

A Comparative Analysis of Spatial Partitioning
Methods for Large-scale, Real-time Crowd

Simulation

Bo Li

University of Canterbury
Christchurch, New Zealand

bli62@uclive.ac.nz

Ramakrishnan Mukundan

University of Canterbury
Christchurch, New Zealand

mukundan@canterbury.ac.nz

ABSTRACT
Acceleration algorithms involving spatial partitioning methods are extensively used in crowd simulation for real-

time collision avoidance. Memory and update costs become increasingly important as the crowd size becomes

large. The paper presents a detailed analysis of the effectiveness of spatial subdivision data structures,

specifically for large-scale crowd simulation. The results demonstrate that a regular grid data structure combined

with an extended oriented bounding volume for crowd members can facilitate efficient updates necessary for

real-time performance.

Keywords
Crowd simulation, crowd animation, partitioning algorithms, collision detection, subdivision data structures,

bounding volumes.

1. INTRODUCTION
Crowd simulation and animation is an active area of

research that finds several applications in computer

graphics, analysis and design of urban environments

and the development of emergency evacuation

strategies [SOH11], [WXZ
+
11]. In recent years, real-

time crowd simulation applications have gained

importance in virtual training systems, such as

combat operations training [QC09]. Real-time

simulation of large-scale crowd movement requires

effective spatial partitioning methods that can

provide fast updates.

Space partitioning techniques [Sam06] are widely

used for broad phase collision detection between

objects and also for collision avoidance with

obstacles. The more general problem of crowd

detection however addresses various other aspects

such as narrow-phase collision detection using

intersection tests between pairs of geometrical

primitives, and collision response algorithms. Several

space partitioning data structures such as quadtrees

[KLZ08], k-d trees [GCL
+
10] and regular grids

[BQ10] are commonly used to reduce the number of

comparisons between objects. Bounding interval

hierarchies [WK06] are recently introduced data

structures that have been found useful in applications

such as ray-tracing. A detailed comparative analysis

of these data structures in terms of their effectiveness

and suitability for large-scale crowd simulation will

be useful for the development of real-time

applications. This paper presents some of the

important results obtained through our research. For

convenience, a single member of a crowd is referred

to as either a "character" or an "agent." The motion

of the crowd is assumed to be confined to a two-

dimensional "ground" plane. Thus, even though

characters in a crowd and obstacles may have three-

dimensional representations, we need consider only a

two-dimensional motion projected onto the ground

for analysing problems such as collision detection,

obstacle avoidance and path planning.

The paper is organised as follows. The next section

describes space partitioning data structures

considered in our research: Grid, Quadtree, k-d tree,

and Bounding Interval Hierarchy (BIH). Section 3

presents our crowd simulation model and discusses

the implementation aspects of the above four data

structures. Results of the comparative analysis are

reported in Section 4. Section 5 summarises the main

contributions of the paper and outlines future work.

2. SPATIAL PARTITIONING
In this section, four different data structures that are

suitable for crowd simulation are discussed, looking

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

at specific advantages and drawbacks of each. Three

of the data structures are widely used in broad-phase

collision detection and the fourth method [WK06] is

Figure 1. An example of a set of character models in

a grid-based partitioning, with a hash table storing

object’s indices.

used primarily in ray tracing applications. For the

purpose of comparison, the brute-force method which

compares every pair of character models/agents for

collision detection, is also considered in the

experimental analysis.

2.1 Regular Grid
A uniform grid [LD08] is a very effective space

subdivision scheme. It is fast for collision detection

and easy to implement. It partitions the simulation

space into small cubic cells with same size. The size

of cells is usually defined based on the character's

bounding box size, and the character itself is

associated with the cell that contains its centre. It is

also assumed here that all characters have the same

size. Since crowd simulation models will usually

consist of large scenes, a regular partitioning of the

space into small cells will yield a large number of

cells and correspondingly large memory requirement.

One straightforward solution is to have spatial hash

structures. A spatial hashing [THM
+
03] divides 2D or

3D space into uniform grids, and then uses a hash

function to convert them into 1D hashed table. For

example, a point with position p = (x, y, z) is hashed

into a hash table of size h by computing its cell index

c as follows:

 (1)

Where u, v, w are large prime numbers and d is the

cell size. If multiple points are hashed to the same

hash cell, chaining is employed to resolve these hash

collisions, i.e., the points are stored in a linked list

specific to this cell. An example is shown in Fig. 1.

