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ABSTRACT 

Triangulation 2D and 3D methods represent an important part of numerical modeling process (e.g. FEM). In 
many applications it is suitable to use triangulations with a regular structure. Moreover, decomposition with a 
limited number of different types of tetrahedra enables to reduce the storage and computational demands in the 
whole modeling process. The submitted contribution presents an overview of possible 3D decompositions using 
one tetrahedron (regular tilings). These decompositions are confronted with decompositions using six different 
types of tetrahedra (orthogonal structured tilings). Considering the shape expressivity of particular methods, the 
paper presents a structure of possible decompositions and comparison of storage demands of the used 
decompositions. 
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1. INTRODUCTION 
The tasks connected with space decomposition have 
been presented in various research areas for a long 
time, and they are connected with Hilbert’s 18th 
problem [H], [G 1980]. The whole raster graphic 
concept can be seen from this point of view. A 
different raster concept, based on regular hexagonal 
mesh, is analyzed e.g. in [M 2005]. 

Within the numerical methods development, space 
discretization has become an important tool of shape 
expressivity. For example, in the finite element 
modeling (FEM), the domain of interest is 
decomposed to simple polyhedral elements. In the 
simplest case, the triangles for 2D tasks and 
tetrahedra for 3D tasks are used. Nowadays, there is a 
wide range of generators used for decomposition 
(meshes), e.g. [E 2001], [F 2000]. 

Surprisingly, we may expect that with HW 
development the role of regular meshes for physically 
based modeling will grow. For example, CT 

technologies of 3D scanning give us information 
about geometry in a regular rectangular grid. Thus, 
the originally demanding preparation of the analyzed 
domain geometry is possible to fully automatize in a 
very simple way, [P 2003], [A 2007]. 

Advantages of this approach: 

1. simplicity, 
2. velocity, 
3. relatively small storage demands (hereby 

described geometry contains  a huge amount of 
grid vertices, but it is not necessary to keep their 
coordinates – these can be simply calculated), 

4. regular structure of the equations system which 
must be solved. 

The results of this approach significantly exceed its 
disadvantages: 

1. From the numerical model viewpoint, the 
discretization error – aliasing – of boundaries of 
particular domain areas has only a very local 
character [A 2007]. 

2. Moreover, this error may be eliminated by the 
pixel/voxel partitioning; either from the 
geometry viewpoint – Fig. 1, [L 2013] or from 
the numerical solution viewpoint – Fig. 2. Even 
though this method is only partial, it is very 
effective in many cases. 

3. Using Marching Cubes and Marching 
Tetrahedra methods (originally developed 
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directly for these rectangular grids), it is 
possible to eliminate effectively this 
discretization error, e.g. [P 2005]. 

     
a)  b) 

Figure 1 a) Raster representation and b) partitioned 
raster representation [L2013]. 

 

Figure 2 Local character of the influence of the 
domain boundary aliasing to the stress tensor. 

Next approach of regular rasterization [L 2013] can 
be based on equilateral triangles – Fig. 3a): regular 
rectangular mesh (black lines) is deformed and 
proper diagonals (gray lines) are added. In this case, 
the major part of triangles (all except for the 

boundary ones) is equilateral. Fig. 3b) gives the 
example of such rasterization. While in the concept 
of the partitioning from Fig. 1b) the choice of the 
diagonals depends on material (color) distribution in 
the raster grid, the partitioning in the concept from 
Fig. 3a) is regular – ‘zig-zag’. 

      
a)   b) 

Figure 3 a) Generalized rasterization based on a 
‘deformed’ regular grid (black lines), supplemented 
with diagonals (gray lines), b) example of rasterized 

image [L2013]. 

The paper presents an overview of all known space 
decomposition methods to identical tetrahedra 
(regular tetrahedral tiling). This mechanism 
influences the result of the Marching Cubes 
(Tetrahedra) method. 

While Sommerville decompositions (Section 2.1) are 
relatively well known and widely used in the 
computer modeling area, Goldberg decompositions 
(Section 2.2) are considerably less known among the 
computer graphic community. Mutual dependences of 
these decompositions are mentioned. 

The method of orthogonal structured tilings 
(decomposition to several different tetrahedra) is also 
described. 

Acomparison of the shape expressivity of mentioned 
methods is presented. 

2. REGULAR TETRAHEDRAL 
TILINGS 

At present, two approaches of regular tetrahedral 
tilings are known [G 1978], [S 1981]. 

