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ABSTRACT 
Moebius transformations in space are much more sophisticated than the classical case on the plane, which has 
been well studied. We present a WebGL approach for visualization of Moebius transformations in 3-space by 
animating deformations of geometric objects composed of patches parametrized by Quaternionic-Bezier 
formulas. The idea is to represent Moebius transformations in a quaternionic form as well, and to use GPU 
shaders for transforming control points, weights, and normals, then seamlessly stitching patches with different 
levels of detail, and computing points on every patch. Finally, we demonstrate the main classes of Moebius 
transformations in space on several 3D objects including primitive shapes, Dupin cyclide patchworks, and Utah 
Teapot. 
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1. INTRODUCTION 
This paper was inspired by a wonderful video clip 
“Moebius Transformations Revealed” by Arnold and 
Rognes, which is available in various formats online 
[Arn09] (the theory behind is described in the paper 
[Arn08]) and some recent Quaternionic-Bezier 
surface constructions [Kra11].  
Since our goal is to visualize Moebius trans-
formations in 3-space, we cannot apply the afore-
mentioned Arnold-Rognes approach directly. Indeed, 
for that one needs to show 3-sphere in 4-space. So we 
switched to the idea of animating deformations of 
familiar geometric objects in space using real time 
graphics. The concept of a Quaternionic-Bezier 
surface is the other important aspect of the proposed 
visualization method. Moebius transformations of the 
plane are usually identified with fractional-linear 
functions of complex variable, when complex 
numbers are treated as points on that plane (see e.g. 
[Arn08]). In the 3D case one can change complex 
numbers by quaternions and derive similar formalism 
based on  2×2 quaternionic matrices [Bis10].  
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This approach in combination with ideas of [Gwy12] 
allows us to derive short original proofs of Theorems 
1 and 2, which describe the main properties of  
Moebius transformations in 3-space.  
Finally, we choose WebGL framework for 
implementation of our visualization method, since 
this modern technology enables us to deliver 
interactive real time 3D graphics in web 
environment. 
The paper is organized as follows. We review 
definitions of quaternions, Quaternionic-Bezier 
formulas, and we describe the main properties of 3D 
Moebius transformations in Section 2. Section 3 is 
devoted to the visualization framework using 
WebGL. Examples of screenshots, showing the 
behavior of several 3D objects under Moebius 
transformations, are presented in Section 4. Finally, 
the conclusions are derived in Section 5.  

2. USING QUATERNIONS 
Algebra of Quaternions 
We will use the algebra of quaternions H with the 
standard basis 1, i, j, k and product rules: 

𝒊! = 𝒋! = 𝒌! = −𝟏, 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊,𝒌𝒊 = 𝒋. 
Any quaternion 𝑞 = 𝑟𝟏 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌  can be 
decomposed in its real part  Re 𝑞 = 𝑟 and its 
imaginary (vector) part Im 𝑞 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 = 𝒗, 

𝑞   = Re 𝑞 + Im 𝑞 = 𝑟 + 𝒗.   
Reals R and space R3are identified with subsets in H: 
𝑞 ∈ 𝐇:  Im 𝑞 = 0   and  𝐇! = {𝑞 ∈ 𝐇:  Re 𝑞 = 0}. 



Other useful notations for quaternions 𝑞 = 𝑟 + 𝒗: 
• conjugate  𝑞 = 𝑟 − 𝒗 
• norm (length) 𝑞 = 𝑟! + 𝒗 ∙ 𝒗 
• inverse (if 𝑞 ≠ 0)  𝑞!! = 𝑞  /|𝑞|!    

If 𝑞 = 1 then q has a trigonometric form 
𝑞 = cos𝛼 + sin𝛼 𝒖, 𝑢   ∈ 𝐇!, 𝒖 = 1, 

and a square root of  𝑞 is defined 
𝑞 = cos !

!
+ sin !

