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ABSTRACT 
Optical flow is widely used to estimate the velocity of objects relative to a digital camera. Most commonly, two 

images taken with the same camera at small time difference are compared in order to detect the displacement of  

structures in 2D image space. Such displacement could be a measure of displacement, or motion, of objects in the 

scene relative to the camera. At high velocities, the displacement in image space is relatively large and the 

correlation of image structures gets more difficult. The displacement can be reduced by reducing the time 

difference, or increasing the number of frames taken per second. However, due to the reduced exposure time, the 

quality of the individual images gets poorer. In some practical situations, it appears technically very difficult to 

achieve reliable speed measurement at high velocities, even when using high-speed cameras. One example is the 

measurement of self-speed from images of the road surface taken with a camera from a driving car. In view of 

this purpose we explore the potential of the method and its limitations. 
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1. INTRODUCTION 
Optical flow is, both in biology and in technology, an 

important phenomenon. It is the motion of structures 

in a two-dimensional projection from a three-

dimensional scene. In biology, optical flow is 

considered crucial for animal and human vision, the 

detection of moving objects and the experience of 

self-speed. In computer vision, optical flow is the 

basic observable to quantify speed of objects relative 

to other objects, or relative to the camera taking the 

scene. The latter process is referred to as self-speed 

estimation or measurement. 

In this paper we research the feasibility of self-speed 

measurement of a car driving on a highway based on 

optical flow, under poor visibility conditions such as 

low-contrast texture. In section 2 we describe the 

motivation of the investigation and the requirements 

of the method. Also the scope of this paper will be 

precisely defined. In section 3 we present the 

technical approach and in section 4 we define the 

experimental conditions. In section 5 we present the 

experiments and results. Conclusions about the 

feasibility of the method and outlook are described in 

Section 6. 

2. MOTIVATION AND 

REQUIREMENTS 
The research aims at a method to extract and record 

self-speed of a car and in addition visual scene 

information, using an instrument which can be easily 

mounted in a car. This paper deals with, and its scope 

is limited to, the feasibility of such instrument. The 

background of the research is the study on car 

drivers’ behavior during highway traffic congestions 

and on new approaches to influence the driving style 

and to reduce traffic jams. Both the emergence of 

congestions and their dissolution have got due 

attention in research over decades. Based on traffic 

flow models, simulation systems have been 

developed to study all kind of phenomena of traffic 

on micro and macro scales, under various conditions 

in various scenarios. The behavior of individual car 

drivers is central to most traffic flow models, in 

particular when they categorize as car-following 

models. These models assume that a car driver 

controls his/her car mainly as a function of other cars, 

in front (if any). The acceleration (positive or 

negative) of the car is modeled as a function of own 

speed and the speed of the car ahead and its distance. 

Treiber (2003) proposed that car-following 

characteristics not only differ among drivers, but may 

also vary for one driver over time. He has modeled 
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memory effects in the response behavior of drivers to 

the traffic situation, e.g. by presuming that after being 

stuck in a jam, drivers tend to increase the time gap to 

the preceding vehicle. When incorporating this 

memory effect into the IDM (Intelligent driver 

model), traffic flow simulations get increasingly 

consistent with the measured data (Treiber 2003). 

If cars tend to accelerate slowly after leaving a traffic 

jam, it may cause a significant decrease of road 

capacity and cause congestions to be over-persistent. 

Numerical simulations have shown that the life time 

and length of jams as well as delays of individual cars 

increase significantly when the acceleration 

parameters of the IDM are reduced [Vergeest 2012].  

Although there are anecdotic indications that people 

tend to leave traffic jams too slowly, we have not 

found any objective reporting about this. It is the 

main goal of our research to obtain statistical 

information about drivers’ behavior just after having 

been stuck in a jam. Without this information being 

available, we can only speculate about ways to 

influence and improve the driving style and thus to 

avoid OPCs (over-persistent congestions). 

