
An Optimization of Square Parameterization
Anuwat Dechvijankit Hiroshi Nagahashi Kota Aoki

Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology.
4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,

Kanagawa, Japan, 226-8503
dechvijankit.a.aa@m.titech.ac.jp longb@isl.titech.ac.jp aoki.k.af@m.titech.ac.jp

ABSTRACT
In order to parameterize a three-dimensional surface into a two-dimensional planar domain, we need to convert its
polygonal mesh into a disk topology surface. For quality of texturing or re-meshing that uses a parameterization
technique, it is more effective if the distortion of two-dimensional manifold planar domain map is as small as
possible. Since square planar domain is easily understandable to human or very simple as a computer image file,
it has been frequently used in real world applications. We introduce a series of experiments focusing on how
to deliver an optimized square parameterization with low-cost calculation and stable result. The result of these
experiments shows that our method is a suitable method for optimizing square parameterization.

Keywords
Mesh Parameterization, Optimization, Particle Swarm Optimization, Sampling

1 INTRODUCTION
Mesh parameterization is defined as a mapping between
a 3D manifold surface and a suitable target domain. In
general, the mesh parameterization is formulated as a
mapping from 3D triangulated surfaces to a certain 2D
planar domain. However, it requires the surfaces to be
topologically equivalent to a disk without any hole. Pa-
rameterization between two domains generally causes
distortion errors such as a stretch. Hence, low stretch-
ing is an important criterion for parameterization.

Unlike a circular boundary domain or a natural bound-
ary domain, the square boundary domain has a specific
characteristic that requires user-defined algorithms in
boundary-mapping assignment (constraint part). Dif-
ferent positions in square boundary mapping can gener-
ate different quality of parameterization result as shown
in figure 1.

The easiest way for delivering the lowest stretching
square parameterization is to check all possible bound-
ary mappings (bruce-force) with a stretch-minimizing
parameterization method. It can guarantee the best re-
sult, however the main problem of this approach is ex-
tensively time-consuming.

We did a series of experiments getting the lowest
distortion square parameterization by avoiding the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

bruce-force high-computation method. The main goal
of this paper is to devise an algorithm to deliver an
optimal square parameterization from any kind of
stretch-minimizing methods with fast and stable result.
Moreover, since GPU-Computing has been introduced
and widely been used nowadays, the devised algorithm
should support parallel-computing scheme as well.

(a) L2 stretch: 1.320295

(b) L2 stretch: 1.175196

Figure 1: Ustica model with check-board texture map-
ping using same stretch-minimizing square parameteri-
zation with different boundary mappings. (a) shows the
worst case that have largest L2 stretch. (b) shows the
best case that have smallest L2 stretch. We can notice
the different quality of textures around boundary area.

2 RELATED WORKS
Since texture mapping was introduced into computer
graphics world by E. Catmull [Coo87a], it became a
trend that every graphics board or graphics API must
support it nowadays. Mapping a 2D texture onto a 3D
surface requires some kind of parameterization of the
surface. The parameterization result can be represented
by planar coordinates u and v, indicating a position in
2D domain related to a position (x,y,z) in 3D domain.

Many well-known parameterization methods have
been proposed. Tutte[Tut63a] used a barycentric
mapping theory and created a conformal mapping.
Floater[Flo97a] used relative angles as a weight in each
interior vertex to create barycentric mapping. Later
on, stretch-minimizing methods have been proposed to
achieve low stretch as possible. Sander et al. [San01a]
used geometric-stretch matrix as the sum of squared
singular values, and minimized it as a non-linear
system. Yoshizawa[Yos04a] proposed a fast method
of stretch-minimizing by recomputing the weight of
linear energy-minimizing equations by using previous
stretch value as a divisor.

