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Abstract

In this article, we propose a framework for detecting local similarities in free-form parametric models, in particular

on B-Splines or NURBS based B-reps: patches similar up to an approximated isometry are identified. Many recent

articles have tackled similarity detection on 3D objects, in particular on 3D meshes. The parametric B-splines, or

NURBS models are standard in the CAD (Computer Aided Design) industry, and similarity detection opens the

door to interesting applications in this domain, such as model editing, objects comparison or efficient coding. Our

contributions are twofold: we adapt the current technique called votes transformation space for parametric surfaces

and we improve the identification of isometries. First, an orientation technique independent of the parameterization

permits to identify direct versus indirect transformations. Second, the validation step is generalized to extend to

the whole B-rep. Then, by classifying the isometries according to their fixed points, we simplify the clustering

step. We also apply an unsupervised spectral clustering method which improves the results but also automatically

estimates the number of clusters.

Keywords
similarity detection, parametric surfaces, isometry, spectral clustering

1 INTRODUCTION

Parametric surfaces, in particular Non-Uniform Ra-

tional B-Spline (NURBS), provide a powerful tool

in the hands of the academic and industrial com-

munities concerned with the design and analysis of

objects [Dim99a]. NURBS based B-reps (Bound-

ary representations) are industrial standards and are

widely used in different domains such as molecular

chemistry [Baj97a], 3D geographical information

systems [Cau03a] and mechanical components design

[Chu06a]. Additionally, similarity within a 3D shape is

a common phenomenon both in natural and in synthetic

objects. Many objects are composed by similar parts

up to a rotation, a translation or a reflection. Geometric

redundancy is an essential property that artists must

strive with in their works, that 3D designers must

provide in their conceptions so that the human vision

system perceives the object beauty. Similarity detection

within 3D models is then a first step towards numerous

interesting applications. In CAD, automatic search

of similarity between CAD models is used primarily

for model retrieval and indexing in large scale CAD
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databases [Car06a, Chu06a, Che12a, Liu13a]. In

that context, end-users request automatic searches for

"similar enough" designs according to a given model or

sketch. Thus, the design reuse is encouraged by making

use of existing components. For 3D meshes, many

applications are studied such as pattern recognition,

form editing or data completion. For example, Mitra et

al. presented a symmetrization algorithm for geometric

objects that enhances approximate symmetries of a

model while minimally altering its shape [Mit07a].

Chaouch et al. [Cha08a] considered the reflection as

the main characteristic to align their 3D models. Li

et al. [Li11a] proposed a skull completion framework

based on symmetry and surface matching. With the

particular attractiveness of NURBS surfaces in 3D

design industry, the similarity detection would certainly

be useful. In fact, designers rarely start their works

from scratch, but rather adapt existing models to meet

new requirements. Statistically, it is shown that more

than 75% of design activity involves reusing existing

designs or starting from existing designs to address

new designs [Iye05a]. Besides, parametric NURBS

representations allow to easily and reliably access

differential informations over the surfaces. Their

representation by control points also gives the designer

intuitive control. Hence, local similarities detection

should be interesting for reverse engineering, allowing

in one hand the analysis of a given 3D model, and in

the other hand shape editing that is coherent with the

detected similarities. Data compression in order to

limit the storage size of a model can also benefit from



the redundancy identified in similar parts. As far as we

know, no research so far was dedicated to detecting the

local similarities on parametric models like B-Spline

or NURBS based B-reps. This article presents a

method allowing the identification of NURBS surface

patches that are similar to an approximated isometry.

Our contributions are as follow. First, to find the

best orientation of vectors of the characterized local

frame at a point on the surface, we propose a simple

method by analysing neighbourhood properties. We

thus distinguish between direct and indirect isometries

and propose to partition the isometries into five sub-

sets. This classification simplifies the clustering and

improves the identification of isometries. We further

improve the clustering step by applying a spectral

clustering algorithm. Unlike Mean Shift algorithm, our

approach is fully unsupervised, and as such, is able

to group automatically clusters without customizing

global parameters. The remainder of this article is

organized as follow. Section 2 reviews some previous

works and our approach in this work. Section 3

describes the proposed pipeline of our algorithm that

is detailed in the following sections. Section 8 shows

some results of similarity detection among numerous

experiments. Section 9 presents our conclusion and

future works.

2 PREVIOUS WORK

In recent years, many articles have been published on

similarity detection both in 2D image processing and

in 3D modeling. In a first approach, Zabrodsky et al.

