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ABSTRACT 
Acceleration algorithms involving spatial partitioning methods are extensively used in crowd simulation for real-

time collision avoidance. Memory and update costs become increasingly important as the crowd size becomes 

large. The paper presents a detailed analysis of the effectiveness of spatial subdivision data structures, 

specifically for large-scale crowd simulation. The results demonstrate that a regular grid data structure combined 

with an extended oriented bounding volume for crowd members can facilitate efficient updates necessary for 

real-time performance. 
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1. INTRODUCTION 
Crowd simulation and animation is an active area of 

research that finds several applications in computer 

graphics, analysis and design of urban environments 

and the development of emergency evacuation 

strategies [SOH11], [WXZ
+
11]. In recent years, real-

time crowd simulation applications have gained 

importance in virtual training systems, such as 

combat operations training [QC09]. Real-time 

simulation of large-scale crowd movement requires 

effective spatial partitioning methods that can 

provide fast updates. 

Space partitioning techniques [Sam06] are widely 

used for broad phase collision detection between 

objects and also for collision avoidance with 

obstacles. The more general problem of crowd 

detection however addresses various other aspects 

such as narrow-phase collision detection using 

intersection tests between pairs of geometrical 

primitives, and collision response algorithms. Several 

space partitioning data structures such as quadtrees 

[KLZ08], k-d trees [GCL
+
10] and regular grids 

[BQ10] are commonly used to reduce the number of 

comparisons between objects. Bounding interval 

hierarchies [WK06] are recently introduced data 

structures that have been found useful in applications 

such as ray-tracing. A detailed comparative analysis 

of these data structures in terms of their effectiveness 

and suitability for large-scale crowd simulation will 

be useful for the development of real-time 

applications. This paper presents some of the 

important results obtained through our research. For 

convenience, a single member of a crowd is referred 

to as either a "character" or an "agent." The motion 

of the crowd is assumed to be confined to a two-

dimensional "ground" plane. Thus, even though 

characters in a crowd and obstacles may have three-

dimensional representations, we need consider only a 

two-dimensional motion projected onto the ground 

for analysing problems such as collision detection, 

obstacle avoidance and path planning. 

The paper is organised as follows. The next section 

describes space partitioning data structures 

considered in our research: Grid, Quadtree, k-d tree, 

and Bounding Interval Hierarchy (BIH). Section 3 

presents our crowd simulation model and discusses 

the implementation aspects of the above four data 

structures. Results of the comparative analysis are 

reported in Section 4. Section 5 summarises the main 

contributions of the paper and outlines future work. 

2. SPATIAL PARTITIONING 
In this section, four different data structures that are 

suitable for crowd simulation are discussed, looking 
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at specific advantages and drawbacks of each. Three 

of the data structures are widely used in broad-phase 

collision detection and the fourth method  [WK06]  is 

 

 

Figure 1.  An example of a set of character models in 

a grid-based partitioning, with a hash table storing 

object’s indices. 

 

used primarily in ray tracing applications. For the 

purpose of comparison, the brute-force method which 

compares every pair of character models/agents for 

collision detection, is also considered in the 

experimental analysis. 

2.1 Regular Grid 
A uniform grid [LD08] is a very effective space 

subdivision scheme. It is fast for collision detection 

and easy to implement. It partitions the simulation 

space into small cubic cells with same size. The size 

of cells is usually defined based on the character's 

bounding box size, and the character itself is 

associated with the cell that contains its centre. It is 

also assumed here that all characters have the same 

size. Since crowd simulation models will usually 

consist of large scenes, a regular partitioning of the 

space into small cells will yield a large number of 

cells and correspondingly large memory requirement. 

