
Part-based Construction of digitized 3D objects

Daniela Borges
INESC-ID/IST/Technical

University of Lisbon
R. Alves Redol, 9, 1000-029

Lisboa, Portugal
daniela.borges@ist.utl.pt

Alfredo Ferreira
INESC-ID/IST/Technical

University of Lisbon
R. Alves Redol, 9, 1000-029

Lisboa, Portugal
alfredo.ferreira@inesc-id.pt

ABSTRACT
Nowadays, a few 3D acquisition devices are available at low-cost. While 3D capture is a commonplace, decompose
the object into its components is not an easy task. Segmentation can help address this problem by suppling data
which may be used to identify object components. However, it might not give complete and accurate information
about components. In a context where a digital repository with every component that can belong to physical objects
is available, retrieval algorithms can be used to construct a composed 3D model.
We propose a four phase solution to construct 3D digitized objects. We use Microsoft Kinect® to acquire 3D
physical objects. A segmentation algorithm based on color information decomposes the object into a set of
sub-parts. The component repository is queried using a shape-based retrieval algorithm, in order to identify
which sub-part corresponds to each virtual component. Then, a 3D model of the physical object is constructed
by assembling the retrieved components.
The work presented in this paper has a wide application domain, ranging from entertainment to health or
mechanical industry. To validate our proposal, we implemented a toy-problem and evaluated its precision and
efficiency. We used LEGO® blocks, which can provide challenges similar to real-world applications. The
results were encouraging and we believe that our approach may even work better with greater object components,
geometrically less similar to each other.
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1 INTRODUCTION
Technological advancements allowed the storage of ob-
jects such as audio, image and video through personal
devices. These assets, previously considered tangible,
can now be transported everywhere and are named dig-
ital media. Nowadays, 3D scanners are more accessi-
ble for anyone and several approaches have emerged
to solve acquisition, analysis, classification, index and
retrieval problems [VMC96]. Naturally, this also led
to 3D model construction and new challenges have ap-
peared.

Reconstruction techniques allow the acquisition of
physical objects, in order to reach a digital model.
However, if the object is composed by several com-
ponents, it is impossible to identify every object
component with a simple reconstruction.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
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the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Object construction is not a trivial challenge, because
3D object acquisition does not performs matching be-
tween known models and acquired objects. Moreover,
the acquired objects could have several physical com-
ponents which are also not identifiable. These consid-
erations lead to an increase in the number of enthusi-
asts both from research and industry. Life of George1

and Autodesk 123D2 are examples of applications that
had shown, respectively in 2D and 3D, the construction
potential and why this is an interesting area. The estab-
lishment of new low-cost scanner devices increasingly
accessible to anyone is also a motivation for our work.

Our research tries to ascertain if is possible to use a
low-cost device to acquire a 3D object and perform a
segmented construction that uses color and shape infor-
mation. In other hand, we acquire, segment and retrieve
a 3D physical object an all its components, in order to
create a reliable 3D digital model.

To support our vision, we address two major chal-
lenges: (1) the segmentation of the acquired polygonal
mesh, using color information; and (2) the identifica-

1 http://george.lego.com/
2 http://www.123dapp.com/



tion of segmented physical components (sub-parts), that
allows the construction. To be able to perform the con-
struction, our work will assume two restrictions. The
former is that adjacent components must have different
colors and the latter is that every physical component
allowed to be acquired must be known, i.e., must have
a model (virtual component) in a repository. Therefore,
our proposal aims to reconstruct 3D physical objects in
real-time with an acceptable success rate. To accom-
plish these requirements, we selected algorithms that
meet a tolerable time-quality relationship.

Next section discusses related work, presenting several
approaches to solve construction problem through ac-
quisition, segmentation and retrieval phases. Section 3
describes our solution and compares it with other ap-
proaches referred in the related work. Section 4 men-
tions how to evaluate our algorithm performance, short-
comings analysis and present relevant results. Finally,
we present our conclusions and point out some future
work.