[Zab95a] quantified existing symmetries within 2D and

3D objects, using a metric called the symmetry dis-

tance. The symmetry distance of a shape is defined

to be the minimum mean squared distance required to

move points of the original shape in order to obtain

a symmetrical shape. Sun et al. [Sun97a] converted

the symmetry detection problem into the correlation of

Gaussian images; rotational and bilateral symmetries

are identified by applying orientation histograms.

For 3D shape matching, two dominant techniques were

proposed. First, global feature-based techniques rep-

resents 3D objects as a set of global features, for ex-

ample, spherical-kernel moments [Cyb97a], or reduced

feature vectors [Car06a]. The other set of methods

uses graph-based techniques: the solid models are con-

verted into attributed graphs that represent the geomet-

rical and topological relationship between models en-

tities [Hil01a, Ma10a]. However, in both cases, these

techniques can neither identify similar parts within a

model nor compute the transformation between these

similar parts. Recently, many papers proposed to iden-

tify similarities within 3D meshes [Kaz04a, Pod06a,

Ber08a, Bok09a, Lip09a, Mit13a] with different ap-

proaches like planar-reflective symmetry, graph-based

Figure 1: Local Frames of two similar points pi et p j

according to right hand rule.

matching, or votes transformation space. Kazhdan et

al. [Kaz04a] introduced a reflective symmetry descrip-

tor that represents a measure of reflective symmetry for

an arbitrary 3D model for all planes through the model’s

center of mass. Podolak et al. [Pod06a] generalized this

approach to identify symmetries of 3D objects associ-

ated with an arbitrary plane. Graph-based approach re-

quires detecting local features on 3D shape from which

a neighborhood graph is build to describe the coarse

scale similarity structure of the object. Berner et al.

[Ber08a] perform subgraph matching in graphs of fea-

ture points while Bokeloh et al. [Bok09a] apply feature

lines.

Other recent works [Lip09a, Mit13a] applied new tech-

nique in symmetry detection that we call votes trans-

formation space. This technique bears some similar-

ity to the Hough transform: points on the model with

similar features are paired. A points pair corresponds

to the transformation between the two points and their

features; these transformations are cast to the transfor-

mation space and form a constellation of transforma-

tion votes. Clusters of these votes are candidates for

defining similar parts in the model. While Mitra et al.

[Mit13a] use Euclidean transformations as the feature

to extract similarity, Lipman et al. [Lip09a] adopt Mo-

bius transformations.

Among these approaches, the votes transformation

space attracts our interest since it allows to retrieve a

large class of potential transformations and it is able

to identify similar parts in existing 3D objects and

to characterize the transformation. In order to give a

general view of this scheme, we detail the algorithm

proposed in [Mit13a] that consists in the following four

steps:

1. Sampling and analysis: a set of points is sampled

over the surface of a 3D object. Since point posi-

tions are not sufficient to determine a general Eu-

clidean transformation, geometry features at each

sample are computed (the principal curvatures and

a local frame composed of the principal directions

and a normal vector). The signature is the couple of

principal curvatures; points on the surface are paired

if they have the same signature.

2. Pairing: each pair of points is associated a trans-

formation corresponding to a vote in transformation

space. Given two points pi and p j with their local



Figure 2: Proposed pipeline – (1) Sampling and signature computation, (2) Pairing and orientation, (3) Classifica-

tion of isometry, (4) Clustering, (5) Validation.

(orthonormal) frames consisting in two tangents and

a normal (figure 1), the transformation Ti j is com-

puted so that pi and its frame are mapped into p j

and p j’s frame. This transformation is then cast into

votes of transformation space Γ.

3. Clustering: in transformation space Γ, each point

Ti j represents a transformation between two similar

points. Hence, clusters of similar transformations

are identified since they may characterize two simi-

lar parts of the object.

4. Patching: ideally, a cluster of the previous step is a

set of point pairs which belong to a couple of surface

patches similar up to a transformation close to the

cluster. However, spatial coherence between point

pairs is lost in transformation space. Thus, this step

enforces spatial coherence of the point pairs by ap-

plying an incremental region growing algorithm.

Our proposed pipeline follows the same votes transfor-

mation space approach. Our contributions are as fol-

lows. First, to find the best vectors orientations of the

characterized local frame at a point on the surface, we

propose a simple method by analysing neighbourhood

properties. We thus distinguish between direct and in-

direct isometries and propose a partition the isometries

into five subsets. This classification simplifies the clus-

tering and improves the identification of isometries. We

further improve the clustering step by applying a spec-

tral clustering algorithm. Unlike Mean Shift algorithm,

our approach is fully unsupervised, and as such, is

able to group automatically clusters without customiz-

ing global parameters. In the following section, we

described our isometry detection relative to these four

steps.