!
𝒖.  (1) 

Moebius Transformations in Space 
Moebius (M) transformations in space are defined as 
compositions of inversions in space with respect to 
spheres. Alternatively, M-transformations can be 
generated by 4 elementary transformations in 
𝐑! = 𝐇𝟎:  

1. translation 𝑥 ↦ 𝑥 + 𝑎,  𝑎 ∈ 𝐇!, 
2. scaling 𝑥 ↦ 𝜆𝑥,   𝜆 ∈ 𝐑, 
3. rotation about axis u by angle 2α: 

  𝑥 ↦ 𝑞𝑥𝑞!!,        𝑞 = cos𝛼 + sin𝛼 𝒖, 
4. inversion with a center in the origin and unit 

radius: 𝑥 ↦ −𝑥!!. 
Note that the first 3 types of elementary 
transformations generate Euclidean similarities. 
Arbitrary M-transformations can be represented by 
fractional-linear functions  
     𝐹 𝑥 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !!  (2) 
of quaternion variable 𝑥 or by 2×2 matrices 

  𝐴 = 𝑎 𝑏
𝑐 𝑑 , 𝑎, 𝑏, 𝑐,𝑑   ∈ 𝐇, 

using notations 𝐹 𝑥 = 𝐴 ∗ 𝑥. 
It is easy to check that usual multiplication of 
matrices corresponds to the composition of 
fractional-linear functions. The formula (2) defines 
transformation of all quaternions H. The subgroup of 
all 2×2 matrices that define M-transformations of 
𝐇!  is characterized in [Bis10], Theorem 11.1. 
Elementary M-transformations correspond to the 
following matrices (here ∈ 𝐇! ,   𝜆 ∈ 𝐑, |q| = 1): 

Tr(𝑎) = 1 𝑎
0 1 , Rot(q) = 𝑞 0

0 𝑞 ,       

Sc 𝜆 = 𝜆 0
0 1 , Inv = 0 −1

1 0 .       

Two theorems below are formulated following 
similar results in [Gwy12] about M-transformations 
in 4-space, but our proofs are different. 
Theorem 1. For any given three distinct points  
𝑎!, 𝑎!, 𝑎! ∈ 𝐇!  and another triple of distinct points 
𝑏!, 𝑏!, 𝑏! ∈ 𝐇!  there exists an M-transformation F, 
such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!.  
If both triples of points are not collinear, F maps a 
plane going through points a0, a1, a2 to another plane.  
Sketch of the proof. Similar to the 2D case it will be 
convenient to extend our 3-space by adding the 
infinite point ∞. Then we observe that M-trans-

formations that preserve ∞ are Euclidean similarities. 
Define transformation 

𝐻 𝑎!, 𝑎! =   Tr −𝑎!! ∗ Inv   ∗ Tr −𝑎! , 
𝑎!! =   Inv   ∗ Tr −𝑎! ∗ 𝑎!, 

that maps the triple (𝑎!, 𝑎!, 𝑎!) to ∞, 0, 𝑎!! . 
Similarly, 𝐻 𝑏!, 𝑏!  maps (𝑏!, 𝑏!, 𝑏!) to ∞, 0, 𝑏!! , 
and it remains to find an appropriate transformation  
𝑅 𝑎!! , 𝑏!!   from ∞, 0, 𝑎!!   to ∞, 0, 𝑏!! . This can be a 
composition of rotation and scaling (see (1)) 
  𝑅 a, 𝑏 = Sc 𝑞 ∗ Rot 𝑞 𝑞 !! , 𝑞 = 𝑏𝑎!!. 

Finally, the composition 
𝐹 = 𝐻 𝑏!, 𝑏! !! ∗   𝑅 𝑎!! , 𝑏!! ∗ 𝐻 𝑎!, 𝑎!  

will map  (𝑎!, 𝑎!, 𝑎!) to (𝑏!, 𝑏!, 𝑏!). 
Theorem 2. Let 𝑎!, 𝑎!, 𝑎! ∈ 𝐇! be four distinct 
points, and let 𝑏!, 𝑏!, 𝑏! ∈ 𝐇!, be three distinct 
points. Then the set of the images  𝐹 𝑎!  for all M-
transformations F, such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! =
𝑏!, 𝐹 𝑎! = 𝑏! is either a single point (if points a0, 
a1, a2, a3 are co-circular), a line or a circle. 
Sketch of the proof. According to the Theorem 1 one 
can suppose that (𝑎!, 𝑎!, 𝑎!) = (𝑏!, 𝑏!, 𝑏!) =
∞, 0, 𝒊 . Then 3 points ∞, 0, 𝒊 are fixed and we are 

looking for Euclidean similarity with 2 fixed points 
0, 𝒊. There are two cases: 0, 𝒊, 𝑎! are collinear or not. 
In the first case all 4 points ∞, 0, 𝒊, 𝑎!  are on a line 
(i.e. points a0, a1, a2, a3 are co-circular) and we 
cannot move 𝑎! to any other position. In the second 
case the only possibility for  𝑎! is to rotate around the 
axis going through the both 0, 𝒊. Therefore, 𝐹 𝑎!  
can be any point of the particular circle (or line in 
general). 