2 RELATED WORK
3D object acquisition is allowing the scanning of
a huge amount of objects mainly in the fields of
computer-aided design (CAD), computer-aided
manufacturing (CAM), cultural heritage, reverse
engineering, among others. Range scanners, presented
in [BR02], grant object acquisition and are divided in
several systems such as triangulation systems, time-
of-flight systems, among others. Although high range
scanners (such as Comet L3d3 or EXAscan4) have
huge accuracy and resolution, some low-cost scanners
that appeared recently are increasingly widespreading.
As a result, some applications have emerged primarily
in the area of video games.

Low-cost devices, such as Microsoft Kinect®5 or
Primesense sensor®6, are becoming increasingly avail-
able to anyone, regarding the low price in comparison
with other scanners. However, although these scanners
acquire real-time RGBD data and produce relevant
results through controlled scenarios, they do not have
high accuracy. That is a high disparity between scanner
prices is a reasonable reason for us to choose Microsoft
Kinect® to acquire our 3D models. Moreover, we also
consider the popularization around this scanner due to
its low price. Because of this, lots of users are now
using Kinect® for a wide variety of applications.

3 http://www.steinbichler.com/products/surface-scanning/3d-
digitizing/comet-l3d.html

4 http://www.creaform3d.com/en/metrology-
solutions/portable-3d-scanner-handyscan-3d

5 http://www.microsoft.com/en-us/kinectforwindows/
6 http://www.primesense.com/solutions/sensor/

Segmentation is useful for location, classification and
feature extraction of 3D shapes. Although segmenta-
tion is easily performed by humans, computers need
complex algorithms to achieve the same work. There
are several segmentation algorithms that receive a point
cloud, an object or an image as input. The goal is
to decompose the object into patches or regions what-
ever is the input received. Some clues may help to
reach segmentation such as normal calculation, curva-
tures or concavity around the boundaries. Up to now, in
the field of segmentation a large number of algorithms
have been proposed such as Region Growing [AB94],
K-means [STK02], Fitting Primitives [AFS06], among
others. We need to take into account that some algo-
rithms must be used offline whereas others are faster
and consequently better to interactive applications.

Although the referred algorithms are traditional, new
technologies bring depth and color information. More-
over, the combination of color and depth information to
segment shapes is becoming common use.

One approach to construct a 3D model is to retrieve
every component that belong to an object, identifying
them. First of all, we need to index every possible
component through the descriptor computation for ev-
ery model. Descriptors define models through a sig-
nature and provide a way to retrieve those models ef-
ficiently. Therefore, have appeared several descriptors,
namely Spherical Harmonics (SHA) [FMK+03], Light-
Field Descriptor (LFD) [CTSO03], and more recently
BOW-LSD [LSFG11] or PatchBOF [TDVC11]. Our
work requires almost real-time and, consequently, we
decided to use the most efficient descriptor. When all
models are indexed, preferably using an indexing mech-
anism, we are allowed to retrieve them. Models are re-
trieved using queries that represent those models. This
query is also the result of a descriptor computation. Af-
terwards, when the query is performed the most similar
results may be retrieved.

A pioneer work in construction area is The Digital
Michelangelo Project [LRG+00]. This project, which
major requirement is the construction of high resolution
digital models, uses specific software and hardware in
order to scan cultural heritage. A triangulation system
was used to acquire depth information, with the help of
one motorized gantry. Due to the hardware used the fi-
nal output contains billions of polygons (for instance,
in David statue) which is not possible to handle with
commercial applications. Our approach is different to
this work because we use low resolution models, that
have different requirements.

Recently, there are other projects [SW11, MMWG11]
in the field of cultural heritage. Schwartz et al. [SW11]
presented a work where 3D geometry is extremely re-
quired and optical properties of object surface are also
desired (such as reflexion). Using a Bidirectional Tex-



Figure 1: Setup of Lattice-First project.

ture Functions (BTF) they can achieve geometrical ac-
curacy and provide a photo-realistic results. In order
to obtain these results, they used 151 cameras with 12
megapixels that acquire High Dynamic Range (HDR)
sequences. This configuration allows 151 simultaneous
pictures with high geometrical accuracy. However, it is
not possible to be used by everyone, hindering general-
ized use of the system.

The projects mentioned so far use acquisition hard-
ware which reach high quality and accuracy, justified
by dimension and quality required in cultural heritage
projects. Other approaches, that require less accuracy
in comparison with these projects, may take different
acquisition hardware, such as Microsoft Kinect®.