3 PROPOSED PIPELINE FOR ISOME-

TRY DETECTION

Our work aims at identifying surface patches in a B-rep

model that are similar up to an approximated isometry

(we do not consider scaling). To identify the similar-

ities, we adapt the votes transformation space that are

used successfully in 3D meshes area [Lip09a, Mit13a].

Our pipeline consists in five consecutive steps. First,

points are sampled over all B-reps of a CAD model by

a sampling technique that adapts the parameterization

(section 4.3). When the signature at each point is com-

puted, vector directions are determined by parameteri-

zation, so it is not a geometric property of the surface.

For this reason, local frames are not coherent, in partic-

ular to identify indirect isometries. We propose then a

simple method to overcome this problem (section 4.4).

Isometries between pairs of points are computed and

partitioned into five types, based on orientation and on

their fixed points (section 5). Next, clustering is applied

in these five different spaces using a fully unsupervised

spectral clustering algorithm to extract the evidence of

existing similarity in the model (parameters are auto-

matically computed). The isometries classification has

two advantages: first it simplifies the clustering, but

it also maps the pairs in transformation spaces of re-

duced dimensions. In this pipeline, the computation

of the transformations is a major concern that affects

considerably the quality of the result. By parametriz-

ing the isometries differently, we improves the identi-

fication of isometries. Finally, similarities among lo-

cal patches are identified following an adaptive grow-

ing process adapted for multiple faces in B-rep models

(section 7).

4 COMPUTATION OF THE SIGNA-

TURES

In our setting, we work with B-rep models based on

trimmed free-form patches made of NURBS tensor

product surfaces. For the first three steps of the

similarity detection pipeline, it is sufficient to consider

the patches independently. Thus, in this section,

we focus on NURBS tensor product surfaces and in

particular in computing a set of sample points and their

characterizing signatures.

4.1 NURBS based models

Let S be a tensor product NURBS surface of bi-degree

(p,q) associated to two knots vectors u = {u0, . . . ,un}
and v = {v0, . . . ,vm} and a set of control points C =
{

Pi j | i ∈ [0,n− p] , j ∈ [0,m−q]
}

weighted by wi j ∈
R, defined by the following equation:

S(u,v) =
∑

n−p
i=0 ∑

m−q
j=0 Ni,p(u)N j,q(v)wi jPi j

∑
n−p
i=0 ∑

m−q
j=0 Ni,p(u)N j,q(v)wi j

. (1)

In a B-rep model, faces are not only represented by this

type of NURBS, but also by other types such as planes,

cylinders or spheres. However, one of the advantages



of NURBS is that we can represent free-form as well as

quadric surfaces [Cui11a].

4.2 Local differential properties: compu-

tation of the signature

Any point on the parametric surface, corresponding to a

parametric coordinates (u,v), is attached to a set of per-

sistent properties which is called the signature at that

point. In our work, the signature at each point is com-

posed of the two principal curvatures and an orthonor-

mal affine frame having origin at that point, the unit

vectors are the normal vector and the two principal di-

rections (i.e. tangent vectors associated to the consid-

ered principal curvatures). The signature computation

at a specific point on NURBS surface is based on local

differential properties that could be evaluated from the

first and the second fundamental form [Str61a, Far92a].

The first fundamental form that describes completely

the metric properties of a surface, is defined as the dis-

tance of two points on a curve of the surface:

ds2 = E du2 + 2F du dv + G dv2 (2)

where E = Su ·Su, F = Su ·Sv, G = Sv ·Sv, and ds is also

called the element of arc.

The first fundamental form states that, for a given point

p, partial derivatives Su and Sv generate a tangent plane

to the surface of origin p. Hence, the unitary normal

vector is:

n =
Su ∧Sv

∥

∥Su ∧Sv

∥

∥

=
1√

EG−F2
(Su ∧Sv) (3)

It associates to non normalized vectors Su, Sv to form

an affine frame of origin p.

Next, the second fundamental form of a parametric sur-

face is defined by:

κ cosφds2 = Ldu2 +2Mdudv+Ndv2 (4)

where L = Suu ·n, M = Suv ·n, N = Svv ·n, and Suu, Suv,

Svv are second partial derivatives at p.

Equation (4) means that, for a given direction du/dv in

u,v plane and a given angle φ , the first and second fun-

damental forms allow us to compute the curvature κ of

a curve traced on the surface, also the tangent pointing

toward this direction.