One straightforward solution is to have spatial hash 

structures. A spatial hashing [THM
+
03] divides 2D or 

3D space into uniform grids, and then uses a hash 

function to convert them into 1D hashed table. For 

example, a point with position p = (x, y, z) is hashed 

into a hash table of size h by computing its cell index 

c as follows: 

     
 

 
       

 

 
      

 

 
              (1) 

Where u, v, w are large prime numbers and d is the 

cell size. If multiple points are hashed to the same 

hash cell, chaining is employed to resolve these hash 

collisions, i.e., the points are stored in a linked list 

specific to this cell. An example is shown in Fig. 1. 

An important advantage of the grid based partitioning 

is that it is easy to build, and the data structure need 

not be updated any time during the whole simulation.   

 

Figure 2.  An example of a set of crowd members 

stored in a Quadtree, showing two storage methods. 

In the first method, objects are stored only once 

based on the location of their centroid, while in the 

second method, an object is stored in all leaf nodes 

that intersect the object’s bounding volume. 

 

 

Figure 3.  An example of a scene with spatial 

partitioning using a k-d tree, with two storage 

methods as in the case of a quadtree. 

 

Further, an efficient hash map provides O(1) search 

time for finding an object. 

2.2 Quadtree 
Quadtree is a tree-based partitioning method, and 

was originally proposed in [FB74]. It was used for 

processing images and two-dimensional range 

queries at the early stages, and then found 

applications in several other areas such as ray tracing 

and collision detection. It is an axis-aligned 

hierarchical partitioning of a two dimensional space. 

Each internal node in the quadtree has exactly four 

children, and each node also has a finite volume 

associated with it. A two dimensional world 

generally is fully enclosed in an axis-aligned 

bounding square, and is subdivided into four smaller 

squares at each recursive step (Fig. 2). 

Quadtree [PPD07], [ST05] also is a popular 

acceleration data structure in crowd simulation. It is 

easily constructed by uniformly subdividing regions 

containing at least one crowd member into four sub-

regions. Compared to the grid, a quadtree generally 

uses much less memory when members of a crowd 

are not uniformly distributed in a region. The main 



drawback of the quadtree structure is that the tree 

will need to be rebuilt almost every frame for a 

highly dynamic scene. The search time for a quadtree 

is also greater than that of a grid. 

 

 

Figure 4.  Nearest neighbour search using a k-d tree. 

 

2.3 K-d Tree 
A k-d tree is a binary tree, which divides a k-

dimensional space hierarchically using a set of axis-

aligned splitting planes. It uses a simple construction 

by dividing a non-empty space and its subspaces 

using median cut recursively, first using the x-

coordinate, then the y-coordinate, and then again 

using the x-coordinate, and so on (Fig. 3). The depth 

of the tree is determined such that either the leaf 

nodes only contain a pre-specified maximum number 

of objects or the depth of tree has reached a 

maximum threshold.  The algorithm for computing a 

k-d tree can be optimized by sorting the objects first, 

and then finding the median objects, and the 

corresponding splitting planes. 

The nearest neighbour search algorithm using a k-d 

tree effectively finds an agent's neighbours. Given a 

k-d tree with N nodes, at least O(log N) inspections 

are needed on an average, because any nearest 

neighbour search requires traversal to at least one 

leaf of the tree. Generally, during a nearest neighbour 

search, only a few leaf nodes need to be inspected. 

Fig. 4 shows an example where only two nodes have 

been visited, the agent with blue background colour 

is the nearest neighbour for the purple agent. 

2.4 Bounding Interval Hierarchy 
Bounding interval hierarchies (BIHs) have been 

recently introduced and used for real-time ray tracing 

[WK06]. It is found to be faster than k-d trees and 

easy to implement. BIH is similar to bounding 

volume hierarchies and k-d trees, and has the 

advantages of both approaches. 

BIH provides very fast construction times and 

efficient traversal.  It uses two parallel partitioning 

planes for each node. For a given node, the plane 

perpendicular to and passing through the midpoint of 

the longest axis of the node’s Axis Aligned Bounding 

Box (AABB) is first chosen as the splitting plane. 

