The algorithm first tests if the ray intersects the bound-
ing box of the scene, for early termination. In case it
intersects, we use the entry point to define the first inter-
sected voxel/cell. Some constant 3D values, such as in-
terval variations for each axis, are precomputed. Then,
a main loop is defined that incrementally visit one cell
at the time, deciding which axis will be used to shift

to a neighbor cell. This incremental loop stops only if
an intersection is found or the current visited cell is the
one that contains the exit point of the ray intersection
with the scene’s bounding box. It’s important to inform
that we tested access of axis data using indirect runtime
access (like point3D[axis]) versus a direct branched if-
else structure. The indirect access led to lower perfor-
mance, since this indirection forces the variable to go
to a memory space where indirect access are possible,
that in that case was from registers to slow local mem-
ory space.
The traversal of this structure led to high register pres-
sure, consuming almost a dozen more registers than
other structures, due to storage of the precomputed 3D
values. To reduce this problem, we followed the sug-
gestion of Zlatuška and Havran [Zla10] to store some
of these values on constant memory space. Indeed,
we experienced a reduction of three registers using
this approach, not enough to improve occupancy, but
it showed slightly faster results.

KD-Tree
For this comparative analysis, we implemented two
KD-Tree traversal algorithms: the KD-Standard and
Ropes, mentioned in Section 2.1. Although their differ-
ences, both use the same compact node size (8 bytes)
and starts with a ray intersection against the scene’s
bounding box, for early termination, or to define the
entry and exit point in case of intersection.
The KD-Standard algorithm uses a stack to store the
farthest node when both child nodes are intersected.
Our version of this traversal is implemented with a
main loop of the traversal that contains another repe-
tition block that handles the internal node traversal, in
a very similar manner than the BVH inner loop traver-
sal. However, while the BVH traversal tests against two
bounding boxes, the KD-Standard traversal only tests
against a splitting plane. This plane is represented by
an axis and a single floating point value. The inner loop
only exits when a leaf node is found. Then, on a leaf,
the algorithm tests the ray against the primitives. The
traversal is finished if one intersection is found, or the
stack is empty. Our stack stores the node index and
the maximum parametric interval of the node, but not
the minimum, since it can be retrieved on the fly from
the maximum of the last visited node. As it was sep-
arately pointed out by Zlatuška and Havran [Zla10],
and our previous work [San09][San12], this layout en-
hances performance, since the stack has to be imple-
mented on slow local memory.
The Ropes algorithm also has two loops, on which the
innermost one traverses internal nodes, through a sim-
ple node search using an entry point to decide to go
to the left or to the right node. Since a point can’t be
inside both child nodes, it doesn’t have to store the far-
thest nodes. Later in the traversal, the ropes links will



provide a more direct access to the farthest nodes. This
is an efficient GPU inner loop traversal, since the inner
loop just checks if the entry point floating point value of
the splitting axis is less or equals to the splitting plane to
decide if go left or right. Furthermore, the entry point is
obtained before the inner loop, by computing only three
GPU fast fused-multiply-add (fmadd) operations. If the
node is a leaf, the inner loop is skipped and then occurs
the ray-primitives intersections. Before going back to
the inner loop, the algorithm retrieves the next node to
be visited by using the index of the face the ray exits the
leaf node. Thus, is necessary a ray-box intersection to
define the exit face. On our previous work [San12], we
proposed an efficient method of intersection that reads
only three floating points instead of six of the bound-
ing box data, and yet can obtain the complete exit point
information. This way, half of global memory loads of
bounding boxes were avoided, allowing greater perfor-
mance than older ropes based algorithms.

It’s possible to use the ropes to start a ray traversal di-
rectly in a leaf instead at the root node [Hav00]. We
use this concept for rays that have their origin inside
the scene, such as reflected, refracted and shadow rays.
Moreover, primary rays originated from cameras inside
the scene can also be traversed slightly faster. Before
executing the ray tracer kernel, we do a fast single point
search location for the leaf that contains the camera’s
position. Then, the ray tracing kernel uses this leaf
node to start the traversals of primary rays. In our tests,
we achieved up to 6% of performance improvement by
starting traversals at a leaf node.

BIH

Our BIH ray traversal implementation follows the work
of Wächter and Keller [Wac06]. It’s a hybrid traver-
sal that mixes concepts of the KD-Standard and BVH
traversal algorithms. The inner loop for traversing inter-
nal nodes is very similar to the one on the KD-Standard
traversal, using a stack to push farther child nodes.
However, like the BVH traversal, it’s possible that a
ray misses both child nodes. In this case, a stacked
node is popped to be visited, or the traversal finishes
if the stack is empty. Ray-primitive intersections occur
in leaf nodes. Differently from KD-Tree traversal, it’s
not possible to finish the traversal as soon as a leaf with
an intersected primitive is found, due to possible over-
lapping cases between child nodes. However, like the
BVH traversal, nodes that start after the nearest primi-
tive intersection found are not visited.

