
A framework for detection of linear gradient filled regions
and their reconstruction for vector graphics

Ruchin Kansal
Department of computer

science
IIT Delhi

India, New Delhi
rkansal@adobe.com

Prof. Subodh Kumar
Department of computer

science
IIT Delhi

India, New Delhi
subodh@cse.iitd.ac.in

ABSTRACT
Linear gradients are commonly applied in non-photographic art-work for shading and other artistic effects. It is
sometimes necessary to generate a vector graphics form of raster images comprising such art-work with the expec-
tation to obtain a simple output that is further editable, say, using any popular vector editing software. Further, this
vectorization process should be automatic with minimal user intervention. We present a simple image vectorization
algorithm that meets these requirements by detecting linear gradient filled regions and reconstructing the vector
definition using that information. It uses a novel interval gradient optimization scheme to derive large regions of
uniform gradient. We also demonstrate the technique on noisy images.

Keywords
Image vectorization Gradient reconstruction Region detection

(a) Original Image (b) Adobe Livetrace
output

(c) Inkscape output (d) Our output

Figure 1: Comparison of diferent outputs.

1 INTRODUCTION
The advent of new mobile and touch devices has mo-
tivated designers to create and publish their content in
vector format. Vector graphics represents 2D images in
terms of mathematical elements like curves, contours,
straight lines and other shapes, along with their at-
tributes such as fill, stroke, transparency and so on. This
is different from raster representation, which stores a
color sample at each pixel center. Vector graphics sup-
ports rasterization on the fly and therefore it can be
viewed at different scales and resolutions without any
artifacts.

With the increasing demand for vector content, the need
for converting raster images into vectors has also in-
creased. This process is called Vectorization. We set out
to obtain automatic vectorization with minimal human
intervention even on potentially noisy images. Later
re-rasterization of our vector representation should pro-
duce the appearance of the original image at various
scales. Further, for wide-spread usage, this vector rep-
resentation should be in a standard form and be ed-
itable. However, it is not easy for an algorithm to meet
all these conditions for every image. In fact, these may
be conflicting goals. For example, to match the vec-
tor appearance with the original image, an algorithm
might generate smaller patches due to which editing
becomes difficult. Further, application of color gradi-
ents for shading effects in a non-photographic image
poses additional challenges to vectorization. In this
case, the vectorization algorithm must derive the gradi-
ent definition and use it to approximate the color infor-
mation. Many algorithms, including commercial soft-
ware [27, 1, 13], are unable to appropriately reconstruct
such gradients. For example, they may approximate
the gradients with patches of constant fill regions. (See
Inkscape [13] and Adobe Illustrator [1] examples in fig-
ures 1c and 1b respectively).

A few others, including the one titled ARDECO
[17], focus on computing the gradient. For example,
ARDECO uses first and higher order gradients to
store the color information. However, these techniques
either generate too many vector patches or their

representations are so complex that their output cannot
be easily edited.

Vector graphics can be represented using an open vector
format such as EPS, PDF, or SVG[28] or it could be a
proprietary format (such as Adobe Illustrator or Corel).
Among open formats, SVG is possibly the most widely
used vector format for web and digital media, which we
have chosen as our output. Nonetheless, the definition
of linear gradient is largely the same in all vector stan-
dards modulo occasional minor differences. SVG spec-
ifies linear color gradient as continuous smooth color
transition along a 2D direction from one given color at
a known position to another. This direction is called the
Gradient Vector. The value of each pixel along the gra-
dient vector may be calculated by linearly interpolating
the two end colors. The gradient normal is orthogonal
to the gradient vector. The color of each pixel on the
gradient normal remains same. The SVG standard also
allows fixing of more than two colors along the gradient
vector, to form a smooth multi-color transition. These
specific points on the gradient vector with pre-defined
color values are called Gradient Stops (See figure 2).

Figure 2: Linear Gradient defined by four gradient
stops(C1, C2, C3 and C4). Notice the color along the
gradient vector is defined by linear interpolation from
one stop to another but the color of the pixels along the
gradient normal remains same.