Assume that this axis is in the x-direction, and the 

position of the splitting plane is x0. The AABBs of 

the objects within the node’s volume are then sorted 

along this axis. The objects  whose AABBs  have  all  

 

 

Figure 5. Partitioning of objects into left and right 

branches using two parallel partitioning planes. 

 

x-coordinates less than or equal to x0 are assigned to 

the left child. AABBs that are entirely on the right of 

the splitting plane are assigned to the right child. 

Objects whose AABBs intersect the splitting plane 

are classified as belonging to the left or right child 

depending on which side of the splitting plane the 

AABBs have maximum overlap. The left partitioning 

plane is then defined using the maximum value of the 

x-coordinates of the AABBs belonging to the left 

child, and the right plane is defined using the 

minimum value of the x-coordinates of the AABBs 

belonging to the right (Fig. 5). The process continues 

by splitting each child node along the longest axis 

and defining two partitioning planes along that axis. 

A node containing only a single object is not 

subdivided further. 

The efficiency of the bounding interval hierarchy is 

due to the advantages inherited from space 

partitioning structures similar to a k-d tree. On the 



other hand, bounding interval hierarchies have a 

fixed pre-allocatable size depending on the number 

of objects. Another advantage inherited from 

bounding volume hierarchies is that the volume 

elements can overlap and thus allow efficient update 

of the structure for dynamic scenes. 

 

 

Figure 6.  Crowd simulation with 2000 agents, where 

each agent is bounded by an EOBB of a dynamically 

changing stride length. 

 

 

Figure 7. Crowd simulation with 2000 agents, where 

two groups move towards each other and converge in 

the middle of the scene. 

 

 

 

Figure 8: Crowd simulation with 2000 agents, where 

the whole group moves towards a common 

destination. 

 

Figure 9.  Crowd simulation with 10000 agents, with 

two groups moving in opposite directions. 

 

 

Figure 10. Crowd simulation with 10000 agents, with 

two large groups merging together in the middle of 

the scene. 

 

 

Figure 11. Crowd simulation with 2000 agents with 

three different obstacles located in middle of the 

scene. 



 

Figure 12. Definition of the extended OBB. [ML12] 

 

3 CROWD SIMULATION MODEL 

AND IMPLEMENATION 
For the purpose of experimental analysis, we 

constructed a set of complex 3D scenes (such as Fig. 

6-10), each with a large number of crowd members. 

A typical scenario consisting of two large groups of 

people moving in opposite directions are shown in 

Figs. 6-8, with Fig. 6 showing the start configuration 

of the simulation. The groups meet in the middle of 

the scene later in the simulation (Fig. 7) and later 

reach the destination (Fig. 8). In each figure, a small 

region is enlarged to clearly show the crowd 

members and their corresponding extended oriented 

bounding boxes (EOBB) with different stride lengths.  

We then increase the complexity of the simulation by 

adding a few obstacles into the scene (Fig. 11). Such 

a scene can have increasing levels of complexity 

based on the behaviour models and path planning 

algorithms used. Poorly designed algorithms can also 

make inefficient memory requests. We implemented 

all four data structures described earlier to evaluate 

the performance of each case with respect to 

increasing crowd size. 

We also used a new data structure called the 

extended oriented bounding box (EOBB) (Fig. 12) 

[ML12] into our simulation system. EOBBs are 

convenient data structures that can be used for both 

bounding volume and instantaneous motion 

representation. Using EOBBs, broad-phase collision 

detection can be performed using OBB overlap tests. 

The stride length s of an EOBB can be dynamically 

updated based on the number and positions of 

character models present in the immediate 

neighbourhood of an object. EOBBs are also found to 

be useful for obstacle avoidance and computing path 

deviations [ML12]. EOBBs were used in all our 

experiments with the four data structures outlined in 

the previous section. 

 

Figure 13. Spatial partitioning using a regular grid 

where the grid size equals the maximum stride length. 