Concerning the limitation of fixed-boundary pa-
rameterization, Least Squares Conformal Maps
(LSCM)[Lev02a] were presented as alternative ways to
optimize the boundary positions from fixed-boundary
into free-boundary. They used different harmonic
energy formulations found in harmonic map[Eck95a]
but still minimized angular distortion. Intrinsic
parameterizations[Des02a] used the same technique
found in LSCM to preserve angle distortion, and pre-
served area distortion. Both of them could significantly
improve the distortions. However, they aimed to opti-
mize by changing fixed-boundary into free-boundary
parameterization, not square-boundary one.

To guarantee the generation of a valid parameterization
without local or global fold overs and the control
of each mesh triangle distortion to not exceed a
certain threshold, Sorkine[Sor02a] proposed bounded-
distortion concept with simultaneously seam-cutting.
Lipman[Lip12a] also proposed bounded-distortion
mapping spaces which can control worst-case con-
formal distortion, orientation preserving and one-one
mapping in various existing mapping algorithms. How-
ever, they aimed to control mappings at unconstrained
part.

3 SQUARE BOUNDARY MAPPING
Generally, planar parameterization requires some con-
straint values in its solving system. For doing a fixed-
boundary parameterization, it requires a user-defined
boundary position mapping as constraint values before
solving interior coordination. Unlike circular parame-
terization that averages each boundary edge length and

circle angle, square parameterization needs some user-
defined algorithms in the assignment of boundary map-
ping. There are no specific algorithms for it. Users can
create their own algorithm based on the length or num-
bers of boundary edges and so on.

In our square boundary mapping algorithm, a mesh
M has n boundary vertices. Let boundary edges be
EB = ((vb1 ,vb2),(vb2 ,vb3), . . . ,(vbn ,vb1)), having total
length d. Let a list of all boundary vertices be VB =
(vb1 ,vb2 , ...,vbn) and it is sorted in the order of connec-
tion of EB. We call vb1 as a reference start point of VB
and EB. Let Pi, j be a corner position in square planar do-
main as shown in figure 2 and us be the length of each
side of square planar. We try to map some edges in EB
onto a side of square planar. In order to achieve low-
est stretch at boundary area, one side should be mapped
by a quarter of EB based on the total length of edges
(0.25d).

Let vb be a vertex in VB that we want to map onto P0,0.
Let the distance from vb to vb+m be l. We try to find
vb+m whose distance l is equal 0.25d. However, in most
cases it is not equal. Therefore, we find vb+m that has
l ≈ 0.25d. Then, we map (vb,vb+1, . . . ,vb+m) whose
total length is l onto the square side from P0,0 to P1,0
relatively on each edge length over us.

Figure 2: shows a mapping sequence on planar points
from P0,0 to P1,0.

As for other sides of the square, we can follow the same
process described above by locating vb+m to the corner
P1,0 and iterate the mapping process to P1,1, P0,1 and
finally back to P0,0.

4 OPTIMIZATION
Square parameterization has a unique characteristic that
requires a user-intervening boundary position mapping.
The different boundary positions in planar domain can
give moderate margin of stretch (see figure 1). The
problem is how we can obtain the optimal square pa-
rameterization.

Considering our problem of square boundary optimiza-
tion, we map the boundary vertices in mesh domain

onto the boundary in square domain with some condi-
tions. One important condition is the relationship be-
tween a side of square boundary and mapping bound-
ary edges. Our mapping method is trying to map a
quarter of total boundary edges in terms of length onto
one side of the square that we mentioned in section 3.
With this condition, a new complexity arises. That is,
each boundary mapping could have different number
of edges on each side of the square. It is impossible
to incorporate these boundary conditions into a linear
solving system.
The simplest way is a bruce-force approach using a
stretch-minimizing parameterization. In our mapping
method, bruce-force means that we let every vertex in
VB be mapped onto P0,0 then do stretch-minimizing
parameterization. Although it guarantees the best
answer, one time stretch-minimizing parameterization
on a fine mesh might consume not a few amount of
time. Although, we can speed up by applying parallel-
processing but doing bruce-force and checking every
possible boundary mapping on the square boundary
might consume a lot of time.