We have developed an approach that can detect linear
gradient filled regions as well as the gradient values.
While the contributions of this paper are primarily in
effective recovery of regions with uniform gradient, for
completeness we do also produce boundary curves and
regions with uniform fill color where necessary. We do
not target vectorization of photographic quality images,
but rather art-design by artists. The distinguishing fea-
ture of such images is that they contain relatively large
areas of uniform fill and gradients but suffer from noise
and other smoothing and post-processing artifacts.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 3: The complete pipeline

2 PREVIOUS WORK
Vectorization generally involves some form of image
segmentation followed by a vector approximation for
each segment. Significant research in both vectoriza-
tion and, more generally, image segmentation exists.
The research in vectorization is done with various ob-
jectives such as fitting smooth curves [15, 24, 2, 9],
minimizing the number of colors used [29], preserv-
ing editability [4] and matching appearance with input
[17, 25, 16, 21]. Image segmentation prior to vector-
ization is commonly based on edge detection [6], color
quantization [8, 11, 5] or a global optimization function
[19, 18, 20] to reduce the overall energy.
Early work in this field focused on line drawings and bi-
tonal images [6, 9, 10]. These approaches are mainly
based on edge detection [6], thresholding [7, 14, 22,
23], thinning [26] and contour tracing [12]. The ex-
tracted line, image contour or region is represented by
vector graphics primitives, e.g., curves and paths. More
recent algorithms [17, 25, 16, 21, 29, 4, 15] deal with
full color images and their goal is to generate high fi-
delity output.
ARDECO[17], proposed by Lecot and Levy in 2006,
tries to decompose the input image into patches. Each
patch is approximated by a constant color, linear or
higher order gradient in order to minimize the overall
energy. The energy function in their approach is deter-
mined by a boundary length function and a curve fit-
ting term. The weighting of terms is controlled by user
input. Since the energy functional is quite generic, it
can handle images with fine details. At the same time
it often produces a large number of patches and conse-
quently it is not possible to edit the final vector graphics
easily for post-editing. Further, for large gradient fill re-
gions, it often fails to converge to any result. Also, due
to linear constraints the segment boundaries produced
by them is often not smooth. Finally, the user needs to
adjust several parameters by experimentation. Our al-
gorithm is simpler than ARDECO as it considers only
first order gradients. Further, our algorithm produces
fewer regions so that a user can edit the image easily.
Sun et al [25] introduced a vectorization approach us-
ing Gradient Meshes. There, a gradient mesh is de-
fined by a grid using topologically planar rectangular

Ferguson patches with mesh-lines. Control points of
the mesh have three attributes: position, derivative and
color. Their approach relies on user assistance for mesh
initialization and placement. Recently, Lai, Hu and
Martin, 2009 [16] improved that algorithm by gener-
ating the gradient mesh automatically. The output of
gradient mesh is quite impressive and it can even be
applied to photographic images. However, the size of
their representation is too unwieldy for further editing.
Moreover, Gradient Mesh is not a standard primitive
and are hence less portable. They cannot be rendered
or edited by standard tools.

Price and Barett [4] proposed an approach for inter-
active image editing using object based vectorization.
They allow the user to select an object and then graph
cut is used recursively to form a hierarchical object tree.
For each object they define a mesh by locating the cor-
ner points and doing recursive subdivision. The result-
ing mesh can be edited by various tools. However,
the approach is designed to be driven by user manu-
ally. Also, the algorithm does hot handle gradient re-
construction, it only provides a better means of object
construction.

Diffusion curves[21] is a different approach to represent
smooth shaded images. A diffusion curve partitions the
space through which it is drawn, defining different col-
ors on either side. These colors may vary smoothly
along the curve. In addition, the sharpness of the color
transition from one side of the curve to the other can be
controlled. Due to the limitations with Poisson equa-
tions, the color variations in all raster images may not
be represented by this system, especially when the im-
age has sparse features in some areas.

Xia et al [29] proposed a vector based representation in
which the image is decomposed into non-overlapping
triangular patches with curved boundaries. The color
variation over each triangular patch is approximated
with a thin-plate spline for every color channel. It
allows them to approximate raster images with both
smooth variations and curvilinear features. Although,
the representation is powerful and compact, again ed-
itability and portability is a concern.

A nice discussion of vector primitives related to color
gradients is provided by Pascal et al. [3]. They de-
scribe various available techniques for construction and
rendering of such vector primitives. They mention the
current methods of vector creation by hand as well as
through vectorization. Some practical challenges and
limitations of these approaches are also explained.