We should point out here that the ACC (adaptive 

cruise control) and similar systems could reduce the 

problem of OPCs. However, although the penetration 

rate of ACC is increasing, it is not yet evident that 

they operate efficiently and safely during congestions 

and other low-speed situations (Xiong 2012). 

Therefore we will focus on fully human-controlled 

cars. 

One could reflect about obtaining statistics of human 

driving behavior by using a car simulator. Suppose 

that the car simulator were based on the IDM (or 

similar) model. Then the virtual traffic provided by 

the simulator accelerates according to the IDM. The 

subject’s car is operated by a test person, allowing the 

actual acceleration characteristics (and other 

parameters) of the test person to be recorded. The 

scenario provided by the simulator may contain 

congestion conditions. In this way, using the data 

from many test persons, the acceleration profile (as 

function of distance and speed) could be statistically 

obtained. There is, however, one basic assumption 

undermining this approach. The virtual, surrounding 

traffic generated by the simulator is based on the 

IDM and not on the actual acceleration profile, which 

is actually the unknown we are after. The difference 

between the model’s profile and the real-life profile 

could bias the profile exhibited by the test persons 

driving the simulator. 

In our aim to obtain the real-life acceleration 

behavior of drivers we focus on three main 

parameters: 1) time, 2) the speed of the own vehicle 

and 3) the distance to the car ahead. From the latter 

the speed of the car ahead (relative to the own car) 

can be derived. Although useful, the location of the 

own vehicle as a function of time is not needed to 

detect the occurrence of OCPs. We limit our study to 

cars in a single lane. Our interest is in situations were 

cars leave a congestion, which represent, however, 

only a small fraction of typical journeys. 

One way to collect sufficient statistics is to record the 

three aforementioned parameters of cars participating 

in traffic over long periods of time. The situations of 

interest should then be filtered out in subsequent data 

analysis. 

Once somebody volunteers to participate in the 

research and, it should be made very easy to adapt 

his/her own car. We formulate the requirements of 

the data taking system: 

1. It should be portable and easily and quickly 

installable in any common passenger car. The car 

driver him/herself should be able to install and 

take out the system in less than 1 minute. 

2. It should require no or very little effort or 

attention to operate the system. A single on/off 

switch should suffice. Automatic switch on/off is 

also an option. It should not distract the attention 

of the driver during driving. 

3. The instrument(s) should not be expensive or 

otherwise attract the attention from people 

passing by. 

4. The recording capacity should be sufficient for 

about 50 to 100 hours of driving time. 

We list no requirements about computer processing, 

assuming that the data needs not be analyzed real-

time. The extraction of the three parameters from the 

raw data will be done offline as will be the analysis. 

Let us define the scope and purpose of this paper 

more precisely. The main purpose of this paper is to 

find out whether it is feasible to collect empirical data 

subject to the 5 requirements listed above. (The 

conclusion of the paper is that it is not, to our best 

knowledge). In Section 3 we reason that a possible 

approach could be based on a simply mountable 

camera, inside the car, viewing into forward 

direction. To actually detect optical flow from image 

sequences can be done with a multitude of methods, 

as e.g. reviewed by [Barron 1994]. Although the 

performances of the various analysis techniques 

differ, their effectiveness in view of our application is 

outside the scope of our paper. The major factor that 

limits the feasibility seems to be the image quality, 

rather than analysis performance. Therefore, our main 

focus is on requirements of image resolution at high 

self-speed. 



3. TECHNICAL APPROACH 
The most direct way of recording speed is to simply 

readout the car’s own speedometer. In principle, the 

speed (as many other data) can be obtained in digital 

form via a cable connector provided by the car 

manufacturer. However, the connection and the 

interface are not standardized, which makes it 

unpractical, considering requirement 1. 

The recording of own speed as a function of time 

could also be done using a GPS logging device. 

However, deriving your speed from GPS coordinates 

and time is sensitive to the accuracy of the GPS 

coordinates, which is know to vary depending on the 

quality of and the number of the satellite signals 

received. Some GPS devices can measure speed 

directly from the Doppler shift, which is more 

accurate, but also dependent on the satellite reception 

quality. In practice, measuring time and own speed 

using GPS is a good option, and might meet all 4 

requirements. 