1. decompositions obtained by partitioning of a 
regular rectangular grid using only one type of 
tetrahedral element (Sommerville), 

2. decompositions obtained by partitioning of a 3-
sided prism (Goldberg). 

 

2.1 Regular rectangular grid partitioning  

Let us consider a regular rectangular grid (voxel 
grid). Its basic volume element is an orthogonal prism 
(brick). There are five partitioning tetrahedra 
obtained by its decomposition. The basic one is 
tetrahedron I. (Fig. 4), where vertex D is the centre of 
the cube, C is the centre of the right side. 



 
I.  II.  III.  

Figure 4 Tiling tetrahedra, part 1. 

The tetrahedron II (Fig. 4) is a union of two 
tetrahedra of the type I with common face ACD. The 
tetrahedron III is a union of the two tetrahedra of the 
type I with common face ABC. Table 1 shows the 
mutual rate of edges of the described tetrahedra. 

 

I. 
ABDC 

AB 
2 

BD 

3  

AD 

3  

AC 

2  

BC 

2  

DC 
1 

II. 
ABDE 

AB 
2 

BD 

3  

AD 

3  

AE 
2 

BE 

2 2  

DE 

3  

III. 
ABDF 

AB 
2 

BD 

3  

AD 

3  

AF 

3  

BF 

3  

DF 
2 

IV. 
ABDH 

AB 
2 

BD 

3  

AD 

3  

AH 

25  

BH 

25  

DH 
25

 
V. 
ABJF 

AB 
2 

BJ 
211  

AJ 

23  

AF 

3  

BF 

3  

JF 
211

 

Table 1 Lengths of edges of the tiling tetrahedra for a 
rectangular grid partitioning. 

Note that the tetrahedron II is asymmetrical and in 
this case, the decomposition has to contain mutually 
symmetric pairs of tetrahedra. We say that such a 
regular tiling is asymmetrical. 

Next two types of partitioning tetrahedra are derived 
from the type III: 

Let us consider the node G – the centre of the edge 
AB and the node C – the centre of the edge DF 
(Fig. 4 III’.). We abbreviate H – the centre of the 
segment CG. It is obvious that H is the centre of the 
sphere circumscribed to the tetrahedron ABDF. 
Because of the fact that the faces of ABDF – III 
(Fig. 4, Tab. 1) are identical, using the vertex H we 
can decompose this tetrahedron to four identical 
tetrahedra ABDH, BAFH, DFAH, and FDBH. Thus 
the ABDH tetrahedron generates a symmetrical tiling 
(Fig. 5 IV.). 

 
III‘.  IV.  V. 

Figure 5 Tiling tetrahedra, part 2. 

 

Let J be the centre of the edge AD. Then the 
tetrahedra ABFJ and DFBJ are symmetrical, i.e. 

tetrahedron ABFJ generates an asymmetrical tiling 
(Fig. 5 V.). 

 

2.2 Decompositions from 3-sided prism 
Let us consider a right prism whose normal section is 
an equilateral triangle of edge e. On the edges of the 
prism we generate vertices by „gradual rolling 
up“(red polyline) with given shift h (Fig. 6). 

The tetrahedron ABCD – VI. obviously generates a 
tiling: let us consider neighbor tetrahedra ABCD and 
BCDB’. Each of them contains three edges of length 
a – red, (AB,BC,CD, BC,CD,DB’ respectively), two 
edges of length b – blue, (AC,BD, BD,CB’ 
respectively), one edge of length 3h – black AD, BB’ 
respectively). Moreover, both terahedra ABCD and 
BCDB’ have the same orientation. 

 
 Figure 6 Basic partition of 3-sided prism – VI . 

Since the ratio h/e is arbitrary, there is a continuous 
infinity of tiling tetrahedra of this type where  

22 hea += ,        (1) 

22 4heb += .        (2) 

 

Another two tiling tetrahedra – VII., VIII., (Fig. 7) 
can be derived in the following way:  

vertex E is the centre of the edge AD, and so the 
triangle BCE is isosceles, i.e. BE=CE=c, where 
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Similarly the vertex F is the centre of the edge BC 
and so the triangle ADF is isosceles, i.e. AF=DF=d. 
Moreover, angle ∠ BFD is right one, so 
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VII.   VIII. 

Figure 7 Tiling tetrahedra for 3-sided prism. 

 

Table 2 shows the lengths of edges of partitioning 
tetrahedra for a 3-sided prism. 

