

Real-time visualization of Moebius transformations

in space using Quaternionic-Bezier approach

Vytautas Karpavicius
Faculty of Mathematics and Informatics

Vilnius University, Lithuania
vytautas.karpavicius@mif.vu.lt

Rimvydas Krasauskas
Faculty of Mathematics and Informatics

Vilnius University, Lithuania
rimvydas.krasauskas@mif.vu.lt

ABSTRACT
Moebius transformations in space are much more sophisticated than the classical case on the plane, which has
been well studied. We present a WebGL approach for visualization of Moebius transformations in 3-space by
animating deformations of geometric objects composed of patches parametrized by Quaternionic-Bezier
formulas. The idea is to represent Moebius transformations in a quaternionic form as well, and to use GPU
shaders for transforming control points, weights, and normals, then seamlessly stitching patches with different
levels of detail, and computing points on every patch. Finally, we demonstrate the main classes of Moebius
transformations in space on several 3D objects including primitive shapes, Dupin cyclide patchworks, and Utah
Teapot.

Keywords
Moebius transformation, Quaternionions, Quaternionic-Bezier, Visualization, GPU, WebGL, Shaders

1. INTRODUCTION
This paper was inspired by a wonderful video clip
“Moebius Transformations Revealed” by Arnold and
Rognes, which is available in various formats online
[Arn09] (the theory behind is described in the paper
[Arn08]) and some recent Quaternionic-Bezier
surface constructions [Kra11].
Since our goal is to visualize Moebius trans-
formations in 3-space, we cannot apply the afore-
mentioned Arnold-Rognes approach directly. Indeed,
for that one needs to show 3-sphere in 4-space. So we
switched to the idea of animating deformations of
familiar geometric objects in space using real time
graphics. The concept of a Quaternionic-Bezier
surface is the other important aspect of the proposed
visualization method. Moebius transformations of the
plane are usually identified with fractional-linear
functions of complex variable, when complex
numbers are treated as points on that plane (see e.g.
[Arn08]). In the 3D case one can change complex
numbers by quaternions and derive similar formalism
based on 2×2 quaternionic matrices [Bis10].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This approach in combination with ideas of [Gwy12]
allows us to derive short original proofs of Theorems
1 and 2, which describe the main properties of
Moebius transformations in 3-space.
Finally, we choose WebGL framework for
implementation of our visualization method, since
this modern technology enables us to deliver
interactive real time 3D graphics in web
environment.
The paper is organized as follows. We review
definitions of quaternions, Quaternionic-Bezier
formulas, and we describe the main properties of 3D
Moebius transformations in Section 2. Section 3 is
devoted to the visualization framework using
WebGL. Examples of screenshots, showing the
behavior of several 3D objects under Moebius
transformations, are presented in Section 4. Finally,
the conclusions are derived in Section 5.

2. USING QUATERNIONS
Algebra of Quaternions
We will use the algebra of quaternions H with the
standard basis 1, i, j, k and product rules:

𝒊! = 𝒋! = 𝒌! = −𝟏, 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊,𝒌𝒊 = 𝒋.
Any quaternion 𝑞 = 𝑟𝟏 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 can be
decomposed in its real part Re 𝑞 = 𝑟 and its
imaginary (vector) part Im 𝑞 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 = 𝒗,

𝑞 = Re 𝑞 + Im 𝑞 = 𝑟 + 𝒗.
Reals R and space R3are identified with subsets in H:
𝑞 ∈ 𝐇: Im 𝑞 = 0 and 𝐇! = {𝑞 ∈ 𝐇: Re 𝑞 = 0}.

Other useful notations for quaternions 𝑞 = 𝑟 + 𝒗:
• conjugate 𝑞 = 𝑟 − 𝒗
• norm (length) 𝑞 = 𝑟! + 𝒗 ∙ 𝒗
• inverse (if 𝑞 ≠ 0) 𝑞!! = 𝑞 /|𝑞|!

If 𝑞 = 1 then q has a trigonometric form
𝑞 = cos𝛼 + sin𝛼 𝒖, 𝑢 ∈ 𝐇!, 𝒖 = 1,

and a square root of 𝑞 is defined
𝑞 = cos !

!
+ sin !

