
PoolLiveAid: Augmented reality pool table

to assist inexperienced players

Ricardo Alves

Institute of Engineering

University of the Algarve,

Campus da Penha

8005-139 Faro, Portugal

ricardo_alves_r16@hotmail.com

Luís Sousa

Institute of Engineering

University of the Algarve,

Campus da Penha

8005-139 Faro, Portugal

luiscarlosrsousa@outlook.com

J.M.F. Rodrigues

Institute of Engineering and

Vision Laboratory, LARSyS,

University of the Algarve,

8005-139 Faro, Portugal

jrodrig@ualg.pt

ABSTRACT
PoolLiveAid is an augmented reality tool designed to assist unskilled or amateur pool, or snooker or billiards

players in predicting trajectories. A camera placed above the table acquires and processes the game on-the-fly.

The system detects the table border, the ball’s position and the pool cue direction in order to compute the

predictable trajectory of the white ball, and the ball directly in its trajectory. The output result is then forwarded

to a projector, placed above the table, which then projects onto the snooker playable field. A skilled player can

also save a specific layout of a move and load it later in order to achieve the best shot and practising.

Keywords
Augmented reality, computer vision, pool game.

1. INTRODUCTION
A pool game can be very challenging and tricky. The

first contact with a game of pool can be very

frustrating for an unskilled player, requiring many

hours of practise to understand even the more basic

and classical mechanics that exists in this game.

In this paper we introduce a tool to assist mainly

amateur pool players to train themselves by showing

them on-the-fly in the pool table what will happen

when the white ball is hit, helping the player to make

the best decision, thus preventing him from playing

countless times before getting it right. On the other

hand, a skilled player can also save a specific layout

of a move (or a group of moves) and load it later,

project it directly onto the pool table in order to

achieve the best shot and for practise.

This tool was developed to use the pool table as the

interface. The system works with several varieties of

tables, regardless of the cloth and colour of the ball

(be it pool, snooker or billiard), with any camera that

has HD feature, and a projector placed above the

table. A camera is placed above the table for

capturing and processing the game. The system

detects the table border, the ball’s position and the

pool cue direction in order to compute the predictable

trajectory of the white ball, and the ball directly in its

trajectory. The output result is then forwarded to a

projector, which then projects onto the snooker

playable field.

There are several examples of tools connected, to

some extent, to the game of pool, snooker or billiard.

Denman et al. [DRK*03] presented three tools

applied to footage from snooker broadcasts. The

tools allow parsing a sequence based on geometry,

without the need for deriving 3D information. They

also allow events to be detected where an event is

characterised by an object leaving the scene at a

particular location. The last feature is a mechanism

for summarising motion in a shot for use in a content

based summary. Shen and Wu [SW10] also analyse

videos. They did an automatic segmentation method

of local peak edges to extract the table, and by using

several pre-processing, morphological processing,

clustering and HSV colour space they detect the ball

to produce a 3D reconstruction of the game. Also

related to video analysis for a 3D representation with

different goals we have [HM07, HGB*10, PLC*11,

LPC*11, LLX*12].

On a different level, Dussault et al. [DGM*09],

Archibald et al. [AAG*10] and Landry et al.

[LDM11] presented a computational system to create

a robot capable of selecting and executing shots on a

real table. Some of these authors, Leckie and

Greenspan [LG06] presented a paper on the physics

of the game of pool. One of these authors also has a

web page with a tool somewhat similar to ours:

ARPool is a projector-camera system that provides

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

real-time feedback to a pool player directly on the

surface of the table. However, to our knowledge,

there are no publications on this tool (only the web-

page). Also related to “robotic pool,” [NKH*11]

presented a robot capable of playing on a normal-

sized pool table using two arms. The robot can

accurately locate the pool table, the balls on the table

and the cue, and subsequently plans the next shot. In

this case they use a green pool cue an almost white

cloth (they also project trajectories on the table).

Both robotic systems were tested under laboratory

conditions (specific light conditions, etc.).

The main contributions of this paper are a system

that: (a) works in real club/pub environment and can

be mounted without the need for any changes in

terms of table position, lights, etc. Only two supports

are needed: one for the camera and one for the

projector. (b) Uses the table as the surface for

projection and interface with the user and (c) focuses

mainly on amateur real players, who are learning to

play, or players who want to see on-the-fly a mistake

made in a previous play.