 

First, we implemented a uniform grid data structure, 

where the grid size is equal to a predefined maximum 

stride length. A hash map is used for storing object 

locations. In [EL07], the authors described a simple 

and fast way to implement hash functions for  

minimising the time taken for collision detection. 

Based on their research, we used a XOR hash 

function to generate the hash table using Eq. (1), with 

the values of 73856093 for u and 19349663 for v. 

While designing the hash table, we need to consider 

the trade-off between number of cells and memory 

usage. If we reduce the number of cells, the 

probability of objects being assigned to the same cell 

of the hash grid increases. Based on the analysis in 

[EL07], our hash table has a size h equal to the 

number of the objects in the crowd simulation. 

After the hash spatial data structure is created, the 

grid neighbour searching method is used for finding 

all potential colliding agents. The position (xp, yp) of 

a character can be directly used to compute the hash 

table index as well as the indices of the neighbouring 

grids. The direction (l, m) is used to select a 

maximum of three neighbouring cells out of a total of 

8 (Fig. 13). If the world coordinate extents of the 

scene space are given by (xmin, ymin), (xmax, ymax), and 

if the maximum stride length used for discretization 

is s, then the function is given by: 

 

   
       

 
      

       

 
                            (2) 

where M = (xmaxxmin)/s. 

The neighbouring cells are selected based on the 

signs of the components of the current direction 

vector (l, m). For example, the cell vertically above 

index k given by the index k+M is chosen if m ≥ 0. 



The cell diagonally above the current cell is given by 

k+M+1 is selected if both l and m are positive. Only  

 

 Figure 14. Updating time vs. number of agents   

(Grid, k-d tree, quadtree, and BIH) 

 

four identified cells (including the current cell) are 

used for the broad-phase collision detection for each 

agent. 

Second, we implemented a quadtree shown in Fig. 2, 

and the simulation scene is subdivided into four 

smaller squares at each recursive step. A leaf node 

contains only agents. Each agent is stored only once 

in a leaf node. The centroid of each agent is used to 

determine which side of the split plane the agent lies. 

A leaf node size is always larger than the maximum 

stride length of an agent. For the neighbour search, 

we first traverse the tree and find the leaf node which 

contains the agent, then we use OBB-AABB overlap 

test to find if the agent is fully contained by leaf node. 

If so, we add all agents in this leaf node to the agent's 

neighbour. Otherwise, we check which boundary of 

leaf node is intersected with EOBB of the agent, and 

then traverse the tree to find the leaf nodes which 

connect with those boundaries, finally add those 

agents in the leaf nodes to the agent’s neighbours.  

Third, a k-d tree is implemented into our system, as 

shown in Fig. 3. In a highly dynamic scene, the k-d 

tree will need to be updated almost every frame. By 

choosing splitting planes properly using median 

points we can always aim to get a nearly balanced 

tree. We first choose the longest axis, and use the 

quick sort algorithm to sort the object coordinates 

along this axis, and the middle point is chosen as a 

splitting plane. The goal of this approach is to create 

subgroups which contain nearly the same amount of 

objects. Then the recursive spatial partitioning is 

continued until the depth of the tree has reached a 

pre-specified number, or if the number of the objects 

in the leaf nodes is less than a given threshold.  A 

point on the splitting plane is always stored in left 

node of the tree. The nearest neighbour search 

algorithm is used to minimise the number of 

comparisons in the collision detection phase. 

 

 

Figure 15. Updating time vs. cell size for the grid 

structure. 

 

 

Figure 16. Updating time vs. number of agents in leaf 

node for a quadtree. 

 

 

Figure 17. Updating time vs. number of agents in leaf 

node for a k-d tree. 

 



Finally, we implemented a Bounding Interval 

Hierarchy for partitioning a crowd scene. The AABB 

is calculated for each object, the approximate sorting 

[WK06] is used to sort the agents,   and then we 

determined the two paralleled splitting planes by 

median-cut. The next section describes experimental 

results obtained using the above partitioning methods. 