Software such as KinectFusion[IKH+11, ND11], Re-
constructMe7 or Skanect8 allow controlling of one Mi-
crosoft Kinect® (or other low-cost cameras) through a
scenario and, consequently, the acquisition of this sce-
nario through several viewpoints. Up to now, works
such as 3D Puppetry [RTHA12] used the combination
of software implementations and low-cost scanners to
acquire objects. This is also an example of toy-problem
project, which consider controlled scenarios and use
toys to create an abstraction that can be generalized to
other domains.

Nevertheless, other toy-problem works have appeared
recently. Miller at al. [MWC+12] presented a solution
(Lattice-First) that also uses Microsoft Kinect® in or-
der to obtain depth information of LEGO® blocks (Fig-
ure 1). Although this approach just acquires 3 degrees-
of-freedom (DOF) and assumes that the object could
not be moved out of a certain area, real-time informa-
tion is guaranteed (25 frames per second). As a re-
sult, user is able to manipulate and interact with the
physical object though this area. In order to achieve

7 http://reconstructme.net/
8 http://skanect.manctl.com/

these goals, pixels from user hands are segmented in
acquisition phase. Color information is added after-
wards, through rendering phase. This work has some
shortcomings, namely the limitation of using orthogo-
nal DUPLO® blocks due to Microsoft Kinect® low res-
olution and low dimensions of used blocks. Moreover,
regarding the limitation of 3DOF, latitude movements
are not allowed.

Other relevant work in this field is Duplo-
Track [GFCC12] which proposes an approach that
uses instructions, similar to LEGO® Digital Designer 9

virtual tool. This system also presents information
in real-time and is divided in two modes: Authoring
and Guidance. Authoring mode allows user to con-
struct a physical object which digital model is being
constructed and presented on the screen. On the other
hand, Guidance mode instruct user in order to construct
an existing object, by giving him several instructions.
The representation used is equal to Miller’s work, a
voxel grid, but this system is able to acquire 6-DOF.
User hands, depth and color information are used to
segment foreground from background and to apply
color to digital model. Although DuploTrack solve
problems that the previous system cannot deal with, it
still requires orthogonal DUPLO® blocks. The main
reason referred is also Microsoft Kinect® acquisition
limitations, such as noise through point clouds and low
accuracy. They explain that this system also requires
minimum of five blocks in order not to lose track.
Otherwise, blocks can be confounded as outliers.

Our proposal requires a controlled environment and
aims to identify orthogonal and non-orthogonal 3D
shapes, allowing the construction of simple and com-
plex objects. We also use a low-cost camera to acquire
physical objects, with the purpose of disseminate our
solution. We choose DUPLO® blocks because they are
easy to use, educational and accessible to everybody.
Moreover, we can easily access to LEGO® database
(LDraw10) in order to create a repository.

3 SYSTEM OVERVIEW
Our proposal aimed to construct 3D objects almost in
real-time, with an acceptable success rate considering
the number of components known. Our system is com-
posed by four phases: (1) acquisition of a 3D polygonal
mesh; (2) segmentation of acquired object; (3) retrieval
of segmented object components (sub-parts); and (4)
construction of a digital model, using retrieved LEGO®

blocks. As a result, we considered both efficient seg-
mentation and retrieval algorithms. In order to con-
struct the model, we used descriptors to retrieve every
physical component presented in the object.

9 http://ldd.lego.com/
10http://www.ldraw.org/



Figure 2: System overview, considering acquisition, segmentation, retrieval and construction phases.

Figure 2 describes an overview of our system, providing
a construction algorithm capable to identify blocks that
belong to an object. In particular, our approach aimed
at going further than Lattice-First or DuploTrack, en-
abling the construction of blocks that are not considered
in this projects (for example, curved blocks). Therefore,
we pretended also a significant increase in the number
of blocks that exist in the database (component reposi-
tory).

Our system starts by acquiring a polygonal mesh, us-
ing Skanect. This is accomplished by moving one Mi-
crosoft Kinect® around the physical object. Using both
depth and color information, we segment our object and
get several sub-parts. As a result, each physical compo-
nent is detached and we are ready to identify it. Sub-
sequently, each sub-part is compared with components
that exist in our repository and retrieval is performed.
This process identifies physical components and makes
the construction of LEGO® blocks possible.