In section 2 we present table, ball and cue detection.

In section 3 we compute the ball trajectories and

explain how to project them onto the table. In section

4 tests and results from the two previous sections are

presented. In section 5 we briefly show the main

menus of the tool and finally in section 6 we present

the conclusions and future work.

2. Table, ball and cue detection
As mentioned in the Introduction, the system was

developed based on real pool tables, balls and pool

cues. An HD camera was placed over the table, so as

to capture the whole table (preferentially in the centre

of the pool table). For the images and tests shown in

this paper we used a simple HD webcam (around 25

fps), attached to the lamp that was over the table.

The second component of the system is a quality

projector (the lighter the surroundings, the better the

projector has to be). This can be placed above the

table, on the ceiling, projecting over the table, or in a

hall near the table (near the ceiling), so the projector

can project onto the entire table. In most of our tests,

the last situation was the one used, due to the ceiling

being too low.

Figure 1, in the top, illustrates the system layout,

with the position of the camera and projector. The

bottom picture is an example of an image (frame)

acquired by the camera. As can be seen, we do not

need a perfect image of the table, only an image that

catch the entire table.

In the rest of this section we will explain in detail the

table boundaries, ball and cue detection.

Figure 1. In the top the system layout, camera and

projector position in relation to the pool table. In

the bottom, the one acquired image (frame).

2.1.1 Pre-processing: Noise-reduction
A pool player needs to think of his/her next move, so

he/she needs to have information on the next possible

shot as early as possible, in order to give him/her a

perception of what he/she is actually doing or aim to

do. Nevertheless, information on the trajectory of a

future shot is only needed when and every time

movement stops. Based on that, a pool game has two

distinct phases of information extraction: (a)

detection of any motion, including the pool cue and

(b) ball information when the game stops.

One of the main challenges while working with a real

pool/snooker room is the noise in the captured frames

due to different factors, e.g., the type of lightning.

Upon this, we used two different noise-reduction

algorithms, depending on which information was to

be extracted: (a) motion or (b) balls.

Let be the RGB frame acquired in instance t

and (x, y) the pixel coordinates within the frame. We

used a (a) Gaussian Filter (G) [Rus11], with ,

when needing to analyse images in real time

= G() and we did a (b) frame time average

[Rus11] when ball motion on the table was stopped

(for pool table detection and balls detection), i.e.,

∑

 ,

with N the number of frames to average (in present

results N = 5) and the average result for instance t.

Figure 2 shows from top to bottom a section of a pool

table image. The resulting image after applying the

Gaussian filter (), as expected, a blur appeared, and

after applying average filter (), we can see the

improvement in table cloth.

All parameters used in the pre-processing stage

(and N) are calibrated only once in the setup stage,

for each environment, and can be slightly different

for each environment.

Figure 2. Top to bottom, a section of , the same

section after and

2.1.2 Extracting Tables Boundaries
Extracting table boundaries with precision is

extremely important. Trajectories of a ball are

directly connected to these boundaries, causing a

reflection on the trajectory which will be more

perfect the more accurate a boundary is detected. If a

boundary is just a few pixels wrong, the resultant

trajectory will propagate the error, making it worse as

distance to this boundary increases.

As long as a camera is fixed, boundaries never

change (the table position never changes during a

game). Based on this, they are only calculated once

in the initial setup of the system.

Starting with an empty table, and from the middle of

the image , which will or should be the

centre of the table, going through top, bottom, left

and right, these lines are extracted through edge

detection using the Canny edge detector [Can86]

(with , and) in being

∑

 (the average of the initial 10 images

acquired in the setup procedure) followed by the

Hough Transform [DH72].

The results of a Hough transform are a set of

candidate lines for the table’s boundaries shown in

Fig. 3 top. Every line detected this way is tested,

checking if its angle is near (), in case it is a

top or bottom table boundary, or if its angle is near

 (), in case it is a left or right table boundary,

with . If a line succeeds this test, it is

checked if there are other possible table boundaries

near it. Inclination test is applied to every line near

the first one detected, and if it succeeds, the average

line of all lines detected will be considered to be a

table boundary. After all this, with linear equations,

all 4 corners of the table are found, see Fig. 3 bottom.