25 percent of bruce-force
Let the first boundary mapping be vb1 onto P0,0, vbσ

onto P1,0 and vbτ onto P1,1 (vb1 ,vbσ ,vbτ ∈ VB) that are
assigned by our boundary mapping algorithm. It means
the distance from vb1 to vbσ should be approximately
0.25d, also the same for distance from vbσ to vbτ .
By starting from vb1 , we sequentially assign a vertex
vb onto P0,0, and map the following vertices onto the
square domain [P0,0,P1,0]. After repeating the mapping
for interval of a quarter of boundary edges, then the ver-
tices vbσ and vbτ might be mapped onto P0,0 and P1,0 re-
spectively. It is the same as we rotate the first mapping
(vb1 onto P0,0) 90 degree as shown in figure 3.

(a) vb1 onto P0,0 (b) vbσ onto P0,0

Figure 3: shows a similarity of boundary mapping after
shifting for a quarter of total length of boundary edges.

From this property, we can reduce the number of test-
ing cases to around 25 percent because we can ro-
tate the parameterized planar from a boundary mapping
(vb1 ,vb2 , . . . ,vbσ) to obtain the result of the rest map-
ping (vbσ+1 ,vbσ+2 , . . .). However, doing bruce-force

with around 25 percent of total testing cases still con-
sumes much of time. Our goal is finding the optimal
square parameterization while keeping the calculation
time less than 25 percent of bruce-force.

4.1 Faster parameterization methods
We examined the time consuming issue of the
bruce-force approach. We could notice that stretch-
minimizing parameterization is a main reason of the
problem. Since it is iterative process and it seeks
converging of the energy or stretch, its calculation time
is much more than the time of one parameterization
by means of linear solving system. If we can replace a
stretch-minimizing to a faster solving parameterization
in the optimization process, then it should reduce the
consuming time a lot. Here, we set our hypothesis
that every parameterization method should give a
same direction result; the best boundary mapping by
fast-solving method is same as the boundary mapping
by stretch-minimizing method. Now, the concept
"same direction" is defined as follow:

Same Direction
We assume that there are two square boundary map-
pings; Mn and Mn+1. In addition, we have two param-
eterization methods F and G. Let Rn and Rn+1 be pa-
rameterization results if we do F on both Mn and Mn+1.
Moreover, Sn and Sn+1 are parameterization results if
we do G on both Mn and Mn+1. If Rn is better than Rn+1
and Sn is better than Sn+1 then we say that F and G have
a same direction.

4.1.1 Experiment and Result
We setup the experiment to test the hypothesis. One
parameterization is fast solving but high potential
of stretch. The other is slow solving but stretch-
minimizing. We tried to use fast solving methods
to predict which boundary mapping is the best for
square parameterization. We did the experiment
to observe the stretch of unit square boundary by
various fast solving parameterization methods of
Shape-Preserving[Flo97a], Tutte[Tut63a] , mean-
value[Flo03a] and harmonic map[Eck95a]. We
compare L2 stretch[San01a] value from our candidate
methods with value from stretch-minimizing square
parameterization using [Yos04a].
As a result, we could not find any relationship among
them. When observing the lowest stretch of all meth-
ods with same boundary positions, they do not give the
lowest stretch in the same direction. Stretch observation
from the fast solving method does not enable to check
which mapping boundary points is optimal setting for
stretch-minimizing method as the hypothesis.
We concluded that optimizing square parameterization
needs to be done and analyzed directly from the stretch-
minimizing method.