5 RESULTS
In this section we present the quantitative results
of our comparative analysis. In our tests we used
distinct scenes, most of them available on public
repositories: a Land Rover car (77k triangles); Utah

Fairy Forest[Uta14] (174k triangles) , Dubrovnik’s
Crytek Sponza (262k triangles); and Guillermo’s San
Miguel Model (7.8 millions of triangles). We chose
the Land Rover and Fairy Forest scenes for their low
polygon count and/or uniform geometry distribution.
On the other hand, the Sponza was selected for its
non-uniformity. The San Miguel was chosen for its
high poly count. The results were collected using
an Intel Core i7 3.06 GHz CPU with 8GB of RAM,
running Microsoft Windows 8 Professional 64-bit, and
Visual Studio 2012 with CUDA 6 Toolkit. We used
the fastest single CUDA GPU available at the time:
a Zotac GeForce GTX 780 Ti Amp!, a Kepler device
with Capability 3.5. We activated the L1 cache for
Global memory accesses, since on Kepler L1 disabled
for Global memory is the default state.

We contrast some important information, such as exe-
cution time for Whitted-style ray tracing vs random am-
bient occlusion rays, timing in ms and Mrays/s, number
of average traversal steps and intersections per ray. We
also show memory consumption and CPU build time
for all acceleration structures.

Our BVH and KD-Tree SAH builders feature build
time optimizations based on [Wal06] work, which re-
duced build time by 3x-4x. Our BVH with spatial splits
(SBVH) is based on [Sti09] work.

As shown in Figure 3, the KD-Tree Ropes and BVH
(SBVH) traversal algorithms achieved the best perfor-
mance results for all tested scenes. The reason for such
performance enhancement is directly related to a lower
number of traversal steps and/or intersections per ray.
Regarding rendering times, Ropes has as advantage its
ray-AABB intersection optimizations and lower traver-
sal cost for secondary rays, as discussed in Section 4.2.
These optimizations combined significantly reduce the
amount of global memory accesses when the L1 and/or
L2 cache miss. Unfortunately, the Ropes approach de-
mands more memory when compared to other traversal
algorithms. For instance, on the Fairy Forest scene, a
Ropes based KD-Tree uses 4.76x and 8.71x more mem-
ory than KD-Standard tree and BVH (SBVH), respec-
tively. However, it’s worth mentioning that even on cur-
rent low end devices with 1 GB of memory is possible
to ray trace with Ropes on most practical scenes, and
even on large ones, with two millions of primitives.

The BVH with Spatial (SBVH) splits on construction
achieves closer performance to the KD-Tree Ropes
traversal, since it virtually splits triangles to offer
higher performance, and consequently might have high
memory cost, like the ropes. It’s worth mentioning that,
in our tests, on Fermi architecture, the BVH SBVH
slightly surpasses KD-Tree Ropes performance. This
is not the case on Kepler devices, on which the Ropes
algorithm outperformed any other approach.



Figure 3: Measurements for all Acceleration Structures on four different scenes. Color images (on left) show
Whitted-style ray tracing, with reflections, refractions, hard shadows, and a shader that includes complete Phong’s
specular computations, normal mapping, mip mapping, summed-area tables and ray differentials for texture an-
tialiasing. Grayscale images (on right) show ambient occlusion results from shooting random rays at the scene.



It’s important to notice that a BVH gains some advan-
tage when the scene has a geometric uniform distribu-
tion. This is closely related to the costs of overlapping
of child nodes: evenly distributed models offers lower
probability of overlap. Furthermore, the BVH suffers
with overlapping, creating large, overlapped leaf nodes.
In these cases, even the SBVH approach wasn’t capa-
ble to outperform the Ropes. On the Sponza Scene,
the SBVH used more memory than Ropes, and still
couldn’t reach its performance. Even worse, the build
time was 3x slower than the already slow KD-Tree
SAH builder. On the other hand, the traditional BVH
with SAH construction has low memory usage, but con-
sequently it has considerably lower timings.
The Octree, Uniform Grid, and BIH traversals had less
than 50% of MRays/s performance of KD-Tree and
BVH. All of them suffer from high number of ray-
primitives intersections. However, the Uniform Grid
and BIH have the advantage of faster construction, at
least on CPU. Moreover, the latter stands out regarding
memory usage, around four times less when compared
to other structures. Unfortunately, the Octree, in gen-
eral, seems to have no significant advantage besides its
simplicity of construction.

6 CONCLUSION AND FUTURE
WORK

This work presented a compilation of different acceler-
ation structures applied to the development of ray trac-
ers, focusing real time rendering. A considerable num-
ber of traversal approaches were compared regarding
performance and memory consumption of such struc-
tures. We show that, for most cases, a GPU KD-Tree
ray traversal achieved better performance results, spe-
cially the one based on ropes. It surpassed even the
BVH, often used as primary structure on state-of-the-art
ray tracers, but probably due to it’s high performance on
construction algorithms. A carefully well implemented
ropes based KD-Tree CUDA traversal can improve per-
formance on a 12-39% approximate range. This sug-
gests that, for critic real time applications, the ropes
based KD-Tree traversal is a more adequate option on
GPU. However, this structure consumes more memory
space than others. This can be a limiting factor for ren-
dering highly complex geometric scenes or on memory
limited architectures. In this case, structures such as
BVH and BIH are more suitable options.
As future work, we intend to extend our comparative
study of ray traversals to GPU construction time, to de-
fine the best acceleration structures for rendering dy-
namic scenes.
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