For this reason, two symmetric matrices are introduced:

F1 =

(

E F

F G

)

and F2 =

(

L M

M N

)

(5)

Because Su and Sv are linearly independent, F1 is al-

ways invertible. The matrix F
−1
1 F2 is also symmet-

ric and so always has real eigenvalues and orthogonal

eigenvectors. As a result, the two eigenvalues κ1, κ2 are

the two principal curvatures and the two eigenvectors

t1 = (ξ1,η1)
T , t2 = (ξ2,η2)

T define the two principal

directions:
t1 = ξ1Su +η1Sv

t2 = ξ2Su +η2Sv
(6)

As for umbilical points (κ1 = κ2), principal directions

are not uniquely defined, thus we do not consider them.

For other points, the orientation of t1 and t2 depends on

the parameterization. Section 4.4 details the way we

orient the frame vectors.

Figure 3: On the left: the orientation of the frame vec-

tors follows the parameterization, so the two frames are

not symmetric. On the right: we propose to find a co-

herent orientation of the vector frames by analyzing the

points neighbors. Now, the two frames are symmetric,

as is the underlying surface.

4.3 Sampling

Every point on the surface that is associated to a sig-

nature characterized by its local differential properties,

might be potentially sampled for later computations.

By benefiting from the facilities offered by parametric

surfaces, a net of sample points on the surface is ob-

tained by sampling uniformly the two parameters u and

v (see equation 1). However, the parameterizations be-

tween surfaces in B-rep models vary. The uniform sam-

pling along u and v may lead to a sparse net of sample

points (figure 4a). To have a relatively uniform distance

between points among all surfaces, we propose an iter-

ator method to determine the two parameter gaps based

on the distance between two points on each surface (fig-

ure 4b). In addition, the sampling affects the following

steps of the algorithm in two ways. First, the denser

sampling is, the better result is. Second, the denser sam-

ples also worsen the performance. For this reason, we

evaluate a net of points uniformly on the surface but se-

lect randomly a limited number of samples following

a uniform law on this points net (figure 4c). Moreover,

the initial samples net is reserved for the validation step.

4.4 Robust surface orientation

Two sample points pi and p j are considered similar if

their principal curvature matches, that is, κ i
1 ∼ κ

j
1 and

κ i
2 ∼ κ

j
2 . Two similar points are paired to evaluate the

transformation between them. As mentionned in sec-

tion 3, the orientation of the local frames vectors de-

pend on parameterization. However, a coherent orien-

(a) (b) (c)
Figure 4: Sampling. (a): Uniform sampling, (b): Adap-

tive sampling, (c): Chosen sample points



(a) No fixed point (b) Line of fixed points (c) Plane of fixed points
Figure 5: Classification of Indirect Isometries based on fixed points. Here, local frames consist of a normal (red

vector) and two principal directions (blue and green vectors).

tation of the frame is necessary, for example to distin-

guish direct from indirect transformation. The normal

vector well oriented (and coherently for the whole sur-

face) by the parameterization, but we modify the direc-

tion of tangent frame vectors. For each pair (pi, p j), we

identify the orientation of principal vectors at p j that

is the most coherent to direction associated to those at

pi. Suppose that the frame at point pi is fixed, in other

words, the direction of vectors t i
1 and t i

2 is arbitrarily

fixed. Consider now the frame at p j. Each of the tan-

gent vector at p j can be oriented arbitrarily. Consider-

ing both tangent vectors, there are four possible differ-

ent orientations of principal vectors at p j.

We project the neighbours of pi into the tangent plane,

and order them into a sequence by turning around pi.

This gives us a reference list of curvatures. The four

lists of neighbours of p j corresponding to the four pos-

sible orientations of t
j
1 and t

j
2 are compared to the ref-

erence list. The chosen directions are thus the one that

minimizes the sum of squares of differences between its

list and the reference list.

Figure 3 shows a case of a plane symmetry where the

initial orientation of vectors would have led to identify-

ing a (wrong) direct transformation between points pi

and p j.

5 ISOMETRY SPACES

Instead of considering all transformations in a 6-

dimensional transformation space [Mit13a], we first

partition the isometries and map them into one of

the five isometry spaces. The advantage of these

classifications is two fold: it simplifies the clustering,

but also, it expresses the transformation in a space

with the appropriate dimension. As an example,

clustering translations in the original 6-dimensional

transformation space requires the clustering algorithm

to discriminate between points that belong to a degen-

erated 3-dimensional subspace. In our approach, the

clustering will be applied directly in this subspace,

taking into account only the relevant parameters.