Quaternionic-Bezier (QB) Formulas 
Here we remind some results publicated in [Kra11]. 

Circular Arc 
Let   𝑝! and  𝑝! be two endpoints of a circular arc C 
in  𝐑! = 𝐇𝟎, and let q be some interior point on C. 
QB-curve of degree 1 defined by the formula 
𝐶 𝑡  
= 𝑝!𝑤! 1 − 𝑡 + 𝑝!𝑤!𝑡 𝑤! 1 − 𝑡 + 𝑤!𝑡 !! 

with quaternionic control points 𝑝!, 𝑝!  and weights  
𝑤! = 𝑞 − 𝑝! !!, 𝑤! = 𝑝! − 𝑞 !!, 

defines a rational parametrization     0,1 → 𝑯𝟎  of C.  
A tangent vector  𝑣!  at the endpoint  𝑝! is 

 𝑣! = 𝑝! − 𝑝! 𝑤!𝑤!!!.   (3) 
Bilinear QB-surface patch 
Let us define a bilinear QB-surface patch by the 
usual rational Bezier formula but with quaternionic 
control points 𝑝!"   and weights 𝑤!" (0 ≤ 𝑠, 𝑡 ≤ 1): 

𝑃 𝑠, 𝑡 =
𝑝!"!!!,! 𝑤!"𝑠!𝑡!!!!,! 𝑤!"𝑠!𝑡!!!!,!!!!,!

!!
, 

where 𝑠! = 1 − 𝑠,   𝑠! = 𝑠,   𝑡! = 1 − 𝑡,   𝑡! = 𝑡. 



Here we consider just two important cases: Dupin 
cyclide and Darboux cyclide (cf. [Kra11], [Pot12]). 
Let 𝑝!, 𝑝!, 𝑝!, 𝑝! be any 4 points on a circle in 
  𝐑! = 𝐇𝟎, and let 𝒗!,𝒗! be two orthonormal vectors, 
i.e. |𝒗!| = 𝒗! = 1 and 𝒗! ⊥ 𝒗!. Then there is a 
unique principal Dupin cyclide patch with corners in 
these points, and bounded by circular arcs with 
tangent vectors 𝒗!,𝒗! at the corner 𝑝!, which can be 
rationally parametrized by the formula 𝑃 𝑠, 𝑡 , where 
double index notations are changed to single ones 

00, 01, 10, 11 ⟶ 0, 1, 2, 3 . 
Here weights 𝑤! are computed by formulas: 
𝑤! = 1, 𝑤! = 𝑞!"𝑣!, 𝑤! = 𝑞!"𝑣!, 
𝑤! = 𝛿!"𝛿!"!!𝑞!"𝑤!𝑞!"𝑤!, 
where 
𝛿!" = 𝑝! − 𝑝! ∈ 𝐑, 𝑞!" = 𝑝! − 𝑝! 𝛿!"!! ∈ 𝐇!.     

A Darboux cyclide patch is the most general case of 
a bilinear QB-surface [Kra11]. For our purposes it 
will be enough to consider cases with unit weights 
and their images under M-transformations, when the 
correct weights will be automatically computed as 
explained below.   
Moebius invariance 
QB-curves and QB-surfaces are Moebius invariant: 
their image under a certain M-transformation has the 
same formula, where only control points and weights 
need to be changed   𝑝 ↦   𝑝′, 𝑤 ↦   𝑤′: 

  𝑝! = 𝐹 𝑝 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !!,     (4) 
𝑤! = 𝐹𝑊(𝑝,𝑤) = 𝑐𝑝 + 𝑑 w.      (5) 