 

VI. 
ABCD 

AB  
a         

BC  
a         

AC  
b       

AD 
3h      

BD  
b 

CD  
a         

VII. 
ABCE 

AB  
a         

BC  
a         

AC  
b       

AE 
1,5h   

BE       
c         

CE  
c        

VIII. 
ABFD 

AB  
a         

BF  
a 

AF 
d   

AD  
3h 

BD  
b         

FD  
d       

Table 2 Lengths of edges of the tiling tetrahedra for a 
3-sided prism partitioning. 

 

Lemma 1. The below described relations between 
tiling tetrahedra are valid:  

a) tetrahedron III. is a special case of the trahedron 
VI., 

b) tetrahedron II. is a special case of the tetrahedron 
VII., 

c) tetrahedron V. is a special case of the tetrahedron 
VII., VIII., respectively. 

 

Proof:  We shall prove relation a). 

Let us consider tetrahedron VI. with 
228 eh = . 

According to (1), (2)   

ha 3= , hb 32= , . 

So, we have obtained tetrahedron III. – Tab. 1.  

The rest of relations can be proved in similar way. 
More detailed proof in [G 1978].       q.e.d. 

 

So far, there are not known any other regular tilings; 
on the other hand, their absence has not been proved 
yet [G 1978]. 

 

2.3 Decomposition conformity 
Within the context of numerical modeling, the 
possibility of continuous interpolation is usually 
required. This is the reason why we suppose 
conformity of the used decomposition, i.e. the 
neighbor elements share either just one vertex, or the 
whole edge, or the whole face. This fact is 
automatically guaranteed by the above-described 
tilings, for the cases I. – V. excluding the 
decompositions based on tetrahedra II. For 
conformity of the tilings based on tetrahedron II, it is 
required that the neighbor voxels must be partitioned 
by the same diagonal (which is quite a natural 
assumption). 

In the case of tetrahedra VI. – VIII., the „gradual 
rolling up“ in the neighbor 3-sided prism must be 
realized in the way of the mirror symmetry. 
Generally, if the tetrahedron VI. is asymmetric, the 
corresponding tilings are asymmetric too. 

3. ORTHOHONAL STRUCTURED 
TILINGS 

Let us show another way of decomposition. If we 
extenuate the condition of the tiling, i.e. we consider 
more than one type of tetrahedra (but the finite 
number), it is required that the tetrahedra vertices be 
the vertices created just from the original vertices 
from the orthogonal grid (inscribed tetrahedra). This 
decomposition is called orthogonal structured one. 

The following relations are valid (the class of 
elements, decompositions respectively, is the set of 
elements, decompositions respectively, which differ 
only by the angle of rotation). 

Lemma 2. There are 5 tetrahedra classes creating an 
orthogonal structured tiling (Fig. 8). 

 

 
a)  b)    c)     d)      e) 

Figure 8 Tetrahedra of an orthogonal structured 
tiling. 

 

The proof is simple; we obtain it by a detailed 
analysis of all four-element subsets of the orthogonal 
brick.     q.e.d. 

Corollary:  there are 58 different tetrahedra inscribed 
into the cube. 

Lemma 3. There is one class of the conform 
decomposition to 5 tetrahedra and 5 classes if the 



conform decompositions to 6 tetrahedra (Fig. 8 – 9). 
[A 2003], [K 1999]. 

The proof results from the following facts. 

1. The analysis of the conformal 5-element 
decompositions is trivial. 

2. Conformal decomposition to 6-tetrahedra contains 
exactly one body diagonal. 

3. The decomposition classes are uniquely 
determined by replacing the pair of tetrahedra 
b)c) from Fig. 8 with the pair a)d) – see Fig. 9a)-
b). Similarly, we can replace other two pairs of 
tetrahedra b)c). The last type of decomposition is 
from Fig. 9e). 

     q.e.d. 

Figures 9a) and e) show the most important 
decompositions often used within FEM modeling. 
Their important feature is that in both cases all three 
pairs of diagonals on opposite faces are mutually 
parallel.  

   

a)  b)  e) 

Figure 9  Examples of orthogonal structured tilings. 

 

Figure 10 shows dual representation of all possible 
classes of conformal orthogonal structured tilings: 
tetrahedron is represented as a node, nodes are 
connected with the edge iff the tetrahedra are 
neighbor. The colors of tetrahedra from Figure 8 and 
nodes from Figure 10 mutually correspond. The 
abbreviation of tetrahedra from Fig. 9 and dual 
representations from Fig. 10 mutually correspond, i.e. 
the decomposition in Fig.9e corresponds to the 
representation in Fig. 10e). 