4.2 Heuristics
From previous experimental result, we cannot use a
fast solving parameterization. Instead, we need to use
stretch-minimizing one that requires a lot of calcula-
tion. For that reason, we set our approach reducing the
number of calculations. If we can pursue the optimiza-
tion by doing parameterization with few testing cases,
then it will surely be better than bruce-force method.
We attempted to find a best optimization among the ex-
isting ones. There are many techniques and they are
divided into 3 categories[Wik13a]. Optimization algo-
rithms such as a Simplex algorithm are suit for linear or
quadratic programming solving. Iterative methods such
as Newton and Quasi-Newton methods suit for non-
linear programming solving. Heuristic algorithms such
as Genetic algorithms or Hill climbing suit for solving
the problems that cannot be solved or too slow by clas-
sic methods.
When we consider our mentioned problem, we con-
cluded that a heuristic algorithm may be the best one for
boundary optimization problem. The reason is that our
boundary optimization problem has the difficulty of two
sub-problems connected together. One sub-problem is
concerned with our main problem, i.e., finding best
mapping of boundary vertices and edges. The other is a
parameterization problem of finding planar location of
interior vertex. It is too difficult to combine the two sub-
problems into one problem solving system since it has
unique condition for the boundary mapping. In addi-
tion, we try to find global optimum of our problem, not
local ones. To find one local optimum does not show
or know it is globally optimal until all local optimums
are found. From these reasons, well-known algorithms
such as Simplex or Newton do not fit to our problem.
Hence we chose a heuristic method to solve our opti-
mization problem.

4.2.1 Particle Swarm Optimization
We choose "Particle Swarm Optimization" algorithm
(PSO) [Ken95a] for solving our optimization problem.
It is a new swarm intelligent technique, originally in-
spired by social behavior of animal flocking. PSO
has been used mainly to solve unconstrained, single-
objective optimization problems. The advantage of us-
ing PSO is that it does not use the gradient of the prob-
lem to be optimized, so the method can be readily em-
ployed for optimization problems. This is especially
useful when the gradient is too laborious or even im-
possible to derive. This versatility comes at a price, as
PSO does not always work well and may need tuning
of its behavioral parameters so as to perform well on
the problem at hand[Eri10a]. It requires 3 parameters
of effective factor from velocity, local-best position and
global-best position.
Next velocity of each particle is updated based on cur-
rent velocity, local-best and global-best positions of the

particle. Moreover, it is received effectively from these
3 parameters and random numbers. Then, each parti-
cle’s next position is calculated by using its new ve-
locity. Let i be the number of particles, k be iteration
times and r be a random number in searching scope.
Then, we assume that a, bl and bg are user-defined ef-
fective factor from current velocity, local-best position
and global-best position, related as follows respectively.
In equation forms, they are

vk+1
i = avk

i +blr1(plk
i − xk

i)+bgr2(pgk− xk
i) (1)

xk+1
i = xk

i + vk+1
i (2)

Algorithm 1 summarizes a standard PSO algorithm.

\\initialize particle...
for each particle xi do

xi← r
pli← unknown

\\starting main iteration...
repeat

for each particle xi do
yk

i = f (xk
i)

if yk
i better than f (plk

i) then
plk

i ← xi
pgk← best of all xk

i
for each particle xi do

vk+1
i ← avk

i +blr1(plk
i −xk

i)+bgr2(pgk−xk
i)

xk+1
i ← xk

i + vk+1
i

until k > maximum iterations or
pg unchanged many times

optimum← pg

Algorithm 1: Pseudo-code of PSO algorithm

4.2.2 Experiment and Result
We did experiments of applying one dimensional PSO
to our problem. Let a particle position xi be the dis-
tance from the reference start point vb1 . First, search
the nearest vbα in VB whose distance from vb1 is clos-
est to xi, and assign it to vb that is mapped at lower-left
corner P0,0. Then we follow the algorithm described
in section 3. At last, we do square stretch-minimizing
parameterization using [Yos04a] method to obtain in-
terior coordinates in 2D planar domain and then cal-
culate L2 stretch value for evaluation. On each mesh,
different number of particles and various changing fac-
tors of local and global best positions were examined
until the system gave optimal answer. We did 10 times
per one parameters-setting and get statistic results since
PSO algorithm is based on a random process as shown
in equation 1.