3.1 Acquisition
We used a low-cost scanner, Microsoft Kinect®, in or-
der to acquire physical objects (composed by DUPLO®

components). The justification behind our choice, is
the fact that low-cost scanners are getting used by lots
of enthusiasts, and it is a recent technology that is being
more and more present at people homes.

Our application used Skanect software, that provides
depth and color information. The main reason behind
the use of this software is because it registers all views

Figure 3: System setup. The object is created and sub-
sequently positioned at the center of the table. After-
wards, it is acquired using one Microsoft Kinect® and
able to be processed.

acquired through Microsoft Kinect®, allowing us to de-
fine a bounding box that excludes some outliers (such
as walls or floor). Moreover, Skanect has the advan-
tage of acquire color (and depth) information easily,
in comparison with other approaches. However, it has
some limitations: (1) it is only able to export a com-
plete mesh (boundary representation); and (2) the re-
sulting mesh has a huge amount of outliers, regarding
the use of other objects which help Skanect not to lose
track. To overcome these limitations, we used Point
Cloud Library (PCL) [RC11] which is able to import
the resulting mesh and convert it into a point cloud (it



Figure 4: Example of segmentation for red color. The filtered point cloud from acquisition is used to identify the
red color, through HSI comparison. We then filter outliers and detect concave hull. In the end, a shape construction
is performed for every different color.

also speedup our filtering and segmentation processes).
For this reason we can remove outliers and store depth
and color information about our physical object.

Our setup is presented in Figure 3 where you can see
a Microsoft Kinect®, several DUPLO® blocks and a
turntable. Although a promising approach is to acquire
objects though several table rotations, more valuable
results were obtained by moving the scanner around
a bounding box. Moreover, Skanect also helped us to
configure our setup, providing real-time collaboration.
We used an aluminium foil and transparent boxes in or-
der to remove the maximum possible outliers and, con-
sequently, accelerate the acquisition process.

The filtering is a process that is used by several
algorithms to remove outliers from noise measures,
lack of calibration, and imprecision problems due to
registration. In our approach, we filter the acquired
polygonal mesh in order to remove the objects added to
help Skanect in registration. This process is performed
by converting the acquired polygonal mesh into a
point cloud. Using Principal Component analysis
(PCA) [MN95], our point cloud is represented by a
covariance matrix. As a result, we made a projection
of the point cloud, ensuring that it is aligned with axes.
The tabletop plane helped to perform this projection
correctly. Therefore, we removed outliers that are
behind length and width boundaries, an input of our
algorithm which depend on the size of the acquired
objects. Finally, we adjust the height boundary that
depends on the height of the physical object, that is
also an input of our algorithm. With this methodology,
we reduce our point cloud from ∼12 Mb to ∼600
Kb, increasing the speed of our algorithm. Note that
having the object aligned with the axes is determinant

to provide a successful construction, because position
and orientation of virtual components depend on this.

3.2 Segmentation
The acquired color and depth information from Skanect
led us to create a boundary representation and, subse-
quently, a point cloud. However, none of this represen-
tations allow the identification of each component that
belongs to the acquired object. In other words, it is not
possible to recognize what components form the point
cloud.

Therefore, our segmentation phase received the filtered
point cloud and aimed to divide it in several sub-parts.
We used color to segment each object component, as-
suming that adjacent components have different colors
(Figure 4).

We used algorithms available on PCL that helped to fil-
ter each component by color. Hue, Saturation and In-
tensity (HSI) comparison [RC11] allows the creation of
a set of filters that recognize each color. It also enables
the creation of a filter that removes noise produced by
registration failures, by removing points that have less
than a certain number of neighbors.