An important advantage of the grid based partitioning

is that it is easy to build, and the data structure need

not be updated any time during the whole simulation.

Figure 2. An example of a set of crowd members

stored in a Quadtree, showing two storage methods.

In the first method, objects are stored only once

based on the location of their centroid, while in the

second method, an object is stored in all leaf nodes

that intersect the object’s bounding volume.

Figure 3. An example of a scene with spatial

partitioning using a k-d tree, with two storage

methods as in the case of a quadtree.

Further, an efficient hash map provides O(1) search

time for finding an object.

2.2 Quadtree
Quadtree is a tree-based partitioning method, and

was originally proposed in [FB74]. It was used for

processing images and two-dimensional range

queries at the early stages, and then found

applications in several other areas such as ray tracing

and collision detection. It is an axis-aligned

hierarchical partitioning of a two dimensional space.

Each internal node in the quadtree has exactly four

children, and each node also has a finite volume

associated with it. A two dimensional world

generally is fully enclosed in an axis-aligned

bounding square, and is subdivided into four smaller

squares at each recursive step (Fig. 2).

Quadtree [PPD07], [ST05] also is a popular

acceleration data structure in crowd simulation. It is

easily constructed by uniformly subdividing regions

containing at least one crowd member into four sub-

regions. Compared to the grid, a quadtree generally

uses much less memory when members of a crowd

are not uniformly distributed in a region. The main

drawback of the quadtree structure is that the tree

will need to be rebuilt almost every frame for a

highly dynamic scene. The search time for a quadtree

is also greater than that of a grid.

Figure 4. Nearest neighbour search using a k-d tree.

2.3 K-d Tree
A k-d tree is a binary tree, which divides a k-

dimensional space hierarchically using a set of axis-

aligned splitting planes. It uses a simple construction

by dividing a non-empty space and its subspaces

using median cut recursively, first using the x-

coordinate, then the y-coordinate, and then again

using the x-coordinate, and so on (Fig. 3). The depth

of the tree is determined such that either the leaf

nodes only contain a pre-specified maximum number

of objects or the depth of tree has reached a

maximum threshold. The algorithm for computing a

k-d tree can be optimized by sorting the objects first,

and then finding the median objects, and the

corresponding splitting planes.

The nearest neighbour search algorithm using a k-d

tree effectively finds an agent's neighbours. Given a

k-d tree with N nodes, at least O(log N) inspections

are needed on an average, because any nearest

neighbour search requires traversal to at least one

leaf of the tree. Generally, during a nearest neighbour

search, only a few leaf nodes need to be inspected.

Fig. 4 shows an example where only two nodes have

been visited, the agent with blue background colour

is the nearest neighbour for the purple agent.

2.4 Bounding Interval Hierarchy
Bounding interval hierarchies (BIHs) have been

recently introduced and used for real-time ray tracing

[WK06]. It is found to be faster than k-d trees and

easy to implement. BIH is similar to bounding

volume hierarchies and k-d trees, and has the

advantages of both approaches.

BIH provides very fast construction times and

efficient traversal. It uses two parallel partitioning

planes for each node. For a given node, the plane

perpendicular to and passing through the midpoint of

the longest axis of the node’s Axis Aligned Bounding

Box (AABB) is first chosen as the splitting plane.

Assume that this axis is in the x-direction, and the

position of the splitting plane is x0. The AABBs of

the objects within the node’s volume are then sorted

along this axis. The objects whose AABBs have all

Figure 5. Partitioning of objects into left and right

branches using two parallel partitioning planes.

x-coordinates less than or equal to x0 are assigned to

the left child. AABBs that are entirely on the right of

the splitting plane are assigned to the right child.

Objects whose AABBs intersect the splitting plane

are classified as belonging to the left or right child

depending on which side of the splitting plane the

AABBs have maximum overlap. The left partitioning

plane is then defined using the maximum value of the

x-coordinates of the AABBs belonging to the left

child, and the right plane is defined using the

minimum value of the x-coordinates of the AABBs

belonging to the right (Fig. 5). The process continues

by splitting each child node along the longest axis

and defining two partitioning planes along that axis.

A node containing only a single object is not

subdivided further.

The efficiency of the bounding interval hierarchy is

due to the advantages inherited from space

partitioning structures similar to a k-d tree. On the

other hand, bounding interval hierarchies have a

fixed pre-allocatable size depending on the number

of objects. Another advantage inherited from

bounding volume hierarchies is that the volume

elements can overlap and thus allow efficient update

of the structure for dynamic scenes.