As a result, we could reduce the calculation time to
around 50 to 75 percent comparing to 25 percent of

bruce-force approach. By changing user-defined pa-
rameters, we could improve calculation time in some
mesh models. However, we could not gain an expected
result from the turning of these user-defined parameters
yet.

The number of particles plays important roles; more
particles secure the best answer (same as bruce-force’s
answer) but calculation cost increases. The algorithm
itself is based on random process, and it may give un-
stable optimal answer if we use small number of parti-
cles. Increasing the number of particles will cost almost
the same calculation time as 25 percent of bruce-force
approach. Moreover, PSO has a disadvantage point
on parallel-computing because it updates particle po-
sitions based on global-best position at each iteration
which prevents from doing large numbers of parallel-
processing simultaneously.

We concluded that PSO can improve the performance
when using an appropriate number of particles. Even,
the performance was still not as we expect but its algo-
rithm of checking few positions and focusing around
seems to be appropriate with our optimization prob-
lem. The main bottleneck of PSO in our problem is
a procedure of random search. Avoiding the random
search while checking few positions should generate
better performance stably.

4.3 Sampling
The PSO algorithm is based on a sampling approach.
Each particle acts as a sampling unit and every time a
particle moves to a new position, it will examine that
position. In our case, it means doing one parameteriza-
tion. If we observe a particle movement, we can notice
that the particle will move toward previous local-best
and global-best positions. Therefore, initial global-best
particle is important that affects to the performance and
stability. Each particle’s initialization can narrow down
searching scope a lot if a position is located at optimum
area because the global-best particle is one of local-best
particles. We adapted these concepts into a sampling
algorithm by narrowing down searching scope of the
initial sampling.

We started to analyze square parameterization by look-
ing at bruce-force results. We noticed that most of our
test models’ stretches are changed gradually when we
change vb at P0,0 along VB (see figure 4). From this char-
acteristic, we can reduce the number of calculations by
focusing attention on the boundary-mappings that have
high potential to give an optimal result. In order to be
able to do such thing, we need to know where is ap-
propriate searching scope. If we plot stretch values, we
are searching for potential area having global optimum.
In other words, it is important to find a list of mapping
(vb−p, . . . ,vb, . . . ,vb+q) at P0,0 that generates an optimal
square parameterization.

(a) hand model

(b) Stanford bunny model

Figure 4: The graphs that show stretch values from
doing square stretch-minimizing parameterizations (25
percent of bruce-force) on testing models.

The problem is how to determine the searching scope.
We use a sampling approach as a survey of stretch val-
ues same as PSO. Sampling is the reduction of a sig-
nal. A common example is the conversion of a sound
wave (a continuous signal) to a sequence of samples (a
discrete-time signal). In our problem terms, we reduce
the number of parameterizations to few cases so we can
determine our searching scope. We do not use complex
algorithms like pattern-search or random-search but we
do a static sampling.

4.3.1 Step-Sampling

We propose a simple algorithm named step-sampling.
It samples stretch values from selected boundary map-
pings. They will be selected as a step defined by user.
After sampling was completed, we will get a boundary
mapping that gives the lowest stretch as a center of op-
timal area. At last, we do deep-checking in that area.
We check its neighbors that are still be unchecked for
stretch values. The test case (boundary mapping) that
gives the lowest stretch is an optimal answer.

Algorithm 2 summarizes our step-sampling algorithm.