5.1 Computation of the isometry

Given a points pair (pi, p j) as in the figure 1, we would

like to evaluate the transformation from pi to p j so

that pi move to p j’s position and that the computed or-

thonormal frame at pi aligns to the frame at p j. We

denote Ri j the rotation between these two frames and

ti j the corresponding translation. The computation is as

follow:

Ri j =





ni

t i
1

t i
2





T

∗







ni ·n j ni · t j
1 ni · t j

2

t i
1 ·n j t i

1 · t
j
1 t i

1 · t
j
2

t i
2 ·n j t i

2 · t
j
1 t i

2 · t
j
2






∗





ni

t i
1

t i
2



 (7)

ti j = p j −Ri j ∗ pi (8)

The transformation Ri j is an orthogonal matrix, i.e.

Ri j ∈ O(3), thus Ti j : pi(n
i, t i

1, t
i
2) 7−→ p j(n

j, t j
1 , t

j
2) is

then an isometry. Hence, Ti j belongs to Is(X), the isom-

etry group. We denote
−→
Ti j the associated linear trans-

form, that is, the transform of matrix Ri j.

5.2 Classification of isometries

Affine isometry in three dimensional space, can be clas-

sified by considering the nature of its fixed points, ac-

cording to the following theorem [Tis88a].

Theorem 1 Given T ∈ Is(X), there exists a unique

couple (g, t−→a ) where g is an isometry having a non

empty set of fixed points G and here t−→a is a translation

of −→a ∈ −→
G such that T = t−→a ◦g. Additionally:

• T = g ◦ t−→a and
−→
G = E(1,

−→
T ), the vector subspace

associated with the eigenvalue 1.

• T = g and −→a = 0 if and only if T has at least one

fixed point.

• If T has no fixed point, dimG ≥ 1.

In our case, suppose that
−→
T is not the identity and

α = dimE(1,
−→
T ),

−→
T is direct if det(

−→
T ) = 1 and

−→
T is

indirect if det(
−→
T ) = −1. We can deduce the isometry

type of T depending on its fixed points, as follow:

Direct Isometry

1. A line (D) of fixed points (α = 1, −→a = 0): T is

a rotation around the line (D) directed by −→n ∈
E(1,

−→
T ).



2. No fixed point (−→a 6= 0): T is either a translation

of −→a or the composition of a rotation around (D)
directed by −→a and a non-zero translation colinear

to (D).
Indirect Isometry

1. A unique fixed point A (α = 0, −→a = 0): T con-

sists of a rotation around an axis (D) directed by
−→n ∈ E(−1,

−→
T ) and passing through A, and a re-

flection relative to the plane (G) containing A and

perpendicular to (D) (figure 5a).

2. A plane G of fixed points (α = 2, −→a = 0): T is a

symmetry relative to the plane G that is defined

by −→n 1,2 ∈ E(1,
−→
T ) (figure 5b).

3. No fixed point (−→a 6= 0): T is composed of a sym-

metry relative to a plane G whose the normal
−→n ∈ E(−1,

−→
T ), and a non-zero translation par-

allel to this plane (figure 5c).

Table 1 details the classification of isometries into five

subsets. These groups will be treated separately to de-

tect similar patches either among these surfaces or in a

surface itself.

While the groups of direct isometries identify approxi-

mated patches by rotating and/or translating, the group

of indirect isometries determine approximated ones by

reflecting.

❍
❍
❍

❍
❍

FP

Iso
Indirect Direct

Without Ti j = sG ◦ t−→a Ti j = r(D,θ)◦ t−→a
Line of Ti j = sG ◦ r(D,θ) Ti j = r(D,θ)
Plane of Ti j = sG Not possible

Table 1: Classification of the isometries based on isom-

etry types (Iso) and nature of fixed points (FP); sG is a

symmetry relative to the plane G; t−→a is a translation of

vector −→a ; r(D,θ) is a rotation of angle θ around axis

(D).

5.3 Comparison of two isometries

We now have five different transformation spaces, and

for each, will apply a clustering algorithm. The cluster-

ing need to have a distance in each of these spaces, that

is, we derive distances for two isometries of the same

type.

For direct isometries, the components of isometries are

the rotation axis (D) and angle θ , and the translation t−→a .

As the rotation axis and the translation have the same

direction, the translation vector −→a and a point P on the

axis are sufficient. For comparing the rotations we use

the angles and the distance between the two axes, and

the difference of the angles; for translations, we still

compare the length of the translation vectors (the angle

is the same as for the axes).

For indirect isometries, the analysis is identical to the

direct setting, except for the symmetry plane G. The

comparison between planes consists in comparing the

normals to these planes and computing the distance be-

tween the mid-point and the plane.

In the following, we denote d(T,T ′) the distance be-

tween the two isometries T and T ′ corresponding to

the two point pairs (pi, p j) and (pi′ , p j′); Mi j, Mi′ j′ the

midpoints of [pi, p j] and [pi′ , p j′ ]; dist(P,G) denotes the

distance from a point, line or a plane to another one.