3. WEBGL FRAMEWORK 
Here we describe a framework which enables us to 
visualize Moebius transformations in the web envi- 
ronment. Transforming, computing and rendering QB 
surfaces are very computionally intensive tasks. 
While it is possible to do it all in javascript, it would 
be terribly slow and would not allow us to represent 
real-time animations of such transformations. This 
framework offloads most of the computation tasks to 
the GPU which is well suited for such massively 
parallelizable computations [Bro13]. 
We have chosen to deliver visualization content in 
web environment so that it would be available to 
wider audience with ease of access.  
GPU is reached through an API exposed by WebGL 
technology [Khr12], which is based on OpenGL ES 
2.0 [Khr10]. Even if it does not allow to use the most 
modern GPU features, it is possible to achieve 
desired result solely through WebGL API. 
An abstract outline of the framework algorithm: 
1. Initialization 

1.1. Loading a model 
1.2. Preparing buffers 

2. Computing surface points 
2.1. Transforming position, weights, normals 

2.2. Estimating the level of details for patches 
2.3. Mapping patches to batches 
2.4. Computing batches 

3. Rendering surface points 
Surface points are recomputed every time the surface 
is transformed. Surface gets rendered when the 
camera has moved or user changes any of the display 
options (e.g. switches to wireframe mode). 

Loading a Model 
We start by loading a model from .obj file. The file 
format is adjusted to accommodate weights which are 
required by QB patches. Each weight is defined by a 
line starting with w and following 4 real numbers 
separated by spaces – representing 4 components of 
the quaternion in the order: x, y, z, r. Then each face 
references their weights by the index in adjusted face 
vertex definition format: position/uv/normal/weight.  
Three textures are created to fit positions, normals 
and weights. Each face stores their vertex attributes 
separately in these textures (vertices are no longer 
shared among faces). Face vertices correspond to 4 
subsequent pixels in textures. After this data has been 
uploaded to GPU, each face vertex object in 
javascript gets a reference to their respective data in 
textures, that is, a fetch coordinate is stored. 
After loading the model, we search for adjacent 
faces. This is required later when patches of different 
LOD are stitched together. Each face gets references 
to their adjacent left, right, top and bottom faces. 

Preparing Buffers 
Buffers which do not depend on transformation state 
get precomputed and uploaded to GPU in advance. 
For every LOD level 7 buffers need to be pre- 
computed. 4 of those will be used during the 
computation stage, other 3 – during the rendering 
stage. Those buffers will be described in surface 
point computation and rendering sections 
respectively. 

Computing Surface Points 
3.1.1 Render to Texture 
To use GPU for arbitrary computation instead of just 
rendering images, we take advantage of the technique 
called render-to-texture. Instead of drawing to the 
screen, custom texture is attached to the framebuffer 
and rendered image gets stored in it. The data from 
the framebuffer then can be read back to the main 
memory and processed with the CPU. Alternatively 
the texture containing rendering results can be used 
in subsequent rendering passes as a data source. 
A quad is drawn to cover entire texture. Quad 
vertices have attributes (0;0), (0;1), (1;0) and (1;1) 
which get interpolated and passed to the fragment 
shader. This interpolated parameter lets the fragment 
shader know which fragment it is working with and 
proceed with computation accordingly. 



 
Figure 1. Diagram showing data flow across all 

stages in the framework. 

3.1.2 Applying transformations 
All Mobius transformations can be reduced to 4 
quaternion coefficients 𝑎, 𝑏, 𝑐,𝑑 (see (2)). Those 
coefficients are then set as vec4 uniform parameters 
in 3 fragment shaders which transform positions, 
weights and normals of control points. 
Formulas (4), (5) are used for transforming control 
points and weights. The transformation of normal 𝑛 
at point 𝑝! can be achieved by transforming to two 
points:  𝑝! and 𝑝! = 𝑝! + 𝑛. In general Moebius 
transformation of a line segment [𝑝!, 𝑝!] will be a 
circular arc. Therefore, to get the transformed normal 
we compute a tangent to that arc according to 
formulas (3)-(5): 

 𝑛! = 𝐹 𝑝! − 𝐹 𝑝! 𝐹𝑊 𝑝!, 1 𝐹𝑊 𝑝!, 1 !!. 

Estimating Level of Detail 
Moebius transformation can significantly deform the 
surface of the model. Our framework implements a 
feature to estimate dynamically the level of detail 
(LOD) for each patch. The more curved patches will 
get higher level of detail, the more surface points will 
be evaluated. 
The level of detail for each patch is computed in a 
separate shader by taking transformed positions and 
weights of the patch. The results are then read back 
to the main memory so that javascript code could 
map patches to appropriate buffers. 
One can choose different ways to estimate LOD. 
Note that it is not crucial to have mathematically 
exact formula to find the curvature of the patch. Our 
implementation takes into account two measures: the 
size of the patch L and the distance H between 
middle points of transformed patch f and flat plane on 
patch control points c. 