Model Total Test step

Cases 2 3 4 5 6 7 8 9 10 11 12 13

Hand 18 61.11% 44.44% 44.44% 44.44% 44.44% 50.00% 55.56% 55.56% 61.11% 66.67% 72.22% 77.78%

Head 20 60.00% 55.00% 55.00% 60.00% 70.00% 70.00% 85.00% 95.00% 100.00% 100.00% 100.00% 100.00%

Bunny Holes 153 51.63% 35.95% 29.41% 25.49% 23.53% 22.22% 22.22% 21.57% 22.22% 22.22% 22.88% 23.53%

Bunny No hole 123 52.03% 36.59% 30.08% 23.58% 21.14% 19.51% 18.70% 17.89% 17.89% 17.89% 17.89% 17.89%

Max 112 51.79% 37.50% 30.36% 27.68% 25.89% 25.00% 25.00% 25.89% 26.79% 27.68% 28.57% 29.46%

Cow 240 50.83% 35.00% 27.50% 23.33%∗ 20.83% 19.58%∗ 18.33% 17.92%∗ 17.50%∗ 17.50% 17.50% 17.92%∗

Table 1: sampling method result: symbol ∗ indicates that optimal answer is not same as bruce-force’s result. Bold
numbers mean the lowest percentage of calculation.

step← 2,3, . . . \\user defined step
m = number of vertices in first 0.25d of EB
stretch[]← ∞ \\array m size

\\initial step sampling
for i← 1 to m do

if i mod step = 1 then
stretch[i]← SquareParam(vbi as P0,0)

\\deep-checking
l← index of stretch[] that has best result
J[] =[. . . ,l-2,l-1,l+1,l+2,. . .] where

stretch[] = ∞ and close to l
for j← each J do

stretch[j]← SquareParam(vb j as P0,0)
optimum← index of stretch[] that has best result

Algorithm 2: Pseudo-code of step-sampling

4.3.2 Experiment and Result
We did experiments on various models with various
step values. Let the total test cases (boundary map-
pings) be m that can be calculated from the number of
vertices in the first 0.25d interval of EB starting from
vb1 . This number can be considered as a calculation
time of 25 percent of bruce-force approach. In our
experiment, we count the numbers of doing stretch-
minimizing parameterization as calculation time, in-
cluding both initial step sampling and deep-searching
period. After all, we represent the number of calcula-
tion times as percentage of total test cases m. We also
check the optimal answer to be same as bruce-force or
not. Table 1 shows our results.

The result shows that we could reduce percentage of the
calculation times to around 17 to 60 percent of total test
cases. The step value plays important roles; appropriate
step value can reduce more than half of total test cases
while keeping the best answer. As for a "cow" model,
which was converted from originally genus 4 to genus
0 (disk topology mesh), we could not obtain appropri-
ate disk topology mesh. That caused a strange fact that
stretches are changed extremely as shown in figure 5.

Considering about parallel-computing, our step-
sampling algorithm can perform well without depen-
dency on each boundary mapping.

Figure 5: A graph that shows stretch values from doing
square stretch-minimizing parameterization on a "cow"
model that was converted from genus 4 to genus 0.

4.3.3 Step Value

From the result of step-sampling, proper step value can
reduce calculation time a lot. However, too large step
can result spending more calculation time than smaller
one because larger step means larger searching scope.

We propose a formula for proper step value.

step≈
√

number of vertices× total test cases
number of faces

The step values from our proposed formula could re-
duce the calculation time to the lowest rate or nearly in
most cases. Table 2 shows the results on our test models
that be used same as table 1.

Model Vertices Faces Total Test Cases Step
Hand 1085 2006 18 3.12
Head 713 1357 20 3.24

Bunny Holes 36179 69463 153 8.93
Bunny No hole 35070 69644 123 7.87

Max 49342 98262 112 7.50
Cow 17135 33316 240 11.11

Table 2: Step value from our proposed formula on each
testing model.

5 CONCLUSION
The easiest way for delivering the lowest stretching
square parameterization is to do bruce-force approach
with a stretch-minimizing parameterization method.
However, it will consume a lot of calculation time.