Direct isometries

d(T,T ′) = (1−|cos(D ·D′|)+ |(θ−θ ′)|
2π

+ω1dist(D,D′)+ω2|(‖t‖−‖t ′‖)|
(9)

Indirect isometries

d(T,T ′) = (1−|cos(−→n ·
−→
n′ )|)

+ω1(dist(Mi j,G
′)+dist(Mi′ j′ ,G))

+
|(θi j−θi′ j′ )|

π
(10)

The weight ωi are chosen as the diagonal of the bound-

ing box of the model and so that the terms all vary be-

tween 0 and 1.

6 CLUSTERING

After computing the isometries as described in the pre-

vious section (Section 5), the clustering step aims at

grouping pairs of points having approximatively the

same isometry. This step is based on a spectral ap-

proach called spectral clustering and differs from the

Mean Shift algorithm [Mit13a] which requires difficult

parameters tuning.

6.1 Method

Introduced in machine learning by Shi et al.

[Shi00a, Von07a], the spectral clustering is an un-

supervised method that consists in extracting dominant

eigenvectors of a normalized Gaussian affinity matrix.

These eigenvectors span a low dimensional spectral

embedding in which projected data are grouped

into clusters. We describe the different steps of this

clustering method below.

Let d(T,T ′) be the distance between the two isometries

T and T ′ in the same class corresponding to the two

point pairs (pi, p j) and (pi′ , p j′). Note that d(T,T ′),
and consequently the affinity measure (11), will change

depending on the class of the isometries (as described

in section 5.2). Let S = {(pi, p j)}{i, j=1..Nl} ∈ Γl , l ∈
[|1,5|]} be the set of Nl pairs in the l-th isometry space

and let k be the number of clusters.

This method is based on Gaussian affinity measure, its

parameter and their spectral elements. It uses inher-

ent properties of the Mercer kernel (here, the Gaussian

kernel) that implicitly projects data in a large scale di-

mension space where data will be linearly separable.

In other words, the Gaussian measure defines a near-

ness criterion in the linear vector space and weights the



SpectralClustering (S,k)

Construct the affinity matrix A ∈ R
Nl×Nl defined by:

Aii′ =







e

(

− d(T,T ′)2
(σ/2)2

)

if (pi, p j) 6= (pi′ , p j′),

0 otherwise.
(11)

Construct the normalized matrix : L = D− 1
2 AD− 1

2 with

Di,i = ∑
Nl

r=1 Air,∀i ∈ {1, ..Nl}.

Construct the matrix X = [X1X2..Xk] ∈ R
Nl×k by stacking

the k largest eigenvectors of L.

Construct the matrix Y by normalizing rows from matrix

X .

Consider each row of matrix Y as a point in R
k and group

them into k clusters with K-means method.

Assign the original point pair (pi, p j) to class θ if and only

if the ith row of matrix Y is assigned to class θ .

Algorithm 1: Spectral Clustering

matching scores. Moreover, classes of arbitrary shapes

(in particular, non convex) may be defined [Von07a].

Furthermore, this algorithm only depends on two pa-

rameters which are the Gaussian Affinity parameter and

the number of classes k. To make this method fully un-

supervised, we adopt a heuristic to determine each pa-

rameter [Mou11a].

6.2 Affinity parameter

The expression of the Gaussian affinity, defined in

equation (11), depends on the parameter σ . The

parameter σ defines a threshold on transformation

distances between point pairs (pi,p j). To set it, we

consider a uniform distribution of the points, that is,

such that all points are equidistant from each other.

Elements of S which defines an isotropic distri-

bution are included in a bounding box of size

Dmax = max
(pi,p j) 6=(pi′ ,p j′ )

d(T,T ′) in each of the m dimen-

sion – d(T,T ′) is defined in section 5.3. By dividing

this box into Nl identical volumes, the (uniform)

distance between two points is, noted Duni f , is:

Duni f =
max(pi,p j) 6=(pi′ p j′ )

d(T,T ′)

N
1/m

l

. (12)

where m is the dimension of the isometry space (varies

depending on the nature of the isometry). We can con-

sider that if a cluster exists, there are points that are

separated by a distance lower than Duni f . Similarly, the

Gaussian parameter σ is used as a fraction of distance

Duni f : σ = Duni f /2. Thus this heuristic integrates a no-

tion of density of points in a m-dimensional space, and

derives a threshold from which points are considered

closed.