Adobe live trace [1] and Vector magic [27] are popular
commercial applications, which are used for vectoriza-
tion and produces standard vector graphics. Inkscape
[13] is an open source tool which is also used for vec-
torization and vector editing. However, none of these
packages recognizes linear color gradients in the image

and therefore such regions are approximated by rectan-
gular stripes (See figure 1).

3 OUR APPROACH
Figure 3 depicts our pipeline. We start with a raster
image. In our experiments all input images are 8-bit
per-channel RGB images but the technique is indepen-
dent of the color format. Like most vectorization ap-
proaches, we first segment a filtered version of the im-
age. Color discontinuity imposes segment boundaries.
Next, for each segmented region we determine if it can
be represented by a linear gradient function. This de-
cision is made by searching for a gradient value that is
supported by all pixels of the region. In particular, we
calculate the range of gradient values supported by each
pixel. A global optimization across pixels of the region
then determines the most plausible gradient for the re-
gion. Finally, using this optimized gradient direction,
we find the gradient stops within the region. In terms of
figure 3, the main contributions of our algorithm are in
stages 4, 5 and 7.

For regions that cannot be represented using a linear
gradient, we employ a color quantization approach to
minimize the number of vector elements. Each region is
then vectorized using the potrace engine [24] (although
any vectorization approach would suffice). Potrace is
designed to generate smooth contours of the features
which works well with our pipeline. Each stage of the
pipeline is described next.

3.1 Image Smoothing
To reduce the effect of noise in the image, we apply a
Gaussian blur of radius 3. It reduces the sharpness near
edges and produces a relatively smooth image.

3.2 Initial Segmentation
As a preprocessing step, we first perform image seg-
mentation using a standard scheme. We have used mean
shift segmentation followed by a flood fill, which gives
us good result. although a more specialized segmenta-
tion algorithm can also be employed.

3.3 Gradient Approximation
In order to determine the gradient direction m we re-
construct values from the given samples. However, we
must also consider that the input color values are im-
precise due to noise, smoothing and rasterization. Due
to imprecise color values at pixel centers, we resort to
an interval color scheme. In particular, if the color at
pixel p input to this stage is c, we allow that the actual
color is in the range [c− : c+], where c ∈ [c− : c+]. For
example, if c only has rounding error, c− = c−0.5 and
c+ = c+0.5.

If the gradient slope at pixel p is m, we expect the color
at the gradient normal p+k 1

m within a segment to be in

Algorithm 1 Find the slope range

1: procedure FINDRANGE(p,R). Calculate range of
slopes for pixel p over region R

2: p.range← /0 . Initialize the range of p as
empty

3: S← Boundary pixels of R . Initialize vector S
with boundary pixels of R in such an order that all
consecutive pixels in S are neighbors in R

4: i← 0
5: c← p.color
6: for i < S.size−1 do
7: p1← S[i]
8: p2← S[i+1] . Get two neighbor pixels

from S in p1 and p2
9: if [c− : c+]

⋂
[p1.color, p2.color] 6= /0 AND

p.region = p1.region = p2.region then
10: L1← line(p1, p) . Find line L1 passing

through p1 and p
11: L2← line(p2, p)
12: p′1← intersection(L1,R) . Find

intersection of L1 with R
13: p′2← intersection(L2,R)
14: if [c− : c+]⊆ [p′1.color, p′2.color] then
15: p.range← [slope(L1),slope(L2)]
16: break;
17: end if
18: end if
19: i← i+1
20: end for
21: end procedure

the interval [c− : c+] for all values of k within a range,
if the input color at p is c. However, due to the ras-
terization in the input image we may not have samples
available for any value of k.

We consider a contour around p and locate the normal
line passing through p on this contour. For example,
this contour can be a rectangle R. Our goal is to locate
the range [c− : c+] on R. Assuming color interpolation
along R, we find two samples p1 and p2 on R such that
the color c1 at p1 and color c2 at p2 span the range [c− :
c+], where p1 and p2 are the closest such pixels along
the contour. In other words, [c− : c+] ⊆ [c1 : c2]. We
conjecture that the normal line intersects the rectangle
between p1 and p2. As an aside, if one were to search
for the exact value c reconstructed from samples near p1
and p2, it would yield unreliable estimates for m that are
often inconsistent with the estimates of p’s neighbors.