Figure 6. Crowd simulation with 2000 agents, where

each agent is bounded by an EOBB of a dynamically

changing stride length.

Figure 7. Crowd simulation with 2000 agents, where

two groups move towards each other and converge in

the middle of the scene.

Figure 8: Crowd simulation with 2000 agents, where

the whole group moves towards a common

destination.

Figure 9. Crowd simulation with 10000 agents, with

two groups moving in opposite directions.

Figure 10. Crowd simulation with 10000 agents, with

two large groups merging together in the middle of

the scene.

Figure 11. Crowd simulation with 2000 agents with

three different obstacles located in middle of the

scene.

Figure 12. Definition of the extended OBB. [ML12]

3 CROWD SIMULATION MODEL

AND IMPLEMENATION
For the purpose of experimental analysis, we

constructed a set of complex 3D scenes (such as Fig.

6-10), each with a large number of crowd members.

A typical scenario consisting of two large groups of

people moving in opposite directions are shown in

Figs. 6-8, with Fig. 6 showing the start configuration

of the simulation. The groups meet in the middle of

the scene later in the simulation (Fig. 7) and later

reach the destination (Fig. 8). In each figure, a small

region is enlarged to clearly show the crowd

members and their corresponding extended oriented

bounding boxes (EOBB) with different stride lengths.

We then increase the complexity of the simulation by

adding a few obstacles into the scene (Fig. 11). Such

a scene can have increasing levels of complexity

based on the behaviour models and path planning

algorithms used. Poorly designed algorithms can also

make inefficient memory requests. We implemented

all four data structures described earlier to evaluate

the performance of each case with respect to

increasing crowd size.

We also used a new data structure called the

extended oriented bounding box (EOBB) (Fig. 12)

[ML12] into our simulation system. EOBBs are

convenient data structures that can be used for both

bounding volume and instantaneous motion

representation. Using EOBBs, broad-phase collision

detection can be performed using OBB overlap tests.

The stride length s of an EOBB can be dynamically

updated based on the number and positions of

character models present in the immediate

neighbourhood of an object. EOBBs are also found to

be useful for obstacle avoidance and computing path

deviations [ML12]. EOBBs were used in all our

experiments with the four data structures outlined in

the previous section.

Figure 13. Spatial partitioning using a regular grid

where the grid size equals the maximum stride length.

First, we implemented a uniform grid data structure,

where the grid size is equal to a predefined maximum

stride length. A hash map is used for storing object

locations. In [EL07], the authors described a simple

and fast way to implement hash functions for

minimising the time taken for collision detection.

Based on their research, we used a XOR hash

function to generate the hash table using Eq. (1), with

the values of 73856093 for u and 19349663 for v.

While designing the hash table, we need to consider

the trade-off between number of cells and memory

usage. If we reduce the number of cells, the

probability of objects being assigned to the same cell

of the hash grid increases. Based on the analysis in

[EL07], our hash table has a size h equal to the

number of the objects in the crowd simulation.

After the hash spatial data structure is created, the

grid neighbour searching method is used for finding

all potential colliding agents. The position (xp, yp) of

a character can be directly used to compute the hash

table index as well as the indices of the neighbouring

grids. The direction (l, m) is used to select a

maximum of three neighbouring cells out of a total of

8 (Fig. 13). If the world coordinate extents of the

scene space are given by (xmin, ymin), (xmax, ymax), and

if the maximum stride length used for discretization

is s, then the function is given by:

 (2)

where M = (xmaxxmin)/s.

The neighbouring cells are selected based on the

signs of the components of the current direction

vector (l, m). For example, the cell vertically above

index k given by the index k+M is chosen if m ≥ 0.

The cell diagonally above the current cell is given by

k+M+1 is selected if both l and m are positive. Only

 Figure 14. Updating time vs. number of agents

(Grid, k-d tree, quadtree, and BIH)

four identified cells (including the current cell) are

used for the broad-phase collision detection for each

agent.

Second, we implemented a quadtree shown in Fig. 2,

and the simulation scene is subdivided into four

smaller squares at each recursive step. A leaf node

contains only agents. Each agent is stored only once

in a leaf node. The centroid of each agent is used to

determine which side of the split plane the agent lies.

A leaf node size is always larger than the maximum

stride length of an agent. For the neighbour search,

we first traverse the tree and find the leaf node which

contains the agent, then we use OBB-AABB overlap

test to find if the agent is fully contained by leaf node.