 
Figure 2. Measures used in estimating LOD. 

The level of detail is computed by taking ratio H/L, 
raising it to the power p and then scaling by s. 
Constants p and s are passed to the shader as uniform 
parameters. They allow a user to fine tune surface 
LOD. 

 LOD = 𝑠 !
!

!
 (4) 

 



Mapping Patches to Batches 
The patches of the surface are computed and 
rendered in groups. A bunch of patches having the 
same level of detail gets layed out in the texture next 
to each other. Such texture is called a batch. In other 
words, a buffering mechanism for data sent to the 
GPU is created in order to achieve better 
performance. 
All batches are of the size 256×256. It gives us a total 
of 65536 (or 216) pixels in the texture. Later, when 
the batch is rendered, an index buffer of triangles (or 
lines) is used, where each index is of type 
gl.UNSIGNED_SHORT. Therefore a whole batch 
gets rendered in one draw call. There is no point to 
make bigger batches since we will not be able to 
render them at once anyway. 
Minimum level of details is 2×2. It takes only 
original control points without interpolating any 
additional internal points. One such batch can hold 
up to 16384 patches. Maximum available LOD – 
256×256. A patch with this LOD takes up the whole 
batch. So there are 8 different levels of details: 2, 4, 
8, 16, 32, 64, 128 and 256. 
Every time the model is transformed, we need to 
remap patches since their LOD may have changed. It 
is done by storing fetch coordinates of face vertices 
to the attribute buffer. The shader that is used to 
compute the batch will use these coordinates to fetch 
transformed positions and weights from textures that 
had got computed in the transform stage. At this 
point we also prepare LODs buffer of adjacent 
patches. Each vertex gets vec4 attribute where 
components 𝑥, 𝑦, 𝑧,𝑤 store LODs of bottom, right, 
top and left adjacent patches. Finally, we increment 
the counter that stores the amount of patches this 
batch holds. If all patches of the same LOD do not fit 
in one batch, additional batches are created. 

 
Figure 3. Example of 4×4 patches (quads) mapped 

to the batch texture. 

Computing Batches 
3.1.3 Batch buffers 
A batch gets computed by drawing a bunch of quads 
to the texture. Each quad represents a patch. In order 
to draw those quads we need 6 buffers. 2 of them are 

prepared during the mapping stage – a buffer of fetch 
coordinates and a buffer of adjacent LODs. The other 
4 are precomputed in advance. Those include: quad 
vertex buffer, parameter buffer, triangle index buffer 
and lines index buffer. 
The quad vertex buffer contains coordinates(x,y) in 
batch space. That is, they are integers from zero 
which refer to the pixels of the texture. For LOD=4, 
this buffer would look like: (0,0), (3,0), (0,3), (3,3), 
(4,0), (7,0), (4,3), (4,7)… 
In the vertex shader these coordinates are 
transformed to homogeneous space using this 
function: 

 𝑓 𝑥 = −1
−1 + !

!"#
2𝑥 + 1

1  (5) 

The scaling factor 1/256 comes from the fact that we 
use 256 sized batches. As fragments are evaluated at 
their centers, we also need add vector (1,1). This 
shifts quads so that their cornerswill be at the center 
of fragments. 
The previous function can also be written as matrix, 
transforming quad vertices to homogeneous space. 
The quad vertex vector also needs to be expanded to 
4 components vector: (x,y) → (x,y,0,1). 

1 128 0 0 − 255 256
0 1 128 0 − 255 256
0 0 0 0
0 0 0 1

 

The parameter buffer holds a repeating sequence of 
(0,0), (1,0), (0,1), (1,1) vectors that will act as s and t 
parameters in the equation of the bilinear QB-surface 
𝑃 𝑠, 𝑡 . These vectors are passed to fragment shader, 
where they will get interpolated for every fragment. 
Finally, we have index buffers for drawing triangles 
and lines. The usage of triangles index buffer is 
straightforward – to connect vertices into primitives 
(quads). However, because of rasterization rules not 
all fragments get covered by triangles. A fragment is 
covered by a triangle if the center of that fragment is 
inside the triangle. If a fragment center happens to be 
exactly on triangle edge – the top-left rule is applied 
[Mic12]. It states that the fragment is rasterized if it 
is on the left edge (or the top, in case the edge is 
horizontal). 
The bottom and right edges of the quad do not get 
rasterized. For this reason we also need lines buffer 
which is used for drawing edge lines of the patch. 