6.3 Number of clusters

The choice of number of clusters is a general problem

for all unsupervised clustering algorithms[Von07a]. To

determine this number of clusters k, we adopt a try-and-

test approach by exploiting the Gaussian affinity matrix

A and defining a quality measure based on the ratio of

Frobenius norms. Let αk be a bound on the number

of clusters to identify. For a value k′ ∈ [|2,αk|], the

affinity matrix is indexed per cluster. A block matrix

is then defined: off-diagonal blocks represent the affin-

ity between clusters and diagonal blocks represent the

affinity within the cluster. From this block structure,

we can evaluate a mean ratio, called rk′ , between all

off-diagonal blocs and the diagonal blocks in Frobenius

norm. From this, among the values k′ ∈ [|2,αk|], the

minimum of the ratio rk′ defines the optimal number of

classes k:

k = arg min
k′∈[|2,αk|]

rk′ . (13)

This minimum corresponds to a case where the affinity

between clusters is the lowest and the affinity within

cluster is the highest. More details in this interpretation

can be found in [Mou11a].

7 VALIDATION

Ideally, every class obtained by the clustering is a set of

point pairs which belong to a couple of surface patches

similar up to an approximated isometry. However, spa-

tial coherence between point pairs is lost during the

isometry clustering. Therefore, the purpose of the vali-

dation is to overcome this problem in order to identify

similar patches. We present the validation step within

a NURBS patch (section 7.1) and then consider region

growing over a B-Rep model, which may include mul-

tiple NURBS patches (section 7.2).

7.1 Validation within a NURBS patch

The validation is performed by a region expanding pro-

cess. Given Ck, a class of points pairs in an isometry

space, a pair (pi, p j) is selected randomly. The chosen

isometry Ti j is applied to the eight neighbours of pi,

their images are thus compared to eight neighbours of

p j. If the deviation of any neighbour is under a chosen

threshold, the points pair is accepted as belonging to the

two similar patches. This process continues iteratively;

we further test the neighbours of pi. It is repeated un-

til all points on the surface are visited, or the condition

does not hold, or until all pairs in class are considered.

This step generates a candidate for two similar patches.

Nevertheless, this process stops at the boundary of the

surface. But a 3D object modelled by NURBS based

B-rep is composed by several NURBS surfaces.

7.2 Validation within a B-rep

The figure 6 represents an overview of the B-rep specifi-

cation in the context of OpenNURBS. In fact, a NURBS

based B-rep is a set of trimmed NURBS that consists in

a surface and some trimming contours. The trimming



Find the closest edge e to p

if e is shared with other face then

Determine the adjacent face S

Take the set P of points on all edges of S

Find q the closed point to p in P

Find curvilinear parameters of q

Algorithm 2: Identification of adjacent point

contours define which parts of the surface are kept or

removed. In OpenNURBS context, the loop is an ab-

straction of a trimming contour. It is defined by a set

of closed trimming curves that are in turn expressed by

trims. Each trim is attached to a 2D curve and an edge.

The 2D curve defines the curvilinear coordinates of the

trim within the surface. The edge is a 3D curve on the

surface and is a boundary. Furthermore, an edge can

be shared among multiple trims. Given p the point on

Figure 6: Boundary representation (B-rep) in the con-

text of OpenNURBS (from http://wiki.mcneel.com/).

the boundary of the surface where the validation cannot

continue. The proposed algorithm 2 identifies a point q

on an adjacent surface close to p.

8 EXPERIMENTS

We have implemented the pipeline described in section

3 to identify the similar patches within the following B-

Rep models. We use CAD models under OpenNURBS

specifications (http://www.opennurbs.org/) for our ex-

periments. In general, the main tool that affects directly

on the robustness of our pipeline is the surface orien-

tation algorithm (section 4.4) and the classification of

isometries (section 5.2). In the following, we propose

some test scenarios to validate these tools following by

the results on some CAD models of our pipeline.

Since the surface orientation algorithm is only applica-

ble for indirect isometries, the models for our test cases

exhibit only these types. We proposed three B-rep mod-

els of leaves as showed in the figure 7. Given NExp the

number of expected re-oriented pairs and NTotal the to-

tal number of pairs computed in each model. Then, the

tolerance rate RTol is the ratio between these two fac-

tors.

(a) Sym. (b) Sym. + Rot. (c) Sym. + Trans.

Figure 7: Proposed CAD models representing the sym-

metry (Sym.), the rotation (Rot.) and the translation

(Trans.) for the surface orientation algorithm test cases.