If so, we add all agents in this leaf node to the agent's

neighbour. Otherwise, we check which boundary of

leaf node is intersected with EOBB of the agent, and

then traverse the tree to find the leaf nodes which

connect with those boundaries, finally add those

agents in the leaf nodes to the agent’s neighbours.

Third, a k-d tree is implemented into our system, as

shown in Fig. 3. In a highly dynamic scene, the k-d

tree will need to be updated almost every frame. By

choosing splitting planes properly using median

points we can always aim to get a nearly balanced

tree. We first choose the longest axis, and use the

quick sort algorithm to sort the object coordinates

along this axis, and the middle point is chosen as a

splitting plane. The goal of this approach is to create

subgroups which contain nearly the same amount of

objects. Then the recursive spatial partitioning is

continued until the depth of the tree has reached a

pre-specified number, or if the number of the objects

in the leaf nodes is less than a given threshold. A

point on the splitting plane is always stored in left

node of the tree. The nearest neighbour search

algorithm is used to minimise the number of

comparisons in the collision detection phase.

Figure 15. Updating time vs. cell size for the grid

structure.

Figure 16. Updating time vs. number of agents in leaf

node for a quadtree.

Figure 17. Updating time vs. number of agents in leaf

node for a k-d tree.

Finally, we implemented a Bounding Interval

Hierarchy for partitioning a crowd scene. The AABB

is calculated for each object, the approximate sorting

[WK06] is used to sort the agents, and then we

determined the two paralleled splitting planes by

median-cut. The next section describes experimental

results obtained using the above partitioning methods.

Figure 18. Updating time vs. number of agents in leaf

node for a BIH.

4 RESULTS AND EVALUATION
Experimental results shown in this section are

generated by simulating different scenarios by

increasing crowd size and adding different types of

obstacles.

First, we compared the update time for each data

structure. The results are depicted in Fig. 14. The

graph shows that grid structure gives the best

performance. Other types of hierarchical structures

required frequent updates because their partitioning

algorithms depend on both the position and

distribution of crowd members in the constantly

changing scene. Even when the number of agents in

the scene is 10000, the time taken for updates using

the grid structure is less than 500ms. We also noticed

that there grid structure does not provide a significant

improvement over the brute-force method, when the

number of agents is less than 1000.

Cell size is an important parameter in the design of

the grid data structure. In our experiment, the size of

cell is set up to the maximum stride length of agent

first, and then we increased the size of cell, and

measured the updating time. The results are shown

on Fig. 15. The best performance is obtained when

the cell size just fits the maximum stride length of

agent.

In Figs. 16, 17, 18, we provide experimental results

using quadtree, k-d tree, and BIH to find the variation

in performance with the maximum number of objects

stored in each leaf node. The results show that when

the objects in leaf node is 1% of total number of

objects provide the best performance for both

quadtree and k-d tree. For the BIH, we can subdivide

the space until only one object is in the leaf node, and

we can still get a good performance, but when the

number of objects contained in leaf node is 10, we

got the best performance.

5 CONCLUSIONS AND FUTURE

WORK
In this paper, we presented a fairly extensive

comparative analysis of the performance of spatial

subdivision structures in large-scale crowd

simulation. The simulation results show that a grid

data structure with extended oriented bounding boxes

for character models gives the best performance

when the number of crowd members is very large.

Crowd simulation of 10000 agents in real-time can

only be achieved by using such spatial data

structures. The grid data structure has the advantage

that it doesn’t need to be updated, and an efficient

hash map implementation can provide fast look-up.

The extended oriented bounding box is also found to

be very efficient in representing both geometry and

instantaneous motion of a character in the crowd.

The paper has presented an overview of four

commonly used spatial subdivision methods, and

analysis using update time with respect to variations

in crowd size, grid cell size, and the maximum

number of objects in the leaf nodes of the tree

structures for quadtree, k-d tree and the bounding

interval hierarchy.

Future work in this area is directed towards

combining collision avoidance with path/motion

planning algorithms incorporating various types of

behaviour models. Effective mechanisms for

improving the performance of hash mapping for the

grid structure will also be explored. A direct

extension of the work presented in the paper would

be the performance analysis of acceleration

algorithms when crowd motion is not confined to a

two dimensional plane. Such methods would then

heavily rely on multi-dimensional data structures

[Sam06] for minimizing comparisons.