If necessary, only if the automatic boundary

detection doesn’t work perfectly, we allow for the

possibility in the setup procedure for the boundaries

to be manually adjusted (slightly), using the setup

menu interface and computers mouse.

If the camera is not in the centre of the table, or if

necessary to detect the lines, or the final computed

line is bigger than , then a perspective transform

(e.g. [Rus11]) from the original image (video frame)

to a “model pool table” is required. This will

decrease the performance of the system very slightly,

once every operation (ball detection, trajectories,

etc.) has to be affected by the same transformation.

To simplify the explanation in the following sections

and for the rest of the paper we ignore this

transformation (i.e., we consider).

Figure 3. Top, detected lines and in the bottom

final automatic table boundaries extraction.

2.1.3 Movement Detection
After the detection of the table boundaries,

movement detection is one of the more important

functions to be computed. As previous explained,

balls are only detected when movement on the table

stops, avoiding the program to make unnecessary

computations for the detection of the balls (see

Section 2.1.5).

Movement detection also has a second purpose: pool

cue detection (see Section 2.1.4). Obviously, the cue

detection is more reliable if there were no balls on

the table. As this is not possible, every time

movement stops, a frame is taken by the

camera, allowing it to be a reference for what it is in

the table at that moment, we remember that in a

pool/snooker game the player has a penalty if it

touches or moves any ball. The frame is then

going to be used as reference (“ground-truth”) for the

cue detection.

Movement detection is based on the subtracting the

actual frame with the previous frame,

 .

The output (), is converted to grayscale , and

a threshold with the goal of creating a binary image

is applied. All pixels with the level of gray above

are assigned to 0 otherwise to 255, returning .

The value of is automatically computed by

calculating the maximum value that the histogram of

E(x,y) during the setup stage changes more than

0.003% of the total of element in the playable field

(we use 25 in the examples presented).

After this all pixel inside the table playable field

(mark by the 4 red lines in Fig. 3 bottom) are

counted, , if there are less then 0.003% of pixels

with 255, it is considered that there is no more

movement on the table, and the counted pixels are

due to noise,

 ∑ ∑

with {

and W e H the weight and height of the playable

field.

In summary, if , there is no

movement in the table, turning a movement flag

OFF, otherwise turning it ON. Every time there is

movement on the table, like e.g., cue striking a ball

this flag is put to ON, but if set to OFF (by the above

process) then we can conclude that movement on the

table has stopped, a reference frame is taken and

triggering ball detection algorithm.

2.1.4 Cue Detection
The cue information is only needed when the cue is

relatively close to the white ball, as the cue is always

placed close to it when a player is preparing to strike

the white ball. As result, information extracted is

only considered if close, in a circular area, to the

white ball.

Figure 4. Top to bottom, frame with the RoIs

represented, image after subtraction with ,

the cue line detection and shot detection.

For the cue detection, the (a) current frame , Fig.

4-1st

row, is subtracted to the reference frame ,

Fig. 1-2nd row, enabling the balls not to interfere

with the cue detection. This difference is only done

in a (b) small square region of interest (RoI) (to save

CPU time) with dimension pixels, the

differences of the images are shown in Fig. 4-2nd

row. For the final cue validation, a player hand must

not be close to the white ball and for this reason we

consider (c) a 2nd circular RoI, radius of

pixels, being r the radius of the white ball (see

section 2.1.5 for r calculation). Following the same

principle and . In this

circular RoI usually no player put he’s hand, and if

he put his hand in this area it is considered not the

correct way to hold the cue (the system detect if there

is a hand in this area and alert the user).

Being | | and from the converted

grayscale of ∑ , it is applied a (d) threshold

(we used 50, this value was computed

empirically) to binarise the result, obtaining a white

shape Fig. 4-3rd row.

From this shape (e) we compute the middle line (the

line that splits this shape into two), red line in Fig. 4-

3
rd

 row. This line is considered to be the line of the

cue, where the tip of the cue is considered to be the

point of the line closer to the white ball.

When a player shoots the white ball, the program

needs to stop detecting the cue, in order to stop to

show trajectory lines (see section 3). This is

achieved, once again, by comparing the actual frame

 with the reference frame .

Every time a new frame is acquired, an absolute

subtraction is made (), in order to test what

happens in the circular ball area. If the white ball is

not stroke then the pixels value in the white ball area

are (near) 0, since those areas of the images are

equal, but if the white ball starts moving, then this

area starts getting values different from 0, see Fig. 4

bottom.