The output of this phase is one independent shape for
each sub-part, providing important information to re-
trieval phase. These shapes are constructed through
three steps: (1) outlier removal, through a Statistical
Outlier Removal filter [RMB+08]; (2) concave hull cre-
ation [RC11]; and (3) shape construction [RC11]. The
first step uses the segmented sub-part and removes out-
liers, i. e. points that have the approximately the same
color, but are distant neighbors. We performed Statis-
tical Outlier Removal filter that uses statistical analysis
techniques to remove these noisy measurements. This



Figure 5: Retrieval phase. Our algorithm performs one query for each sub-part and returns the most similar parts.

filter is useful because acquisition outputs may have
some points that are outliers due to tracking errors. We
then create a concave hull in order to remove points that
are not relevant for our solution. Take into account that
concave hull creation tries to fill empty space created
by non well acquired sub-parts, for example, due to oc-
clusions. Finally, the shape is constructed, using the
performed concave hull.
Adding to this output, there is also other information
that needs to be stored for every sub-part: the color, the
orientation and the centroid (one position in space). All
this information is collected through filtered point cloud
and required for construction phase.

3.3 Retrieval
When segmentation is concluded, we perform retrieval
for each sub-part, with the purpose of constructing our
model (Figure 5). Note that for every acquired physical
component must exist a correspondent virtual compo-
nent in our repository. First of all, one query is ini-
tiated for each sub-part. Afterwards, the descriptor is
calculated for each sub-part, building one vector per
part that represents that sub-part information in a more
efficient way. Subsequently, the query is executed in
our database, comparing the vector created with other
descriptors. These descriptors were created through in-
dexing phase and the process is similar: a descriptor
was created for every virtual component that exists in
our repository. The returned results of our algorithm are
presented in two ways: either by best match selection or
via k-nearest neighbors. The first best match selection
for every sub-part is used for construction phase. On
the other hand, k-nearest neighbors are used to disam-
biguate results, i.e, if the algorithm are not sure about
one block, it can ask user using information on this list.
There are several algorithms which perform index
and retrieval of 3D models. Our work required a

time-efficient algorithm in order to fulfill our require-
ments. As a result, we chose Spherical Harmonics
(SHA) [FMK+03] shape descriptor, that decomposes
a 3D model in a collection of functions defined by
concentric spheres. SHA is computed for every virtual
component that exists in our repository, during offline
indexing, and also for every sub-part that belongs to
physical object, when retrieving.

We used a NB-Tree [FJ03], which is a powerful multi-
dimensional structure, to index 70 models. This ap-
proach is efficient for high-dimensional data points,
mapping those points to a 1D line through Euclidean
norm. NB-Tree was relevant because it accelerates the
indexing and retrieval times of our algorithm.

3.4 Construction
The sequential phases considered so far are used to con-
struct our 3D model. In other words, we acquired a 3D
physical object and segmented this components consid-
ering depth and color. Afterwards, we identified ev-
ery sub-part through retrieval phase and construction is
performed using this retrieved virtual components (Fig-
ure 6).

Construction is accomplished using best match selec-
tion for every block identified, regarding the informa-
tion from retrieval. A 3D digital model is created tak-
ing into account centroid, orientation and color for ev-
ery block (this information was given at segmentation
phase). As a result, the relationships between physi-
cal components are kept. However, these relationships
have some errors due to noise, taking into account that
we do not deal with collisions.

3.5 Visualization and exploration
We aim to provide visual feedback of our constructed
3D model. Considering the domain of the toy-problem,



Figure 6: Construction phase.

Figure 7: LTouchIT prototype. Through this applica-
tion visualization and exploration of constructed mod-
els is possible.

LTouchIT [MF11] (Figure 7) application is going to be
used. This application allows the construction of a 3D
digital model using LEGO® blocks, through a multi-
touch table. The user interacts with the table and is able
to create several models, using blocks that exist in the
database.

LTouchIT will represent the output of our construction
algorithm, providing visual feedback and user input. It
will be used mainly for user testing, allowing visualiza-
tion and exploration of constructed models through sev-
eral views. As a result, it helps to analyze the quality of
the performed construction. However, LTouchIT appli-
cation has some shortcomings regarding our approach.
First, it uses a grid with lower dimensions due to the
use of LEGO® blocks in spite of DUPLO® blocks. Sec-
ond, the database used is incorrect, for the reasons men-
tioned above. Thus, some adaptation is needed in order
to fulfill the requirements of our solution.

4 RESULTS
This section corresponds to the evaluation phase and
obtained results of our algorithm. We divided this sec-
tion in different subsections in order to explain what is
evaluated and how this evaluation was performed.