However, we also need a practical way to measure 

the distance to the car ahead as a function of time. If 

one would have access to the GPS data from own car 

and from car ahead, the problem would be solved. In 

a controlled field experiment, it proved possible to 

collect data from 50 cars on a real highway, which 

was reserved for the time of the experiment [Schakel 

2010]. Each of the cars was equipped with a 

cooperative ACC, where the ACCs could 

communicate among each other. Theoretically, when 

all cars on all motorways would measure and 

communicate position, then the distance between any 

two cars could be obtained, see e.g. [Herrara 2010]. 

In practice this is not yet feasible. 

We are therefore looking for a way to measure the 

distance to the vehicle ahead from our own car, as a 

function of time. We consider two options. The first 

is radar-based. This concept is central to ACC 

systems and works reliably. It conflicts, however, 

requirement 1 and, since it would measure distance 

only, the recording of speed would involve one 

additional device or instrument. The other option is 

vision. As demonstrated in [Nieto 2010], the 

detection of own speed and of the distance to cars 

ahead can be retrieved from footage from a single 

onboard video camera. The measurement of speed is 

reliant on the detection of optical flow, or the 

displacement of image features between two 

subsequent frames from the video camera. Relatively 

clear image features are white lane markings on a 

dark surface road. However, at high velocity, the 

displacement of lane markings may become as large 

as the distance between the lane markings 

themselves, which is complicating the computation of 

speed [Vergeest 2012a]. Although lane markings are 

typically present on highway road surfaces, speed 

measurement should not depend on their occurrence. 

In general, temporal aliasing effects deteriorate the 

performance of optical flow methods [Marmarella 

2012]. However, also poor light conditions, camera 

noise and motion blur in the individual images pose a 

problem to the derivation of speed from the images.  

However, suppose that we could solve these 

problems, then we have an instrument that would 

fulfill all 4 requirements. The instrument is an 

onboard camera providing images of the scene ahead, 

at a certain frame rate. Even when the images do not 

contain a time stamp, knowing the time difference 

between subsequent images is sufficient for our 

purpose. From the optical flow we can derive the 

forward speed of the own car, not necessarily to be 

determined from lane marks for in case these are 

absent or too far apart, but in some other way, still to 

be found. Furthermore, from the same images we can 

detect the distance of the car ahead, based on Nieto’s 

method or as in [Vergeest 2012a]. 

We remark that optical flow detection should not 

necessarily depend on the availability of image 

frames. If the photo sensors of the camera could be 

read individually and instantly, the motion of image 

features might be even better identified. 

In conclusion, as a technical approach we consider an 

onboard camera. However, as the most dominant 

problem, we need to address self-speed estimation 

from optical flow at high velocity and poor visibility 

conditions in absence of clear features such as lane 

markings. 

4. EXPERIMENTAL CONDITIONS 
In this section we study the feasibility of estimating 

self-speed from optical flow. The main principle is to 

determine the displacement of objects in two 

subsequent images. We have discarded the rotational 

component, which can be expected to be small 

compared to the translational component, at high 

velocity. Also possible bends or slopes of the road 

surface are not taken into account, assuming that their 

effects will be small. 

As mentioned, when the scene contains clearly 

detectable features which can be well correlated, the 

displacement can be reliably determined, and the 

speed of the object relative to the camera be 

estimated [Souhila 2007]. In our application we focus 

on the road surface. Assuming that (at least locally) 

the road surface is consistent with a plane parallel to 

the driving direction of the car, points in the surface 

can be one-to-one mapped from 3D to points in the 

image plane of a camera fixed onto the car. Although 

the optical flow of objects such as trees or buildings 

may be relatively easily determined in the image 



plane, there would be no simple one-to-one mapping 

to the 3D scene. 