Since the cue, can also be placed in contact and

above the white ball, it’s important to choose number

of pixels that defines the white ball to be in

movement (),

∑ ∑ | |

 , being ()

the centre of the circular RoI. We use to

consider the ball in motion, see Fig. 4 bottom, once

again this can be configured in the setup procedure,

plus, depending of the camera used it is possible to

compute de velocity of the strike (not implemented

yet).

2.1.5 Detecting and Identifying the Ball
Every time movement stops, the ball’s detection

starts, consisting in comparing the actual average

frame with the initial average frame that

contains nothing but the empty table E(x,y) (Fig. 5,

1st and 2nd row respectively),

 | |,

after which a binarisation is applied. Again, as in

section 2.1.3, is converted to grayscale

 and every pixel with a value above 15 is

put to white, obtaining , see Fig. 5-3rd

row.

Using a contours finder [Rus11], we can know find

various blobs which may, or not, be balls.

Figure 5. Top to bottom, , the reference frame

 , the subtracted binary image from the above

images and the images with the detected

balls in red, plus the white.

Every blob detected is then considered to be a ball if

it meets the three following parameters: (a) Ratio

() between blob’s height (Hb) and width (Wb) is

approximately 1,

 .

(b) Relation between blob’s area and circle area, both

approximately equal, , with the area

of a circle, with () the circle centre and r

() the radius of the circle,

 ∑ ∑

with {

within

(c) Ratio () between a circle and square area,

,

the last condition compares if the blob area verifies

the circle and square areas relation. If these three

relations are true, then the blob detected is considered

to be a ball.

After detecting all the blobs, we must distinguish

which of the blobs is the white (BW). This is

achieved if both extracting contrast information (BC)

and a ratio (BR) occur:

(a) For the contrast we check all the blobs (i) which

is the one most differed from the background

BC [

∑ ∑

]

 .

(b) The ratio (BR) between bright area and blob’s

area detected,

 [

∑ ∑

]

with {

within ()

 ()

 The is the

 converted to grayscale, and the was

computed empirically. Once again this can be

changed in the setup procedure of the system, but for

all the tests done we always used .

The blob with the brightest area is the white ball,

 ⋂ . Blobs that are not white will have

few pixels in the bright area, while a white ball will

have more pixels in the bright area.

As result of this operation, we obtain all balls

detected with the white ball being distinguished from

all the other as shown on Fig. 5 bottom. If we want to

know which ball we are playing against, or make an

automatic table of scoring (in the case of snooker),

we can apply the above two principles (without

applying the max) creating two tables were the

colour are ordinates, this can also be complemented

using thresholds in HSV colour space.

3. Ball Trajectories
Ball trajectories shown in real time (see Fig. 7) can

be computed after the cue and the white ball centre

was detected, using simple and well known math

formulas. The cue stick is represented by two points,

and we can compute the correspondent line equation

(m x + b) and the white ball by its radius r and

centre point ().

The white ball is only going to be shot if the cue line

intercepts any point of the white ball contour, i.e., if

points = , with

 (√

)

and

 (√

)

the points that contacts the white ball circular surface

with the line of representing the cue. Thus, if any of

those points (are true, we can start calculating

what would be the predictable trajectory, assuming

the player will always try to hit its centre. It can be

easily calculated applying the cue vector to its centre.

All the different effects that a (semi-)professional

player can do it is not considered for the module of

the ball trajectories of the tool. This is a tool designer

for beginners and they “just want” to hit the white

ball to go in a specific direction.

3.1.1 Reflection of the Ball-table
Having detected contact between the cue and ball, the

table’s reflection can be determined by simple vector

maths. As shown in Fig. 6 top, ⃗ being incident

vector, we can obtain ⃗⃗⃗, which is vector normal to

incident plane,

 ⃗⃗⃗ ⃗

to achieve desired vector reflection it is used

 ⃗⃗ ⃗⃗⃗(⃗ ⃗⃗⃗) ⃗.

As the white ball centre never intercepts the table’s

boundaries, every reflection needs to be calculated

using an auxiliary boundary moved the ball radius to

the centre of the table, giving the result shown on

Fig. 6 top.