 

 
a)   b)   c)    d)     e)      f) 

Figure 10  Dual representation of conform 
decompositions. 

Lemma 4. There are 72 decompositions to 6 
tetrahedra and two decompositions to 5 tetrahedra 
[K 1999]. 

The proof results from the analysis of rotating 
symmetries of particular classes. 

Polyhedra from Fig 11 represent examples of well 
known Schönhardt’s polyhedra, for which there exists 
no conformal decomposition (e.g. [R 2005]). 

The diagonal configurations from Fig. 11 may be 
characterized as follows: each vertex is incident to 
the limit of two diagonals and 

a) exactly two pairs of diagonals on the opposite 
sides are skew, 

b) all three pairs of diagonals on the opposite sides 
are skew. 

 

Lemma 5 and 6 give finer results than [R 2005]. 

Lemma 5. For configuration of the surface diagonals 
from Figure 11a) there are nonconform decom-
positions only. 

Lemma 6. For configuration of the surface diagonals 
from Figure 11b) there are no decompositions. 

The proof of Lemmas 5 and 6 [K 1999] results from 
the fact, that the nonconform decomposition contains 
exactly two body diagonals. 

 
a)  b) 

Figure 11  The surface diagonals configuration in 
which a) there are the nonconform decompositions 
only b) there is no decomposition. 

Importance of last two Lemmas consists in conform 
decomposition algorithm: 

1.  Rectangular regular grid is generated. 
2.  Facial and space diagonals due to 

prescribed geometry are added. 
3.  Rest of diagonals is added – avoiding 

the configurations from the Fig. 11. 
 

So far, there are not known any better algorithms for 
conform decompositions generation for general 
prescribed geometry. 

Nonconformity decomposition can be solved 
effectively when the orthogonality of the initial grid 
is weakened [K 2002]. 

4. SHAPE EXPRESSIVITY OF THE 
DECOMPOSITIONS 

Let us consider a regular orthogonal grid with n 
vertices in each direction. 

Table 3 shows the dependences of the number of 
vertices and the tetrahedra. 

 Number of 
vertices 

Number of 
tetrahedra 

I. ( )( )23 114 −−+ nnn  ( )3124 −n  



II. ( )33 1−+ nn  ( )3112 −n  

III. ( )33 1−+ nn  ( )3112 −n  

IV. ( )33 113 −+ nn  ( )3148 −n  

V. ( )33 19 −+ nn  ( )3124 −n  

Table 3: The vertices and tetrahedra in the 
decomposed voxel grid with n3 vertices. 

 

On the other hand, all the structured decompositions 
to 6-tetrahedra keep their original number of vertices 
n3. The number of elements is 6(n-1)3. 

When editing the primary voxel grid, it is necessary 
not to be limited by the selection of the surface 
diagonals on the bricks. Obviously, each of the 
mentioned decompositions I. – V. allows to select the 
diagonals on the common face of bricks 
independently. To be more exact, all the 
decompositions, except for II, contain both diagonals 
on each side. In the case of the decomposition II, it is 
possible to select the face diagonals independently. 
Here the decomposition is directly determined by the 
surface diagonals selection. 

From this point of view, it is meaningful to compare 
the orthogonal structured tiling (from Section 3) with 
the decomposition II only. Table 4 shows an 
overview of the results. 

Deco
mposit
ion 

Number of 
vertices 

Number of 
tetrahedra 

Number of 
decompositions 

The surface 
diagonals 

limits 

II. ≈ 2N ≈ 12N 64 No 
Struct. N ≈ 6N 72 Yes  

 

Table 4: Global characteristics of the orthogonal structured 
tilings and tiling II. 

 

5. CONCLUSIONS 
The submitted paper describes various approaches to 
generation of tetrahedral decompositions with a 
fixedly determined structure. Apart from the 
commonly used Sommerville decompositions based 
on a regular orthogonal grid, there are also analyzed 
Goldberg decompositions, which enable to use a 
more general discretization grid. Moreover, for the 
initial orthogonal grid there is also analyzed a more 
general decomposition to six tetrahedra, using a 
pentad of different tetrahedra. The basic properties of 
these decompositions are formulated and it is shown 
(Tab. 4) how extenuating the conditions may increase 
the possibilities of expression of various shapes. 
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