If p is not on the boundary of its region, a pair (p1, p2)
implies the existence of another pair (p′1, p′2) on the op-
posite side of the rectangle. For pair (p1, p2), we form
straight lines by joining p1 and p, and similarly by join-
ing p2 and p (Figure 4 explains this construction, see
the blue and red lines passing through p). The intersec-

Figure 4: The setup: A rectangular grid of pixels around
p is considered. The color interval of pixel p, [c− : c+],
lies in the colors at pixels p1 and p2. This implies the
normal direction through p, passes between p1 and p2.
Consider lines joining p with p1 and p2 respectively.
These lines intersect at the opposite side of the grid on
p′1 and p′2. If [c− : c+] is spanned by the colors at p′1 and
p′2, the normal directions is assumed to lie between the
two solid lines. Additionally, the green dotted line is
formed by fitting a line among all pixels whose colors
are similar to that of pixel p. This estimated slope is
also stored for each pixel p.

tions of these lines with the opposite boundary of rect-
angle R provides the conjugate pair (p′1, p′2). Again, we
need not have samples available at p′1 and p′2, unless
R is symmetric about p. We reconstruct the color, re-
spectively, c′1 and c′2 at positions p′1 and p′2 from the
neighboring samples. If again [c− : c+] ⊆ [c′1 : c′2], it
is evidence of the normal line passing between p′1 and
p′2. If the slopes of lines p1 p′1 and p2 p′2 are 1

m1
and 1

m2
,

respectively, we say that pixel p favors a color gradi-
ent in the range [m1 : m2] subject to the condition that
pairs (p1, p2) and (p′1, p′2) lie in the same image region.
Please note that if the range [p′1 : p′2] is not tight and its
subset contains the color range [c− : c+], that subset is
used instead to provide a tighter gradient range. This
approach is presented in algorithm 1.

Not the entire range of gradients [m1 : m2] is equally fa-
vored by p. We also estimate the most favored gradient
m′ and weight a value m ∈ [m1 : m2] by its difference
from m′. To find m′, we compute the best fit line to the
color values nearest c within R. In particular, we form a
set of points S including every pixel within rectangle R
with color within [c− : c+]. The calculation of favored
slope is explained in algorithm 2.

If a pixel does not produce a gradient range, either it is
not a part of a gradient filled region, or it cannot provide
candidate gradients due to noise in the image. On the
other hand, it is possible for a pixel to provide multiple
gradient candidates due to noise. We include all ranges
in the optimization process described next.

Every pixel pi of a presumed gradient fill region simi-
larly produces its favored gradient m′i and slope range
(mi1 ,mi2). We choose a single gradient value for the
region that best satisfies all ranges.

Algorithm 2 Find the favored gradient slope

1: procedure FINDGRADSLOPE(p,R) . Calculate
favored gradient slope of pixel p over region R

2: p.slope← nil
3: Q← all pixels of R . Initialize vector Q with

all pixels of R
4: i← 0
5: S← /0
6: for i 6= Q.size do . Loop on all pixels in Q
7: q← Q[i]
8: if p.color ∈ [q.color− : q.color+] AND

p.region = q.region then
9: S← S

⋃
{q}

10: end if
11: i← i+1
12: end for
13: if S 6= /0 then
14: L← FitStraightLine(S)
15: p.slope← slope(L)
16: end if
17: end procedure

Choice of this region R is important as it should be suf-
ficiently large to have enough samples to reproduce the
reliable gradient range and value. The size of region R
may also vary on each pixel depending on the noise in
the image. Therefore, we choose rectangles of dynam-
ically varying sizes whose dimensions are decided on
each pixel. We start with a size of 3x3, and keep on
increasing this region until the line fit error is below a
certain threshold ε . Because of this dynamically sized
region, our approach can handle different kinds of noisy
images sucessfully.

3.4 Gradient Optimization
After computing the favored gradients for each pixel pi,
m′i and the range [mi1 : mi2], the final gradient mr for the
region should ideally lie in this range and as close to
m′i as possible. We compute mr by optimizing across
all pixels of the region. This optimization can be easily
posed and solved using a simple geometrical construc-
tion.