3.1.2 Balls Interactions
Balls collisions are calculated using vectors. A vector

containing the trajectory of a ball is applied to the

tangent points of that ball, giving line L3 and L4 of

Fig. 6 bottom. There are two interface points that we

need to calculate before we can know what will

happen to the intercepted ball.

First we need to know which of these lines, L3 and

L4, intercepts of other ball and its interception

point, given by point a of Fig. 6-bottom. The second

point is easily given by the trajectory’s normal

 ⃗⃗⃗ which is applied to the length of the

intercepted ball radius to its centre, given by point b

of Fig. 6-bottom.

The final trajectory, L2, is the normal of the vector

given by point a and point b applied to the centre C2.

The point d will make the contact with the point c.

Figure 6. Table’s reflection with vectors in the

top and collision between two balls in the bottom.

3.1.3 Projecting Ball and Trajectories to the

Table
Having all the balls detected and trajectories

computed, the next step is to project everything onto

the pool table. As mentioned before, we used a

projector (see Fig. 1 top), basically matching the

table dimensions in pixels (W, H) to the maximum

resolution of the projector used. In other words, it is

necessary to convert the computed trajectory and the

ball’s points to the table coordinates, applying a

transformation matrix.

After this we create a back image where we render

the balls positions; the white ball marked by a circle

and the different trajectories. This can be seen in the

computer in the background of Fig. 9 top.

Different options can be used, as for example using

different colour for different trajectories, a “red

colour” for the easiest ball to put in the hole, or

compute automatically here to put the cue if we want

to put ball x in the side pocket y, save a game, or

project onto the table the whole game (or part of the

game), project a single continuous image with the

ball position stored, to play again (and again) the

same move (this mainly for (semi-)professionals),

etc.

Figure 7. Some results of detected balls and

proposed ball trajectories.

Some of options available are shown in the

Augmented Reality Menus section (Section 5).

4. Tests and Results
Figures 7 and 9 show some examples of proposed

trajectories. To test the system we invited two very

inexperienced players (one male and one female) and

we computed around 10 continue minutes of playing,

at the same time doing the ground-truth of each play,

and we analysed 3 main topics: (a) table boundaries

detection, (b) detected balls and (c) expected

trajectories.

4.1.1 Table Boundaries Detection
In this first test, we used two different tables in two

different rooms, and we changed the lightning,

turning on and off all different lights existing in the

surroundings. As boundaries are usually the same

colour as the table, there is almost no contrast

between them, making it difficult to detect if the light

in the surroundings is poor.

In well-lit surroundings, by “well-lit” we mean all the

usual lights turned on, the table boundaries were

always automatically detected (100% of the times)

with less than 3 pixel error that can be corrected with

the computer mouse.

4.1.2 Ball Detection
Ball detection works very well when balls are not

close to each other, with tiny errors on some balls

that could not be measured. In a total of 194 balls

detection test we obtained 0 false positives and 186

balls successfully detected (96%), where the 8 balls

that were not detected were due to being too close to

each other (in contact). Also, in this test, all the white

balls were successfully detected with zero false

positive white balls.

4.1.3 Trajectories
Trajectories predicted are related to the distance a

ball can travel and how many bounces they have on a

table’s boundary. Direct balls were successfully

tested in 97% of the cases, where the 3% were due to

some imperfections on the cue detection and due to

the distance that the white ball would travel being

high.

Balls that would bounce on one table were

successfully tested in 77%, where the unsuccessful

trajectories were due to the distance travelled, cue

detection imperfections and spin gained or lost (due

to speed) in a table boundary.

Similarly, only 54% of the balls travelled the

predicted trajectory when bouncing twice on the table

boundaries, due to what we previously stated.

Interaction and reflection on other balls were 54%

successful due to the errors previously stated and,

possibly, to minimum errors on the ball positions.

5. Augmented Reality Menu
After setting up the system, done only once after

installing the system, the tool is ready to work.

The users can previously upload photos, or the

system can download them directly from Facebook

(given authorization by the user). The game starts by

projecting the photos over the table (Fig. 8-1st row)

when the two players put one hand over the photos

an augmented reality pop-up menu appears (Fig. 8-

2nd row). Balls can be placed on the table at any

moment.