When the road surface does not contain obvious 

features, such as lane markings, the visual structure or 

texture of the road surface might be used to detect the 

amount of shift as a function of time as a measure of 

optical flow. When two images of the road surface 

are available, taken from the same camera at a small 

time difference, the matching criterion can be defined 

as a difference function of the two images, which 

should be minimized [Mammarella 2012]. At low 

speed, when the amount of shift is small, it is 

relatively easy to find matching regions in the two 

images. At high speed, there are two problems of 

finding matching image regions. The first is that the 

expected shift will be large, and therefore a larger 

range of potential shift needs to be considered. The 

probability that nearly similar structures pop up will 

increase, and so will the risk of false matches. 

Second, due to the high speed the image quality will 

degrade, either due to motion blur, to shorter shutter 

times (and hence an increased camera noise level), or 

both. When reducing the first problem (increasing the 

frame rate) the second problem gets worse.

 

Figure 1. Perspective parameters of the camera setup. The optical center c is at height h above the road 

surface. The driving direction is into the z-direction.

 

Let’s consider the simplified camera setup in Figure 

1. The camera is mounted inside the car near the 

front window, pointing into the driving direction, 

taking images as in Figure 2. In the pixel plane of 

the camera, which is assumed to be vertical, phorizon 

is the index (counting from bottom up) of the pixel 

line representing the horizon. plow is the lowest pixel 

line showing road surface. That particular line in the 

road surface has z-coordinate zlow as measured in 

the  coordinate frame with origin c. The height of 

the optical center c has y-coordinate equal to h. A 

point in the road surface at distance z from the 

camera in forward direction will be mapped to a 

pixel on scan line p, such that 

horizon low

low

horizon

p p
z z

p p
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We define Δp as the amount of vertical shift 

observed for a point on the surface between two 

successive camera pictures. Δp depends on the 

speed v of the car, the resolution and the frame rate 

of the camera, and on the location of the point in the 

perspective image. For points projected near the 

bottom of the picture, the optical flow measured in 

pixel shift is relatively large. For large Δp the image 

matching process will be computationally more 

involved and the risk of error will increase. 

Therefore, Δp will be an important parameter for 

the trade-off between image quality and maximum 

speed. 

 

 
Figure 2. Picture taken with an onboard camera. 

The region of analysis is indicated by the white 

box below the center of the image. 

In the exploration of the feasibility of image 

matching, we will set some further limitations to our 

scope. Out of the various types of difference 

functions we chose to use the sum of absolute 

differences (SAD) among pixel brightness of the 

image regions. Another assumption is that the 

image regions are located near the plane x=0 of the 

camera, as to simplify the compensation for 

perspective distortion. 

The focus of initial experimentation will be the 

ability to determine Δp from two given images, 

where we assume that 1) the images have been 

taken by the same camera, 2) a predefined region in 

the image is of interest, 3) the image in the region of 

z 

y 

h 

zlow 

c phorizon 

p 

plow 

optical centre 

pixel plane 

road surface 

 

driving direction 

 



interest is created according to the setup as in 

Figure 1. 

5. EXPERIMENTAL RESULTS 
We collected images with an HD-HERO2 video 

camera from GoPro [Gopro 2013]. This camera can 

easily be installed as a dashboard camera.  We 

setup the camera at frame rate u =120 fps. The field 

of view was 170° at a resolution of 848480 pixels. 

The optic flow of the road surface was determined 

from the pixel data in a small region of the images 

near z = 4.2m, see Figure 2. In this particular case 

the region is of size 18032 pixels. The SAD is 

determined by moving a subwindow  (smaller than 

the region) from one image over the region of the 

second image in steps of one pixel. In the current 

algorithm we ignore the (small) perspective 

distortion present in the regions. Suppose that we 

choose the subwindow to have size 16012 pixels. 

Then the maximum number of steps in the Y-

direction is 32-12=20, that is 9 pixels in each 

direction, which is the maximum Δp that would be 

detectable. 