We select a function which maximizes its potential if
the selected gradient mr = m′i. This potential monoton-
ically decreases as mr grows apart from m′i. One can
select a Gaussian or radial basis function as the weight,
but a cosine-linear weight function provides the best re-
sults. Given two line slopes m′ and m′′, the dot product
of the vectors in their respective directions gives a pro-
jection of a vector on another. By definition, the mag-
nitude of the dot product of two unit vectors decreases
as the angle between them grows. We define our ob-
jective function to maximize the sum of these dot prod-
ucts. To do so, the value of objective function f (x) is

Figure 5: Gradient Stops Estimation: The shaded area
is a gradient filled region while its bounding box is
marked as black rectangle.We draw lines from four
corners of the bounding box parallel to gradient axis
(shown in different colors), since the line passing from
top-left corner (marked in blue) overlaps the maximum
pixels of the region, it is used for gradient stops esti-
mation. Two stops are generated where line hits the
bounding box(C1 and C4) while two stops are gen-
erated where line intersects the regions (C2 and C3).
Also, note that value of C2 and C3 is determined by us-
ing the pixel color at the respective location of image
while value of C1 and C4 is computed by extrapolation
of C2 and C3 along the gradient axis.

computed by finding all pixels pi which have the range
[mi1 : mi2] containing x and performing a summation
over the dot products with their favoured slope m′i. i.e.
f (x) = ∑

n
i=0 |g(x, i)| where g(x, i) = x̂.m̂′i|mi1 ≤ x≤ mi2

and x̂ and m̂′i are two unit vectors in the direction of x
and m′i respectively.

The linear optimization can be performed using any
standard technique like the dynamic system based
global optimization [19].

3.5 Gradient Stops Estimation
We use a heuristic approach to find the gradient stops. If
we draw lines parallel to the computed gradient vector
mr from each corner of the bounding box of the region
as shown in Figure 5, the one with the largest overlap
with the region may be selected for stops estimation.
We generate four color stops on the gradient vector, two
on each end points on the bounding box and two on
each intersection of this line with the region (See Figure
5). If the points at C1 and C4 do not lie in the region,
their colors may be estimated using extrapolation from
C2 and C3 as shown.

3.6 Color Quantization
Segmentation for the remaining colored regions of the
image is performed using color quantization [11]. A
color palette of the given number of colors is first pre-
pared, and then each pixel is assigned the index of color
palette that it best matches. For our experiments we

have used an octree based color quantization approach
[8, 5].

3.7 Contour Tracing

Tracing is the process of fitting curves that bound each
image regions. After tracing, we obtain a set of curves
that represent the image geometry. We employ the po-
trace engine developed by Peter Schilinger [24] for this
outline tracing. The same engine is also used by open
source vector drawing package Inkscape [13].

3.8 Final Vector Output

Once we obtain the curves outlining each image seg-
ment, we apply fills to these curves and generate the
final vector representation (in the SVG format). The re-
gion color, as noted before, may be either a solid fill
color obtained through quantization or a linear gradient
produced by the optimization algorithm.

4 RESULTS AND VALIDATIONS

We analyzed the vector output of our algorithm from
various prespectives like appearance, editability, accu-
racy and error per pixel. Results are given below.

4.1 Appearance

We applied our approach to different non-photorealistic
raster images and the results are presented in Figure 6.

4.2 Comparison with ARDECO

The implementation of ARDECO is publicly available
on the authors webpage. In figure 9 ARDECO pro-
duced more than 1200 paths while our approach out-
puts 4 paths only. This is because we perform an early
segmentation and then apply gradient detection on the
various segments. We are also able to handle noisy im-
ages, as shown in figure 9 where the input image con-
tains random RGB noise.

4.3 Editability

The output SVG can be easily edited using any standard
vector graphics tool like Inkscape. Examples are shown
in figure 7.

4.4 Accuracy

To measure the accuracy, we applied our algorithm to
images whose gradient direction and magnitude was al-
ready known. The results are shown in figure 8.

Our Error Inkscape Error
Input Gradient Solid Gradient Solid

6e 7.7 16.25 17.49 24.40
6k 11.4 13.2 18.64 21.31
6c 11.63 18.67 14.76 26.55
6i 15.64 25.14 26.20 44.8
6a 25.51 34.26 46.92 37.40

Table 1: We calculated the per pixel error for gradient
and solid colored regions separately in our output and
then compared with the corresponding region error in
inkscape.

4.5 Per Pixel Error
To analyze the per pixel error in our output, we raster-
ized our vector output and then compared it with the
original image to compute root mean squared error per
pixel. Table 1 compares the error in our gradient and
solid colored regions with the corresponding regions
in Inkscape output. Both Inkscape’s and our approach
used a quantization palette size of 16 colors.