4.1 Acquired models
As said before, we considered a toy-problem in order
to validate our algorithm. As a result, for this partic-

ular problem we classified DUPLO® blocks through
four different categories: standard blocks; additional
blocks; curved blocks; and complex blocks. The stan-
dard blocks are orthogonal blocks that are considered in
state-of-art projects ([MWC+12, GFCC12]). The addi-
tional blocks are orthogonal blocks that are not consid-
ered in standard blocks category. The curved blocks
are blocks that have at least one curve but are relatively
simple. Finally, the complex blocks are blocks that are
not considered in other categories.

The dimensions of the acquired blocks varied between
about 1.5 to 14.5 centimeters with respect to height, and
about 3 to 27 centimeters with respect to the length and
width. We took into consideration that we mainly have
small blocks to acquire. Moreover, Microsoft Kinect®

accuracy should also be considered in order to produce
relevant acquisition results.

In relation to our component repository, some of the
indexed models came from LDraw library, which is ac-
tualized by LEGO® enthusiasts. Because of this, we
needed to be careful regarding the use of those blocks.
As a result, we performed a correction of errors (such
as normals) in the used models. Nevertheless, in or-
der to have the 70 models, we also created some virtual
components according to LDraw format standards.

4.2 Evaluation methodology
Our approach was evaluated considering objective ap-
preciations. Objective measures aim to evaluate the al-
gorithm through precision and time. Precision is the
percentage of retrieved components that are relevant,
i.e, number of correct components regarding the total
number of components. Time is the sum of the time of
all phases and intend to evaluate algorithm efficiency.
Objective metrics gave us percentages and efficiency
measures to analyze our algorithm.

Using the categories mentioned in last subsection,
ten physical constructions were performed (Figure 8),
where DUPLO® blocks vary between two to five
blocks. There are two aspects that we took into
account: (1) the color of each block, ensuring that
two adjacent blocks could not have the same color;
(2) regarding Kinect® shortcomings, we excluded
transparent and bright blocks.

4.3 Discussion
For a faithful construction, it is necessary to have
retrieved virtual components that match the acquired
components of the physical object. However, the
results achieved do not precisely construct the physical
object.

The objective evaluation was performed through our ten
physical constructions, and the results are summarized
in Figure 9. We conclude that 22% of the time our al-
gorithm gave the correct answer at the first time (best



Figure 8: Acquired objects with multiple components (ten physical constructions were performed). Objects are
composed by two to five blocks.

Figure 9: Objective tests: precision results. The plot
represents precision obtained considering correct re-
trieved components within the first five results.

match selection). However, if we consider the first five
results from retrieval, the correct answer was 75% of
the time. This lead us to propose an application that
asks if the construction is well performed and suggests
the first five results if the construction is not correct at
first glance. This result need to be considered because
we also observed that most often plates were confused
with bricks, which have slightly higher height.

In relation to time measures, we measured the total in-
dexing time and the average time to construct an ob-
ject part. Although the indexing time is done offline,
the time spent to index all models in our database is
quite insignificant (less than two minutes). This result

is possible due to the use of SHA descriptor. The av-
erage time to construct a 3D object is defined by the
sum of all phases. We realized that average time to
retrieve sub-parts may become difficult to handle only
when we have several sub-parts in the acquired scene.
However, with the queries performed, it does not com-
promise our requirements (about 7 seconds to retrieve
three sub-parts). In relation to average time to construct
a 3D digital model, we evaluate this time by time spent
to acquire the scene and compute the mesh (thereabout
25 seconds) plus ∼16 seconds (average) to perform the
algorithm.

We conclude that the results achieved depend on the
database used. First of all, the number of models in
the component repository (our repository considers 70
models). Approaches referred in related work have
much less models (1∼3), which clearly help to retrieve
object sub-parts in a more effective way. Second, there
are a great amount of components in our repository that
are similar among themselves. As a result, the identifi-
cation of what virtual component correspond to an ac-
quired physical component is a non-trivial challenge. In
addiction to this problem, the use of blocks that fit one
another increase the difficulty because blocks that have
other blocks above that block are not well acquired. Al-
though we surpassed this problem by creating a concave
hull for every brick that fills the empty space, it is not
totally reliable.