For the camera setup we have zlow = 4.0m, plow = 

150 and phor = 320. The mapping factor f is the 

distance on road surface corresponding to an 

increment of one scan line, 

2

( )low hor low

z z
f

p z p p


 
 

,        (2) 

as can be derived from equation (1). At the bottom 

of the image region, which is near z = zlow, a shift of 

one pixel into the vertical direction corresponds 

with approximately f = 4.0/(320-150) = 0.024m 

distance on the road surface for our specific camera 

setting. Since Δp = v / uf, we have Δp = 3.5 pixels 

at v = 10m/s, or Δp = 11.6 pixels at 120km/h. 
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Figure 3. SAD of two consecutive images as a 

function of Y-shift. For each Y-shift 21 points are 

shown for X-shift = -10, -9, ...., 9, 10 pixels. 

Figure 3 shows, as an example for one pair of 

images, the SAD (divided by the number of pixels 

in the sub window) as a function of Y-shift. In this 

case we observe a minimal SAD at Y-shift or Δp  -

2, corresponding to v  6m/s or 21km/h. The lowest 

point in the plot of Figure 3 corresponds to an X-

shift of 0 (not visible in the plot). The speed derived 

from the plot is v = u f Δp, that is it is therefore 

discrete in steps of u f = 2.9m/s or 10.4km/h. One 

could attempt to fit a curve to the minimum SAD as 

a function of Y-shift and thus estimate v; we have 

not done that. 

 

Figure 4. Δp as a function of time over a 30s time 

interval. 

The footage from the HERO2 allows the 

measurement of v at its frame rate, provided that we 

can determine Δp. An impression of the reliability 

to determine Δp is given in Figure 4. The course of 

Δp can be recognized, but there are some “noisy” 

parts, which correspond to locations on the road 

where the surface lacks visual contrast. Figure 5 

provides more detail about this effect. 

In Figure 5 we show the measured speed as a 

function of time over a 1 second time interval. The 

hosting car was driving at a constant speed of 

approximately 30km/h. In the plot the speed is 

presented in units of  Δp. The SAD and the mean 

AD (the absolute differences averaged over all 

computed shifts) are included in the figure as well, 

where AD  SAD. For 10.4 < t < 11.1s Δp takes the 

value -2, which is quite consistent with the actual 

speed. Outside the interval, Δp seems scattered. 

Where both AD and SAD are small, Δp cannot be 

determined reliably; the image pairs do not exhibit 

enough contrast. Figure 6 depicts the scene where 

the change of road surface texture from rough to 

smooth occurs, near t = 11.1s.  
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Figure 5. Δp, SAD and mean AD as a function of 

time, over a one second time interval. 

 



 

Figure 6. Road surface texture changes from 

high to low contrast at t = 11.1s. 

When a smooth road surface exhibits little contrast, 

the SAD as function of Y-shift (Figure 7) is very 

different from the profile obtained in Figure 3. In 

Figure 7 we notice that both the SAD values 

themselves as their variation due to shift are much 

smaller. 
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Figure 7. SAD for an image pair of low contrast 

road surface. For convenience of comparison, 

the plot scales are the same as for Figure 3. 

 

 

Figure 8. Part of the low-contrast road surface   

(also visible in Figure 6), taken at higher 

resolution. The dimensions of the view are 

approximately 40×45cm. The white box 

represents the portion of the image which is used 

for view matching. 

 

 

Figure 9. SAD for an image pair of low contrast 

surface, where images are taken at high 

resolution. 

As mentioned, there are several parameters that may 

influence the SAD profile, such as the frame rate of 

the camera, its resolution and shutter time, but also 

parameters of the software including the choice and 

size of image region and subwindow. 

Concerning the image contrast itself, for now we 

consider two criteria. First, the degree of contrast 

that is required to achieve matching. Second, the 

degradation of contrast due to the speed of optical 

flow. 

With a photo camera we took a detailed still picture 

of the road surface in the low-contrast region, see 

Figure 8. Another similar picture was taken after the 

camera was manually repositioned a few centimeter 

further in the positive z-direction. Whereas the  

particular part of the surface road did not show 

contrast in Figure 6, it does in Figure 8. 