According to table 2, our test cases shows that this al-

gorithm has a tolerance rate up to 80%. Despite the ori-

entation still failed at points whose the opposite neigh-

bors (symmetric via these points in the parameters net)

are similar, this algorithm guarantees that the classifi-

cation of isometries is reliable and thus the similarity

detection is robust. Next, by applying our algorithm of

Model NExp NTotal RTol

7a 520 621 0.84

7b 509 618 0.82

7c 505 621 0.81

Table 2: Tolerance rate of the surface orientation algo-

rithm.
Automatic Spectral clustering [Mou11a], the results of

clustering in the figure 8 illustrate the effectiveness be-

tween Euclidean transformation approach [Mit13a] and

our approach of classification of Isometry. This figure

represents three leaves in a model that have two sym-

metric pairs of leaves. Besides, every line that connects

two points having the same signature corresponds to a

point in transformation space. Additionally, lines with

the same color are in the same cluster (i.e. the same

transformation in general). In this test case, we use the

computation of Euclidean transformation and the dis-

tance metric as represented by Mitra et al. [Mit13a]. We

can observe that while there are some wrong classified

points in the Euclidean transformation approach (fig-

ure 8a), our approach can address this problem (8b). In

other words, with the aid of the classification of isome-

tries, the output of the clustering algorithm was signifi-

cantly improved. Moreover, the use of Automatic Spec-

tral clustering algorithm also contributes to the robust-

ness of our pipeline. In fact, the results shown in this

figure are obtained without tuning any parameter.



(a) (b)
Figure 8: Comparison of the effectiveness between the

Euclidean transformation approach 8a and the classifi-

cation of Isometry approach 8b.

Also, the figure 9 presents the result of our proposed

validation within B-rep. The figure 9a shows that there

are two separated B-reps that are formed by several

trimmed NURBS surfaces displayed by different col-

ors. As in the figure 9b, the validation has successfully

validated all the points over the surface of these B-rep

objects.

(a) Original B-reps (b) Result
Figure 9: Result of validation within a B-rep.

Finally, the figures 10, 11, 12 and 13 represent the final

results of our experiments on some CAD models down-

loaded from GrabCAD (http://grabcad.com/). These re-

sults represent different isometries detected by our pro-

posed pipeline. The first set of leave models exhibit the

indirect isometries. In fact, while the figure 10a shows

a symmetry, the figure 10b represents a symmetry fol-

lowing by a rotation axis, and a symmetry following

by a translation is detected in the figure 10c. Also, the

figures 12a and 12b describe the direct isometries be-

tween the four legs of a dragon: this isometry is de-

composed into a translation and a rotation. The figures

of the plane and the sunglasses demonstrate the sym-

metry between different parts in these models. In addi-

tion, the figure 11a also demonstrates a direct isometry

composed by a rotation axis between the two parts of

the plane tail. Next, the figure 13a and 13b describe the

similarity detection result of a series of human head in a

model, in which, from left to right, every head presents

a refinement step on the surface. In other words, there

are some deformations between these heads. When ap-

plying our pipeline, one of the identified transforma-

tions is the translation between the green dots and the

blue dots (figure 13a), another is the symmetry inside

a B-rep (figure 13b). This result demonstrates that our

pipeline works well even if there is a slight deformation

between the similar surfaces.

(a) (b) (c)
Figure 10: Similarities in leaves models.

(a) (b)
Figure 11: Symmetry detected in models.

(a) (b)
Figure 12: Direct isometry detected in models.

(a) (b)
Figure 13: Similarities detected in a model of human

heads.

9 CONCLUSION

In this article, we propose an algorithm to identify sim-

ilar parts within objects modelled by NURBS based B-

Reps, by adapting and improving the votes transforma-

tion space approach described by Mitra et al. [Mit13a].

Beside adapting the approach for parametric represen-

tations, we have proposed a local coherent frames ori-

entation simply based on the points neighbours. A (ro-

bust) globally coherent orientation is then insured at

the validation step. The local orientation allows to sort

direct and indirect isometries. Furthermore, based on

the analysis of fixed points, local isometries are fur-

ther partitioned into five subsets. The experiments show

that this classification before the clustering steps signif-

icantly improves the results. Furthermore, the cluster-

ing was further improved by using a fully unsupervised

spectral method, for which, unlike for the Mean-shift

algorithm, parameter tuning is not necessary. In partic-

ular, the number of isometries (clusters) to be identified

does not need to be known in advance. Finally, the vali-

dation step extends the identified isometries among dif-

ferent NURBS patch within the B-rep. We are now able



to recover isometric patches of B-splines or NURBS

surfaces or similar to an isometry, or an approximate

isometry (like shown in the experiment section). For

future work, first we would like to filter the similar-

ity detection by filtering similarities between control

points. Second, we would like to exploit the isometries

for applications: by linking the control structures cor-

responding to these patches, to offer the possibility to

coherently edit or segment the models. Moreover, we

could use the similarity to limit the storage size of the

model.
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