We have presented a novel approach to optimize square
parameterization that enables to reduce calculation time
a lot. From our experiments, optimizing square param-
eterization could not be considered from faster parame-
terization method; instead, it should directly do stretch-
minimizing method to obtain optimal result. Also, we
tried to apply an existing optimization; particle swarm
optimization to our problem. It still could not reduce
calculation time as expectation. However, we analyzed
PSO algorithm itself then applied the concept of sam-
pling to create our approach.

We propose our "step-sampling" concept which reduces
much calculation time while maintaining a stable opti-
mal result. Although it is a simple algorithm, we can
have great performance that reduce more than half from
bruce-force approach. We also propose a formula to
calculate suitable step number based on mesh’s infor-
mation that will minimize the calculation time.

We are still interested to improve the performance of
our "step-sampling" approach. There are many pro-
cedures that might able to be improved such as deep-
searching section or changing the way of doing static
stepping.

6 ACKNOWLEDGMENTS
We would like to gratefully thank all reviewers, Shin
Yoshizawa for C++ code of his stretch-minimizing pa-
rameterization [Yos04a], Hugues Hoppe for filled holes
bunny and hand model data.

The models are courtesy of the Stanford University
(bunny), the University of Washington (head), MPI für
Informatik (max) and AIM@SHAPE(cow and ustica).
This work was supported by JSPS KAKENHI Grant
Number 24300035.

7 REFERENCES
[Coo87a] Robert L. Cook, Loren Carpenter, and Edwin

Catmull. The Reyes image rendering architecture.
SIGGRAPH Comput. Graphics. 21, 4 (August
1987), 95-102.,1987.

[Des02a] M. Desbrun, M. Meyer, and P. Alliez. Intrin-
sic parameterizations of surface meshes. Comput.
Graphics Forum, 21(3):209-218, 2002.

[Eck95a] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In Proceedings of
the 22nd annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH’95,
pages 173-182, 1995.

[Eri10a] M. Erik and H. Pedersen. Good parameters
for particle swarm optimization. Hvass Laborato-
ries Technical Report, HL1001, 2010.

[Flo97a] Michael S. Floater. Parametrization and
smooth approximation of surface triangulations.
Computer Aided Geometric Design, 14:231-250,
April 1997.

[Flo03a] Michael S. Floater. Mean value coordinates.
Computer Aided Geometric Design, 20:19-27,
March 2003.

[Ken95a] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Neural Networks, 1995. Proceed-
ings., IEEE International Conference on, volume
4, pages 1942-1948 vol.4, nov/dec 1995.

[Lev02a] B. Levy, S. Petitjean, N. Ray, and J. Maillo
t. Least squares conformal maps for automatic
texture atlas generation. In ACM, editor, ACM
SIGGRAPH conference proceedings, Jul 2002.

[Lip12a] Lipman Yaron. Bounded distortion mapping
spaces for triangular meshes. ACM Trans. Graph.
31, 4, pages 108:1–108:13, July 2012.

[San01a] P. V. Sander, J. Snyder, S. J. Gortler, and
H. Hoppe. Texture mapping progressive meshes.
In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH’01, pages 409-416, 2001.

[Sor02a] Olga Sorkine, Daniel Cohen-Or, Rony Gold-
enthal, and Dani Lischinski. Bounded-distortion
piecewise mesh parameterization. In Proceed-
ings of the conference on Visualization ’02. IEEE
Computer Society,pages 355-362, 2002.

[Tut63a] W. T. Tutte. How to draw a graph. Proceed-
ings of The London Mathematical Society, s3-
13:743-767, 1963.

[Wik13a] Wikipedia, Mathematical optimization,
http://en.wikipedia.org/wiki/Mathematical_opti
mization, 2013.

[Yos04a] S. Yoshizawa, A. Belyaev, and H.-P. Seidel.
A fast and simple stretch-minimizing mesh pa-
rameterization. In SMI’04: Proceedings of the
Shape Modeling International 2004, pages 200-
208, 2004.