From two detailed images we could reliably find a 

match near Δp = -15, see Figure 9. The Y-shift in 

Figure 9 maps to a speed relative to the road surface 

as by equation (2), where f differs from the mapping 

factor we applied so far since Figure 9 has been 

obtained with a different camera setup. 

We thus found that the speed of the car could be 

determined from detailed pictures as in Figure 8, 

even when the image contrast is low. However, the 

picture pair from which Figure 9 is derived would 

not be reproducable with the video camera we 

applied earlier, for two reasons. First, due to the 

high resolution, the optic flow measured in pixels/s 

would be very high (in the order of 3000 pixels/s) 

and hence a very short shutter time would be 

required to obtain a non-blurred image. Second, the 

frame rate should be an order of magnitude larger, 

to keep the Y-shift between the two images between 

10 and 20 pixels. This latter requirement is of 

course depending on the maximum speed we intend 

to measure. 



6. CONCLUSIONS 
If a road surface exhibits sufficient visual contrast, 

the optical flow can be captured with simple 

equipment at low cost. The collection of large 

statistics data over long traveling times about the 

driving speed of a car (and its distance to cars in 

front) would then be feasible. We have 

demonstrated that the footage from a simple video 

camera is sufficient to measure the car’s speed 

without being dependent on artificial features such 

as white road markings. 

When the surface road contrast gets low and/or the 

car speed gets high, the method becomes unreliable. 

However, even low-contrast asphalt exhibits texture 

from which optical flow can be detected, provided 

that high-quality images at small time intervals were 

available. It would not be necessary to continuously 

store images at a high frame rate. For our 

experimental research it is sufficient to obtain (for 

example) only one image pair per second, where the 

time difference between the images is small 

(perhaps in the order of 0.1ms or less). We have not 

yet found a device which could perform like this. 

A possible method could be to apply two photo 

cameras. The cameras should be mounted closely 

adjacent, aiming at the same point on the road, 

probably highly zoomed. Shutter times should be 

short. Then the cameras should be triggered to take 

one picture every second, where one camera is 

triggered 0.1ms later than the other one. If pictures 

as in Figure 7 are obtained this way, the optical 

flow and hence the speed of the car relative to the 

ground can be recorded as a function of time. 

There is another advantage of applying higher 

resolution, and thus small f, considering the 

definition of f in equation (2). The speed is derived 

from the Y-shift, which is essentially a discrete 

value, although the appearance of plots as in Figure 

3 suggest that a curve can be fitted against the data, 

from which a minimum could be derived. If the 

discrete minimum is used, the speed v = u f Δp  is 

measured in steps of uf. Since the frame rate u 

should be high, f should be as small as possible in 

order to determine v accurately. 

Another factor is the luminous intensity of the 

scene. If high intensity spotlights are applied, a 

small f can be reached. It would involve the 

installing of extra high-power lights on a car, which 

violates requirement 1. 

As mentioned, the detection and quantification of 

optic flow does not necessarily require image 

frames. If individual pixels of the optical sensor 

could be read-out at high speed, for example 

10KHz, then even small and low-contrast features 

might be traceable. Their speed in sensor space 

would be a measure of the car’s speed. A similar 

principle is applied in the optical mouse. 

Another option could be the projection of a laser 

beam onto the road surface during a predefined time 

period x. A picture of the road surface taken with a 

relatively long lens opening time (much longer than 

x seconds) will show a line on the road surface 

caused by the laser beam. The length of the line, 

which can be reconstructed using equation (2) is 

proportional to v. The advantage of this method is 

that low-quality cameras could be applied. 

However, the total setup of equipment gets more 

complicated due to the inclusion of the laser device. 

At present, the most feasible method (fulfilling the 

4 requirements) seems to be based on optical flow 

detection using a single camera or a synchronized 

pair of cameras. It is still an open question whether 

images with quality comparable to the one in Figure 

8, can be obtained from a car driving at high speed 

on a road with low-contrast surface texture. 

Weather and light conditions play an important role 

as well. 
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