We also confirm that it is possible to have an applica-
tion that represents models almost in real-time with this
approach. However, the correctness of the construction
performed depends strongly on the success of the ac-
quisition, on the accuracy and also on the repository
used.



4.4 Limitations
For our problem setting, there are several limitations to
overcome: (1) scanner resolution; (2) block size; and
(3) Skanect acquisition results.

Low-cost scanners have some shortcomings, namely
poor resolution, poor accuracy and also produce more
noise. However, we hope that new advancements in
this field are going to generate new technologies that
decrease the problems mentioned.

The major limitation of our entire project is that the
use of small blocks, allied with low resolution scan-
ning, produces weak points clouds. Moreover, some
DUPLO® blocks can cover one another preventing
them from being totally captured. As a result, the
generated shapes are partially incorrect and retrieved
results are inaccurate.

The use of a software, such as Skanect or Recon-
structMe, allows the registration of several views
produced by scanner. Although the algorithms behind
this kind of application are tested and are extremely
efficient, they have some disadvantages, mainly for
small size objects. Thus, we need to add several objects
to our scene in order not to lose track. Afterwards, we
got greater files to process and filtering are not trivial.

5 FUTURE WORK
Microsoft® is now working on Kinect 2.0, which have
higher resolution when compared with the current ver-
sion. Moreover, the RGB camera is upgraded from
34-bit RGB to 16-bit YUV, and a new infrared sensor is
added. Therefore, we hope that using this configuration
is going to help to acquire objects more efficiently.

In relation to segmentation, our algorithm needs and up-
grade that allows to acquire at least two blocks with the
same color. In order to achieve this, we will need to use
a segmentation algorithm such as Region Growing. An
upgrade that segments more different colors can also be
added.

One part of our project consists on the integration of
LTouchIT, providing an application that allows manip-
ulation of acquired 3D objects. This is going to help
users to evaluate our algorithm through a Likert scale.
This evaluation is required because, although some re-
sults are not precisely correct, they may be close to what
would be expected. Moreover, this will lead to ask if
the presented result is correct and, if it is not correct the
application will suggest the first five results (from re-
trieval phase). This process can be an automated task
which is possible due to fine-tuning of our algorithm in
combination with other methodologies.

We also consider to let users evaluate our algorithm,
through subjective measures. On one hand, objective
metrics gave us percentages and efficiency measures.
On other hand, we want to know how acceptable could

be one result in terms of quality. This evaluation is rel-
evant because, although some results are not precisely
correct, they may be close to what would be expected.
Our solution uses a toy-problem, LEGO® blocks, to
demonstrate the construction algorithm. We would like
to propose several proof-of-concept applications that
include a similar approach, namely for health, mechan-
ical or electric industries. For example, in mechanical
industry, the identification of several physical compo-
nents that belong to the car, such as radiator and en-
gine. For all mentioned applications, the concept of
learning can be improved to 3D and many appliances
can be done. Imagine if I could scan a set of bones of
a leg and add them virtually to other structure, using a
construction algorithm to provide help.

6 CONCLUSION
This research is focused on identification of object com-
ponents in order to construct a digitized 3D model. Our
approach considers newly low-cost technologies, such
as Microsoft Kinect® and the increase in computing
power that allows storage and faster data availability.
As a result, some efficient retrieval algorithms have ap-
peared. Having in mind the recent technological boost,
our solution aims to identify all physical components
that belong to an object. The main contribution of this
work is an application that performs a segmented con-
struction of a 3D physical object acquired through a
low-cost device, using color and shape information.
In comparison with similar approaches, our solution has
the advantage of having a large number of components
allowed to be identifiable, from a repository. In particu-
lar, our repository guarantees that 70 different physical
components can be acquired through a low-cost device
and detectable with our algorithm. However, based on
the fact that blocks are covering each other, the preci-
sion achieved is reduced.
The experiments clearly indicate that small size blocks
are complex to analyze through Microsoft Kinect® ac-
quisition, taking into account its low accuracy. Sub-
sequently, the produced point cloud is insufficient to
identify physical components correctly. Therefore, the
obtained results are not yet enough to generalize our
approach. However, we consider that our solution may
be applicable to many other domains if those physical
components are larger in comparison with the size of
our acquired blocks. Moreover, if the components in
the repository were more different among themselves,
it would produce more accurate results.
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