Table 1 shows that even the per pixel error for solid col-
ored regions is low with our approach as compared to
Inkscape. This is due to the fact that our approach ex-
cludes the gradient region while performing quantiza-
tion, therefore with the same size of color palette, more
accurate colors are represented.

The high per pixel error in output can be explained due
to the several factors:

1. Vector and raster spaces are not equivalent. The
pixel at location (x, y) in input image may not be
present at the same exact location in the vector
space.

2. Input image may contain small pixel level features,
which are merged in larger regions during vectoriza-
tion.

3. Vector output is optimized to be represented with
fewer colors using some method of color minimiza-
tion.

5 LIMITATIONS AND FUTURE WORK
We have proposed an algorithm to find gradient in im-
ages that optimizes the gradient values across noisy pix-
els. It mainly targets reconstruction of simple art draw-
ings that can then be further edited or stylized. The
proposed algorithm works well when the linear gradi-
ent in input image is specified by two color stops. Oth-
erwise the the gradient region may be split into multi-
ple smaller regions. This limitation can be easily han-
dled by modifying the gradient stops estimation step to
account for multiple color stops. Our approach may
also not produce good results when the linear gradient
is applied on small width regions, like linear gradient

on a single pixel wide curve, for it needs to find seg-
ments with a few neighbors around its pixels. We be-
lieve the algorithm can be easily adapted to handle non-
linear gradients – for example a radial gradient. Our
algorithm is designed to operate on each pixel indepen-
dently, therefore it can parallelize well. Future work
should also include deriving vector graphics for videos
and using the level of optimization in a feedback loop
to refine the segmentation potentially producing even
fewer patches.

6 REFERENCES
[1] Inc. Adobe Systems. Adobe illustrator cs5, 2010.
[2] Autotrace. An open-source program for convert-

ing bitmap to vector graphics, 2004.
[3] Pascal Barla and Adrien Bousseau. Gradient art:

Creation and vectorization. In Paul Rosin and
John Collomosse, editors, Image and Video-Based
Artistic Stylisation, volume 42 of Computational
Imaging and Vision, pages 149–166. Springer
London, 2013.

[4] William A. Barrett and Alan S. Cheney. Object-
based image editing. In Proceedings of the 29th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’02, pages
777–784, New York, NY, USA, 2002. ACM.

[5] Dan S Bloomberg. Color quantization using oc-
trees. 2008.

[6] J Canny. A computational approach to edge de-
tection. IEEE Trans. Pattern Anal. Mach. Intell.,
8(6):679–698, June 1986.

[7] Jung-Shiong Chang, Hong-Yuan Mark Liao,
Maw-Kae Hor, Jun-Wei Hsieh, and Ming-Yang
Chern. New automatic multi-level threshold-
ing technique for segmentation of thermal im-
ages. Image and Vision Computing, 15(1):23 –
34, 1997.

[8] D. Clark. Color quantization using octrees. Dr.
Dobb’s Journal, pages 54–57, Jan 1996.

[9] Dov Dori, Senior Member, and Wenyin Liu.
Sparse pixel vectorization: An algorithm and its
performance evaluation. IEEE Trans. Pattern
Analysis and Machine Intelligence, 21:202–215,
1999.

[10] Kuo-Chin Fan, Den-Fong Chen, and Ming-Gang
Wen. A new vectorization-based approach to
the skeletonization of binary images. In ICDAR,
pages 627–630. IEEE Computer Society, 1995.

[11] Michael Gervautz and Werner Purgathofer. A sim-
ple method for color quantization: Octree quan-
tization. In New Trends in Computer Graphics.
Springer Verlag, Berlin, 1988.

[12] O. Hori and S. Tanigawa. Raster-to-vector conver-
sion by line fitting based on contours and skele-

tons. In Document Analysis and Recognition,
1993., Proceedings of the Second International
Conference on, pages 353 –358, oct 1993.

[13] Inkscape. An open source linux/windows scalable
vector graphics editor, 2010.

[14] Ralf Kohler. A segmentation system based on
thresholding. Computer Graphics and Image Pro-
cessing, 15(4):319 – 338, 1981.