 

 

Figure 18. Updating time vs. number of agents in leaf 

node for a BIH. 

 

4 RESULTS AND EVALUATION 
Experimental results shown in this section are 

generated by simulating different scenarios by 

increasing crowd size and adding different types of 

obstacles. 

First, we compared the update time for each data 

structure. The results are depicted in Fig. 14. The 

graph shows that grid structure gives the best 

performance. Other types of hierarchical structures 

required frequent updates because their partitioning 

algorithms depend on both the position and 

distribution of crowd members in the constantly 

changing scene. Even when the number of agents in 

the scene is 10000, the time taken for updates using 

the grid structure is less than 500ms. We also noticed 

that there grid structure does not provide a significant 

improvement over the brute-force method, when the 

number of agents is less than 1000. 

Cell size is an important parameter in the design of 

the grid data structure. In our experiment, the size of 

cell is set up to the maximum stride length of agent 

first, and then we increased the size of cell, and 

measured the updating time. The results are shown 

on Fig. 15. The best performance is obtained when 

the cell size just fits the maximum stride length of 

agent. 

In Figs. 16, 17, 18, we provide experimental results 

using quadtree, k-d tree, and BIH to find the variation 

in performance with the maximum number of objects 

stored in each leaf node. The results show that when 

the objects in leaf node is 1% of total number of 

objects provide the best performance for both 

quadtree and k-d tree. For the BIH, we can subdivide 

the space until only one object is in the leaf node, and 

we can still get a good performance, but when the 

number of objects contained in leaf node is 10, we 

got the best performance. 

 

5 CONCLUSIONS AND FUTURE 

WORK 
In this paper, we presented a fairly extensive 

comparative analysis of the performance of spatial 

subdivision structures in large-scale crowd 

simulation. The simulation results show that a grid 

data structure with extended oriented bounding boxes 

for character models gives the best performance 

when the number of crowd members is very large. 

Crowd simulation of 10000 agents in real-time can 

only be achieved by using such spatial data 

structures. The grid data structure has the advantage 

that it doesn’t need to be updated, and an efficient 

hash map implementation can provide fast look-up. 

The extended oriented bounding box is also found to 

be very efficient in representing both geometry and 

instantaneous motion of a character in the crowd. 

The paper has presented an overview of four 

commonly used spatial subdivision methods, and 

analysis using update time with respect to variations 

in crowd size, grid cell size, and the maximum 

number of objects in the leaf nodes of the tree 

structures for quadtree, k-d tree and the bounding 

interval hierarchy.   

Future work in this area is directed towards 

combining collision avoidance with path/motion 

planning algorithms incorporating various types of 

behaviour models. Effective mechanisms for 

improving the performance of hash mapping for the 

grid structure will also be explored. A direct 

extension of the work presented in the paper would 

be the performance analysis of acceleration 

algorithms when crowd motion is not confined to a 

two dimensional plane. Such methods would then 

heavily rely on multi-dimensional data structures 

[Sam06] for minimizing comparisons. 

When the crowd size increases in scale from large to 

massive, the performance of acceleration methods 

becomes crucial. Several models for the simulation 

and rendering of massive crowds have now been 

attempted on the GPU [JPZ
+
09], [PJZ

+
08], [PJZ

+
10]. 

GPU implementations of spatial structures have been 

successfully tried using just neighbours of agents. 

Structures similar to the extended oriented bounding 

boxes could also be explored further, and  

implemented on parallel architectures. 

   



6 REFERENCES 
 

[BQ10] F. Bu and C. Qin. Research on the mass 

events based on grid-agent. Proc. of Youth 

Conference on Information Computing and 

Telecommunications, pp. 130–133, 2010. 

[EL07] M. Eitz and G. Lixu. Hierarchical spatial 

hashing for real-time collision detection. Proc. of 

IEEE International Conference on Shape 

Modeling and Applications, pp. 61–70, 2007. 