3.1.4 Evaluating surface points 
The evaluation of surface points is performed in the 
fragment shader. Bilinear interpolation of 4 control 
points is achieved using 3 mix instructions. Two of 
them interpolates in x axis (between 0-1 and 2-3 
points). The third then interpolates in y axis between 
the results of the previous. This interpolation needs to 



be performed for 𝑝!𝑤! and for 𝑤!. These will give us 
the numerator and denominator of the bilinear QB-
surface 𝑃 𝑠, 𝑡 . The excerpt of fragment shader is 
given below: 
vec4 a = mix(vPW[0], vPW[1], s); 
vec4 b = mix(vPW[2], vPW[3], s); 
vec4 nomin = mix(a, b, t); 
a = mix(vW[0], vW[1], s); 
b = mix(vW[2], vW[3], s); 
vec4 denomin = mix(a, b, t); 
gl_FragColor = qMult(nomin, qInv(denomin)); 

Note that premultiplied 𝑝!𝑤! and 𝑤! of each control 
point are passed from vertex shader as varying 
parameters. Even though varying parameters are 
interpolated, we do not need that. They are used just 
as a way to pass data from the vertex shader. To 
cancel interpolation, each vertex in the quad has to 
compute the same values for the varyings. 
The vertex shader receives fetch coordinates in an 
attribute buffer that was assembled during patch 
mapping. Using those coordinates, it can fetch 
transformed positions and weights of control points. 
It is not enough for a vertex to fetch its own position 
and weight. All 4 control points need to be fetched so 
that they could be passed to the fragment shader 
canceling unwanted interpolation. 
Consider that current quad vertex has fetch 
coordinate (𝑥, 𝑦). Then all 4 fetch coordinates 
𝑓! , 𝑖 = 0,1,2,3, can be found using: 

 𝑓! =
𝑥 −𝑚𝑜𝑑 𝑥,4 + 𝑖

𝑦  (6) 

Note that if we were working with triangle patches 
(instead of quad patches), this varying-cancelation 
mechanism would not be required. Every vertex 
would simply fetch its own attributes and pass them 
through varyings to the fragment shader where they 
would be already interpolated. However, the 
interpolation that occurs during rasterization, works 
only for triangles, that is why we need our own 
interpolation system for quads. 

3.1.5 Stitching patches of different LODs 
Dynamically computing patches of different level of 
detail allows us to render them with enough accuracy 
while keeping performance required for real-time 
animations. Due to this, patches with different LOD 
do not align perfectly and create gaps. 
We have established a patch stitching mechanism 
which alters how border points of the patch surface 
are evaluated. The idea is to supply every patch with 
information about LOD of neighbouring patches. In 
this way the patch checks if neighbouring patch has 
lower LOD, and if this is the case, that means the 
points of the edge are snapped to the nearest points of 
the neighbour patch. 

 

 
Figure 4. Surface without patch stiching (upper) 

and surface with patch sitching (lower). 
Given that surface point evaluation coordinate 
(across X axis) is x and n is required LOD for the 
edge of this patch, evaluation coordinate can be 
adjusted using the following formula 

 𝑥' = round 𝑥 𝑛 − 1 𝑛 − 1 . (7) 

This correction has to be applied to the bottom 
(𝑦 = 0) and top (𝑦 = 1) edges. Similarly for the left 
(𝑥 = 0) and right (𝑥 = 1) edges the same correction 
is applied, except for different axis – Y. 

 
Figure 5. Patch edge vertices snapped to lower 

level of detail neighbouring patch. 
Shader program does not need to know what the 
LOD of current patch is. It needs only 4 LODs for 
patch edges. This information is collected in 
javascript and passed to the shader as an attribute 
buffer. 

Rendering Batches 
Batches are rendered by fetching vertex positions 
from textures computed in the last stage. Fetch 
buffers for every different LOD are precomputed in 
advance. They contain (x,y) coordinates of vertices 
that make up patches. Two index buffers are also 
prepared for every different LOD batch. The lines 
index buffer is used for displaying a model in 
wireframe mode. The triangle index buffer is used for 
a solid mode. Alternatively, a user can choose to 
display only surface points. No index buffer is used 
then. 