[15] Johannes Kopf and Dani Lischinski. Depixelizing
pixel art. In ACM SIGGRAPH 2011 papers, SIG-
GRAPH ’11, pages 99:1–99:8, New York, NY,
USA, 2011. ACM.

[16] Yu-Kun Lai, Shi-Min Hu, and Ralph R. Mar-
tin. Automatic and topology-preserving gradient
mesh generation for image vectorization. ACM
Trans. Graph., 28(3):85:1–85:8, July 2009.

[17] Gregory Lecot and Bruno Levy. Ardeco: Auto-
matic region detection and conversion. In Euro-
graphics Symposium on Rendering, 2006.

[18] Musa Mammadov, Alexander Rubinov, and John
Yearwood. Dynamical systems described by re-
lational elasticities with applications. Continuous
Optimization, pages 365–385, 2005.

[19] Musa A Mammadov. A new global optimization
algorithm based on dynamical systems approach.
In Proceedings of the 6th International Confer-
ence on Optimization: Techniques and Applica-
tions (ICOTA’ 04). Ballarat, Australia, 2004.

[20] University of Ballarat. Ganso library for opti-
mization functions.

[21] Alexandrina Orzan, Adrien Bousseau, Holger
Winnemöller, Pascal Barla, Joëlle Thollot, and
David Salesin. Diffusion curves: a vector rep-
resentation for smooth-shaded images. In ACM
SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
92:1–92:8, New York, NY, USA, 2008. ACM.

[22] Arnulfo Perez and Rafael C. Gonzalez. An itera-
tive thresholding algorithm for image segmenta-
tion. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, PAMI-9(6):742 –751, nov.
1987.

[23] N. Ramesh, J.-H. Yoo, and I.K. Sethi. Threshold-
ing based on histogram approximation. Vision,
Image and Signal Processing, IEE Proceedings -,
142(5):271 –279, oct 1995.

[24] Peter Selinger. Potrace: a polygon-based tracing
algorithm, 2003.

[25] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung
Shum. Image vectorization using optimized gra-
dient meshes. In ACM SIGGRAPH 2007 papers,
SIGGRAPH ’07, New York, NY, USA, 2007.
ACM.

[26] H. Tamura. A comparison of line thinning al-

gorithms from digital geometry viewpoint. In
Proceedings of the Fourth Int’l Joint Conf Pattern
Recognition. Kyoto, Japan, 1978.

[27] Inc. Vector Magic. Vector magic, 2010.
[28] SVG working group. Svg format for vector graph-

ics.
[29] Tian Xia, Binbin Liao, and Yizhou Yu. Patch-

based image vectorization with automatic curvi-
linear feature alignment. In ACM SIGGRAPH
Asia 2009 papers, SIGGRAPH Asia ’09, pages
115:1–115:10, New York, NY, USA, 2009. ACM.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 6: The results with our approach. Original image is on the left and the final vector image is shown on right.

(a) Editing the output
vector: Scaled the body
parts.

(b) Editing the output
vector: Rotated the arm
levers.

(c) Editing the output
vector: Removed a path.

(d) Editing the output
vector: The original lin-
ear gradient color stops
(as shown in figure 6)
were towards red to
white. Using Inkscape,
we edited the output so
that the gradient stops
are changed to blue and
white.

Figure 7: Editing the final output.

(a) Original gradient di-
rection: 1.0, color vary-
ing from (255, 0, 0) to
(255, 255, 0).

(b) Computed gradient
direction: 1.2, color
varying from (255, 4, 0)
to (255, 248, 0).

(c) Original gradient
direction:1.75 , color
varying from (255, 0, 0)
to (255, 255, 0).

(d) Computed gradient
direction:1.85 , color
varying from (255, 8, 0)
to (255, 242, 0).

(e) Original gradient di-
rection: 0, color varying
from (255, 0, 0) to (255,
255, 0).

(f) Computed gradient
direction: 0, color vary-
ing from (255, 2, 0) to
(255, 252, 0).

(g) Original gradient di-
rection: ∞, color vary-
ing from (255, 0, 0) to
(255, 255, 0).

(h) Computed gradient
direction: ∞, color vary-
ing from (255, 2, 0) to
(255, 251, 0).

Figure 8: Comparison of computed gradient with original known gradient in image.

(a) Input noisy Image. (b) Ardeco output:1200 small
patches.

(c) Our output: Only four
patches.

Figure 9: Noisy images and comparison with ARDECO.