[FB74] R. A. Finkel and J. L. Bentley. Quadtrees: a 

data structure for retrieval on composite keys. 

Journal of Acta Informatica, pp. 1–9, 1974. 

[GCL
+
10] S. J. Guy, S. Curtis, M.C. Lin, D. 

Manocha. PLEdestrians: a least-effort approach to 

crowd simulation. Proc. of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer 

Animation, pp. 119–128, 2010. 

[JPZ
+
09] M. Joselli, E.B. Passos, M. Zamith et. al. A 

neighbourhood grid data structure for massive 3D 

crowd simulation on GPU, Games and Digital 

Entertainment (SBGAMES), 2009 VIII Brazilian 

Symposium on. IEEE, pp. 121-131, 2009. 

 [KLZ08] W. L. Koh, L. Lin, and S. Zhou. Modelling 

and simulation of pedestrian behaviours,. Proc. of 

22
nd

 Workshop on Principles of Advanced and 

Distributed Simulation, pp. 32–50, 2008. 

[LD08] A. Lagae and P. Dutré. Compact, fast and 

robust grids for ray tracing. Computer Graphics 

Forum, Proc. of the 19
th

 Eurographics 

Symposium on Rendering, pp. 1235–1244, 2008. 

[ML12] R. Mukundan and B. Li. Crowd simulation: 

Extended oriented bounding boxes for geometry 

and motion representation. Proc. of the 27
th

 

Conference on Image and Vision Computing New 

Zealand, pp. 121–125, 2012. 

[PJZ
+
08] E.B. Passos, M. Joselli, M. Zamith, et. al., 

Supermassive crowd simulation on GPU based on 

emergent behavior. Proc. of the VII Brazilian 

Symposium on Computer Games and Digital 

Entertainment, pp. 70-75, 2008. 

[PJZ
+
10] E.B. Passos, M. Joselli, M. Zamith, et. al. A 

bidimensional data structure and spatial 

optimization for supermassive crowd simulation 

on GPU, Computers in Entertainment, Vol. 7, No. 

4, Article 60, pp. 1-15, 2009. 

[PPD07] S. Paris, J. Pettré, and S. Donikian. 

Pedestrian reactive navigation for crowd 

simulation: a predictive approach. Proc. of 

Computer Graphics Forum, pp. 665–674, 2007. 

[QC09] H. Qiu and L. Chen. Real-time virtual 

military simulation system. Proc. of 1
st
 

International Conference on Information Science 

and Engineering, pp. 1391–1394, 2009. 

 [Sam06] H. Samet, Foundations of 

Multidimensional and Metric Data Structures, 

Morgan Kaufmann Publishers, New York, 2006. 

[SOH11] S. Sharma, S. Otunba, and J. Han. Crowd 

simulation in emergency aircraft evacuation using 

virtual reality. Proceedings of the 16
th

 

International Conference on Computer Games, 

pp. 12–17, 2011. 

[ST05] W. Shao and D. Terzopoulos. Autonomous 

pedestrians. Proc. of the 2005 ACM 

SIGGRAPH/Eurographics symposium on 

Computer animation, pp. 19–28, 2005. 

[THM
+
03] M. Teschner, B. Heidelberger, M. Muller, 

D. Pomeranets, and M. Gross. Optimized spatial 

hashing for collision detection of deformable 

models. Proc. of the Vision, Modeling, and 

Visualization Conference, pp. 19–21, 2003. 

[WK06] C. Wächter and A. Keller. Instant ray 

tracing: The bounding interval hierarchy. Proc. of 

the 17
th

 Eurographics conference on Rendering 

Techniques, pp. 139–149, 2006. 

 [WXZ
+
11] X. Wei, M. Xiong, X. Zhang, and D. 

Chen. A hybrid simulation of large crowd 

evacuation. Proc. of 17
th

 International Conference 

on Parallel and Distributed Systems, pp. 971–975, 

2011. 

 