Three main features are shown (from left to right):

(a) play with help, as shown in Fig. 7, (b) reload a

previous play and (c) save a game/play. Several other

menus are available or under construction. When we

put the hand over the icon more than 3 second the

option is activated, Fig. 8-3rd row, notice the arrow

over the hand.

A player can use in-game features that enable the

player to save a clip of his last move (option b), in

order to see what went right or wrong, and show it on

the table on-the-fly. A move can also be saved

(option c), in XML format for it to be loaded later,

allowing the player to practise that move later.

The hand detection is based on the same principle of

the ball detection. It is detected by comparing actual

frame with the table reference frame . If the

number of white pixels (PP) is higher than 95% of

the icon circular area, then it assumes the player has

selected the menu (this has to occur during 3

continuous seconds),

 ∑ ∑

with {

within the circular area (

)

 (

)

 and are the dimensions of each icon of

the menu,

 and () the centre

of each icon; .

The same process is used to disable the pop-up menu.

If all icon areas have a PP value above for more

than 10 second the menu is disabled. To pop-up the

menus again, we have to put both hands again in the

area where the faces are presented at the beginning.

Despite this menu being quite easy to use, especially

for people used to handling tablets, for instance, it

can, however, be difficult for people not used to ICT.

Taking this into account we are also studying the

integration of previous works [SRB09, SFT*13] in

hand and head gestures as interface to the tool.

6. Conclusion and Future work
In this paper, we presented a system that aids a

beginner player to play pool. Using a standard HD

webcam, it allows detecting table boundaries, balls

and cue stick. A projector, placed above the table,

can show, in real time, the computed trajectory line

in order to give a player a perception of what is going

to happen in that particular move.

The system has two stages: (a) The setup, this is done

only once, the first time that the system is mounted

(or if the table changes position). In this stage there is

a computer interface menu with all the parameters

that can be adjusted. If any parameter adjustment is

necessary, this is done only at this stage. After this

(b) the running stage, every interaction with the

system is done using the table as interface, i.e., using

the augmented reality menu. There are no parameters

to be adjusted at this stage.

The system works in real time, and all the tests and

results showed were very good. In term of

comparison with previous systems, it is quite

difficult, because as for the best of our knowledge

there isn’t any database or ranking to test this

algorithms, plus this is only system working in real

time in real conditions, systems like [DRK*03,

HM07, SW10, HGB*10, PLC*11, LPC*11,

LLX*12] work on video taken from championship of

pool or snooker, and [DGM*09, AAG*10, LDM11,

NKH*11] work in a more or less controlled

environment because of the robots.

We must also make a small note about the projector

calibration. This is easily done using the menu of the

projector itself, keeping only attention to the fact that

the projected area must cover all playable area of the

table. The projection in the table does not affect the

balls and cue detection, as there is no projection

when a move is made and only are projected again

when all balls stopped (or when the player requests

the menu, as referred in section 5). All frame

acquisitions are done during these intervals.

In the near future we plan to enhance the ball

detection, enabling it to detect balls when they are in

contact with each other. We hope to enhance the cue

detection, to develop a system to minimize the

angular error on a table boundary and to reduce the

error given by a player not shooting the ball in the

centre of it, taking the speed of the strike into

account. Also to improve the quality distortions in

the camera optics should be handled. A further future

goal is to finish (increase the number of options) and

improve the augmented reality menu.

7. ACKNOWLEDGMENTS
This work was partly supported by the Portuguese

Foundation for Science and Technology (FCT),

project PEst-OE/EEI/LA0009/2011. We also thank

Conceição Bravo for the English revising of the

paper and the Association Jovem Sambrasense for

providing the pool table for the system development.

Figure 8. Some examples of the Augmented.

Reality Menu.

8. REFERENCES
[AAG*10] Archibald, C., Altman, A. and Greenspan,

M. and Shoham, Y. Computational Pool: A New

Challenge for Game Theory Pragmatics.

Magazine article from AI Magazine, vol. 31, no.

4, pp. 33-41, 2010.

[Can86] Canny, J. A computational approach to edge

detection. IEEE Trans. Pattern Anal. Mach.

Intell., vol. 8, no. 6, pp. 679-698, 1986.

[DRK*03] Denman, H., Rea, N., Kokaram, A.