 
Figure 6. Different display modes: points, 

wireframe and solid. 
While geometry of the surface is approximated to a 
certain level of detail, normals are computed exactly. 
They get evaluated per-fragment when rendering the 
final image which results in more accurate and better 
looking lighting. 
For each batch auxiliary texture, containing fetch 
coordinates and parameters, is prepared. The texture 
components xy are used to store QB-patch parameter. 
The components zw store fetch coordinates. The sole 
purpose of this texture is to carry information that is 
available during computation phase to the rendering 
phase. This texture would not be required if we have 
chosen to compute normals together with positions in 
the batch computation stage. Positions/Normals 
textures would be passed from the compute stage to 
the rendering stage. However, this approach would 
only give us normals per-vertex. 

Performance 
The prototype of the framework was implemented 
and its performance was evaluated. Below there are 
the results of the visualization of various models. The 
evaluation was performed on the Nvidia 9400M 
GPU, Safari 6 browser. The results were collected 
while the 5 seconds animation of Clifford 
transformation was rotating model from 0 to 2π. 

During transformation number of computed points 
varied because LOD of patches was changing. 
Model Patch 

count 
Min 
points 

Max 
points 

Min 
FPS 

Max 
FPS 

Square 1 4 65536 39 74 
Cube 6 24 82944 31 52 
Sphere 4 4096 4096 45 76 
Cone 2 2048 2048 47 84 
Cylinder 2 2048 8192 49 77 
Torus 4 1024 40960 36 55 
Teapot 3305 13220 467648 12 16 
Model1 150 21504 40512 35 56 
Model2 96 22800 34176 38 58 
Model3 56 37376 57344 28 65 

Table 1. Performance of the framework. 
The results show that the performance of all models 
except for the teapot was high enough to visualize 
transformations in real-time. 
An alternative for this framework could be brute 
force approach: precompute points of  all patches 
with high enough fixed LOD. Transformation would 
then be applied for all final points directly. Even 
though this might work well on modern GPUs, we 
would lose the structure of the surface. That is, it will 
no longer be possible to modify control points as well 
transformation parameters without recomputing data 
buffers.

 
Figure 7. “Rotating” a cube about the fixed circle.  

 
Figure 8. Deformation of a smooth Dupin cyclide patchwork (surface model by [Bo10]). 



 
Figure 9. Clifford translation of Utah Teapot. 

4. EXAMPLES 
Using Theorems 1 and 2 one can control M-trans-
formations by 3 or 4 points. Several examples are 
illustrated by figures:  
Example 1. Rotation about a circle (Fig. 7): 3 points 
are fixed on the given circle and the 4-th point is a 
vertex of the cube and moves in circular orbit (cf. 
Theorem 2). Faces of the cube are deformed to 
spherical patches. 
Example 2. Hyperbolic transformation (Fig. 8): 2 
endpoints of the circular arc are fixed and the 3-rd 
point moves along that arc (see Theorem 1). The 
model is a smooth patchwork of Dupin cyclides, 
borrowed from [Bo10] (look for details in [Bo11]). 
Example 3. Clifford translation (Fig. 9): M-trans-
formation of Example 1 composed with Euclidean 
rotation along the circle going through the first 3 
points. The model is the quad mesh of Utah Teapot.  

5. CONCLUSIONS 
A web-based approach for real time interactive 
visualization of Moebius transformations in 3-space 
was introduced. Both surface constructions and space 
transformations were presented in a uniform 
quaternionic setting based on Quaternionic-Bezier 
formulas. Original proofs of the main properties of 
Moebius transformations in 3-space were derived. 
The proposed WebGL framework was evaluated in 
the prototype implementation. 
One possible extension of the proposed visualization 
method is related to increasing degrees of surface 
patches. Indeed, the formulas (4) and (5) used for the 
transformed control points and weights can be 
generalized for arbitrary degrees. Then, for example, 
one can apply Moebius transformations to arbitrary 
NURBS surfaces. 
We hope this paper will not only be useful for better 
understanding of Moebius transformations in space 
but also will attract attention to new opportunities for 
shape modeling and animations. 
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