When the crowd size increases in scale from large to

massive, the performance of acceleration methods

becomes crucial. Several models for the simulation

and rendering of massive crowds have now been

attempted on the GPU [JPZ
+
09], [PJZ

+
08], [PJZ

+
10].

GPU implementations of spatial structures have been

successfully tried using just neighbours of agents.

Structures similar to the extended oriented bounding

boxes could also be explored further, and

implemented on parallel architectures.

6 REFERENCES

[BQ10] F. Bu and C. Qin. Research on the mass

events based on grid-agent. Proc. of Youth

Conference on Information Computing and

Telecommunications, pp. 130–133, 2010.

[EL07] M. Eitz and G. Lixu. Hierarchical spatial

hashing for real-time collision detection. Proc. of

IEEE International Conference on Shape

Modeling and Applications, pp. 61–70, 2007.

[FB74] R. A. Finkel and J. L. Bentley. Quadtrees: a

data structure for retrieval on composite keys.

Journal of Acta Informatica, pp. 1–9, 1974.

[GCL
+
10] S. J. Guy, S. Curtis, M.C. Lin, D.

Manocha. PLEdestrians: a least-effort approach to

crowd simulation. Proc. of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer

Animation, pp. 119–128, 2010.

[JPZ
+
09] M. Joselli, E.B. Passos, M. Zamith et. al. A

neighbourhood grid data structure for massive 3D

crowd simulation on GPU, Games and Digital

Entertainment (SBGAMES), 2009 VIII Brazilian

Symposium on. IEEE, pp. 121-131, 2009.

 [KLZ08] W. L. Koh, L. Lin, and S. Zhou. Modelling

and simulation of pedestrian behaviours,. Proc. of

22
nd

 Workshop on Principles of Advanced and

Distributed Simulation, pp. 32–50, 2008.

[LD08] A. Lagae and P. Dutré. Compact, fast and

robust grids for ray tracing. Computer Graphics

Forum, Proc. of the 19
th

 Eurographics

Symposium on Rendering, pp. 1235–1244, 2008.

[ML12] R. Mukundan and B. Li. Crowd simulation:

Extended oriented bounding boxes for geometry

and motion representation. Proc. of the 27
th

Conference on Image and Vision Computing New

Zealand, pp. 121–125, 2012.

[PJZ
+
08] E.B. Passos, M. Joselli, M. Zamith, et. al.,

Supermassive crowd simulation on GPU based on

emergent behavior. Proc. of the VII Brazilian

Symposium on Computer Games and Digital

Entertainment, pp. 70-75, 2008.

[PJZ
+
10] E.B. Passos, M. Joselli, M. Zamith, et. al. A

bidimensional data structure and spatial

optimization for supermassive crowd simulation

on GPU, Computers in Entertainment, Vol. 7, No.

4, Article 60, pp. 1-15, 2009.

[PPD07] S. Paris, J. Pettré, and S. Donikian.

Pedestrian reactive navigation for crowd

simulation: a predictive approach. Proc. of

Computer Graphics Forum, pp. 665–674, 2007.

[QC09] H. Qiu and L. Chen. Real-time virtual

military simulation system. Proc. of 1
st

International Conference on Information Science

and Engineering, pp. 1391–1394, 2009.

 [Sam06] H. Samet, Foundations of

Multidimensional and Metric Data Structures,

Morgan Kaufmann Publishers, New York, 2006.

[SOH11] S. Sharma, S. Otunba, and J. Han. Crowd

simulation in emergency aircraft evacuation using

virtual reality. Proceedings of the 16
th

International Conference on Computer Games,

pp. 12–17, 2011.

[ST05] W. Shao and D. Terzopoulos. Autonomous

pedestrians. Proc. of the 2005 ACM

SIGGRAPH/Eurographics symposium on

Computer animation, pp. 19–28, 2005.

[THM
+
03] M. Teschner, B. Heidelberger, M. Muller,

D. Pomeranets, and M. Gross. Optimized spatial

hashing for collision detection of deformable

models. Proc. of the Vision, Modeling, and

Visualization Conference, pp. 19–21, 2003.

[WK06] C. Wächter and A. Keller. Instant ray

tracing: The bounding interval hierarchy. Proc. of

the 17
th

 Eurographics conference on Rendering

Techniques, pp. 139–149, 2006.

 [WXZ
+
11] X. Wei, M. Xiong, X. Zhang, and D.

Chen. A hybrid simulation of large crowd

evacuation. Proc. of 17
th

 International Conference

on Parallel and Distributed Systems, pp. 971–975,

2011.