Content-based analysis for video from snooker

broadcasts, Computer Vision and Image

Understanding, vol. 92, no. 2–3, pp. 176-195,

2003. doi:10.1016/j.cviu.2003.06.005.

[DH72] Duda, R., Hart, P.: Use of the Hough

transform to detect lines and curves in pictures.

Comm. ACM, vol. 15, pp. 11-15, 1972.

[DGM*09] Dussault, J., Greenspan, M., Landry, J.,

Leckie, W., Godard, M., Lam, J. Computational

and Robotic Pool. In Chap. XII of Digital Sport

for Performance Enhancement and Competitive

Evolution: Intelligent Gaming Technologies, IGI

Global, pp. 194-209, 2009. doi: 10.4018/978-1-

60566-406-4.ch012

[HM07] Hao, G., MacNamee, B. Using Computer

Vision to Create a 3D Representation of a

Snooker Table for Televised Competition

Broadcasting. In Proc. 18th Irish Conf. on

Artifical Intelligence & Cognitive Science, 2007.

[HGB*10] Höferlin, M., Grundy, E., Borgo, R.,

Weiskopf, D., Chen, M., Griffiths, I.W., Griffiths,

W. Video Visualization for Snooker Skill

Training. Comput. Graph. Forum, vol. 29, no. 3,

pp. 1053-1062, 2010.

[LDM11] Landry, J. and Dussault, J. and Mahey, P.

Billiards: an optimization challenge, In Proc. 4th

Int. Conf. on Computer Science and Software

Engineering, Montreal, Quebec, Canada, pp. 129-

132, 2011. doi: 10.1145/1992896.1992912

[LG06] Leckie, W. and Greenspan, M. An event-

based pool physics simulator. In Proc. 11th Int.

Conf. on Advances in Computer Games, Taipei,

Taiwan, Springer-Verlag LNCS 4250, pp. 247-

262, 2006. doi: 10.1007/11922155_19

[LPC*11] Legg, P.A., Parry, M.L., Chung, D.H.S.,

Jiang, R., Morris, A., Griffiths, I.W., Marshall,

D., Chen, M. Intelligent filtering by semantic

importance for single-view 3D reconstruction

from Snooker video. In Proc. 18th IEEE Int.

Conf. on Image Processing, pp. 2385-2388, 2011.

doi: 10.1109/ICIP.2011.6116122

[LLX*12] Ling, Y. Li. S., Xu, P. Zhou, B. The

detection of multi-objective billiards in snooker

game video. In Proc. 3rd Int. Conf. on Intelligent

Control and Information Processing, pp. 594-596,

2012.

[NKH*11] Nierhoff, T., Kourakos, O., Hirche, S.

Playing pool with a dual-armed robot," Robotics

and Automation (ICRA), Proc. IEEE Int. Conf.

on Robotics and Automation, pp.3445-3446,

2011. doi: 10.1109/ICRA.2011.5980204

[PLC*11] Parry, M.L., Legg, P.A., Chung, D.H.S.,

Griffiths, I.W., Chen, M. Hierarchical Event

Selection for Video Storyboards with a Case

Study on Snooker Video Visualization, IEEE Tr.

on Visualization and Computer Graphics, Vol.17,

no.12, pp. 1747-1756, 2011. doi:

10.1109/TVCG.2011.208

[SRB09] Saleiro, M., Rodrigues, J. and du Buf,

J.M.H. Automatic hand or head gesture interface

for individuals with motor impairments, senior

citizens and young children. In Proc. Int. Conf. on

Software Development for Enhancing

Accessibility and Fighting Info-exclusion, pp.

165-171, 2009.

[SFT*13] Saleiro, S., Farrajota, M., Terzic, K.,

Rodrigues, J.M.H, du Buf, J.M.H (2013) A

biological and realtime framework for hand

gestures and head poses, accepted for 15th Int.

Conf. on Human-Computer Interaction -

 Universal Access in Human-Computer

Interaction Conf., 2013.

[SW10] Shen, W., Wu, L. A method of billiard

objects detection based on Snooker game video.

In Proc. 2nd Int. Conf. on Future Computer and

Communication, vol. 2, pp. 251-255, 2010. doi:

10.1109/ICFCC.2010.5497393

[Rus11] Russ, J.C. The Image Processing Handbook,

6th Ed., CRC Press Inc., 2011.

Figure 9. More results with different layouts.