!
𝒖. (1)

Moebius Transformations in Space
Moebius (M) transformations in space are defined as
compositions of inversions in space with respect to
spheres. Alternatively, M-transformations can be
generated by 4 elementary transformations in
𝐑! = 𝐇𝟎:

1. translation 𝑥 ↦ 𝑥 + 𝑎, 𝑎 ∈ 𝐇!,
2. scaling 𝑥 ↦ 𝜆𝑥, 𝜆 ∈ 𝐑,
3. rotation about axis u by angle 2α:

 𝑥 ↦ 𝑞𝑥𝑞!!, 𝑞 = cos𝛼 + sin𝛼 𝒖,
4. inversion with a center in the origin and unit

radius: 𝑥 ↦ −𝑥!!.
Note that the first 3 types of elementary
transformations generate Euclidean similarities.
Arbitrary M-transformations can be represented by
fractional-linear functions
 𝐹 𝑥 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !! (2)
of quaternion variable 𝑥 or by 2×2 matrices

 𝐴 = 𝑎 𝑏
𝑐 𝑑 , 𝑎, 𝑏, 𝑐,𝑑 ∈ 𝐇,

using notations 𝐹 𝑥 = 𝐴 ∗ 𝑥.
It is easy to check that usual multiplication of
matrices corresponds to the composition of
fractional-linear functions. The formula (2) defines
transformation of all quaternions H. The subgroup of
all 2×2 matrices that define M-transformations of
𝐇! is characterized in [Bis10], Theorem 11.1.
Elementary M-transformations correspond to the
following matrices (here ∈ 𝐇! , 𝜆 ∈ 𝐑, |q| = 1):

Tr(𝑎) = 1 𝑎
0 1 , Rot(q) = 𝑞 0

0 𝑞 ,

Sc 𝜆 = 𝜆 0
0 1 , Inv = 0 −1

1 0 .

Two theorems below are formulated following
similar results in [Gwy12] about M-transformations
in 4-space, but our proofs are different.
Theorem 1. For any given three distinct points
𝑎!, 𝑎!, 𝑎! ∈ 𝐇! and another triple of distinct points
𝑏!, 𝑏!, 𝑏! ∈ 𝐇! there exists an M-transformation F,
such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! = 𝑏!.
If both triples of points are not collinear, F maps a
plane going through points a0, a1, a2 to another plane.
Sketch of the proof. Similar to the 2D case it will be
convenient to extend our 3-space by adding the
infinite point ∞. Then we observe that M-trans-

formations that preserve ∞ are Euclidean similarities.
Define transformation

𝐻 𝑎!, 𝑎! = Tr −𝑎!! ∗ Inv ∗ Tr −𝑎! ,
𝑎!! = Inv ∗ Tr −𝑎! ∗ 𝑎!,

that maps the triple (𝑎!, 𝑎!, 𝑎!) to ∞, 0, 𝑎!! .
Similarly, 𝐻 𝑏!, 𝑏! maps (𝑏!, 𝑏!, 𝑏!) to ∞, 0, 𝑏!! ,
and it remains to find an appropriate transformation
𝑅 𝑎!! , 𝑏!! from ∞, 0, 𝑎!! to ∞, 0, 𝑏!! . This can be a
composition of rotation and scaling (see (1))
 𝑅 a, 𝑏 = Sc 𝑞 ∗ Rot 𝑞 𝑞 !! , 𝑞 = 𝑏𝑎!!.

Finally, the composition
𝐹 = 𝐻 𝑏!, 𝑏! !! ∗ 𝑅 𝑎!! , 𝑏!! ∗ 𝐻 𝑎!, 𝑎!

will map (𝑎!, 𝑎!, 𝑎!) to (𝑏!, 𝑏!, 𝑏!).
Theorem 2. Let 𝑎!, 𝑎!, 𝑎! ∈ 𝐇! be four distinct
points, and let 𝑏!, 𝑏!, 𝑏! ∈ 𝐇!, be three distinct
points. Then the set of the images 𝐹 𝑎! for all M-
transformations F, such that 𝐹 𝑎! = 𝑏!, 𝐹 𝑎! =
𝑏!, 𝐹 𝑎! = 𝑏! is either a single point (if points a0,
a1, a2, a3 are co-circular), a line or a circle.
Sketch of the proof. According to the Theorem 1 one
can suppose that (𝑎!, 𝑎!, 𝑎!) = (𝑏!, 𝑏!, 𝑏!) =
∞, 0, 𝒊 . Then 3 points ∞, 0, 𝒊 are fixed and we are

looking for Euclidean similarity with 2 fixed points
0, 𝒊. There are two cases: 0, 𝒊, 𝑎! are collinear or not.
In the first case all 4 points ∞, 0, 𝒊, 𝑎! are on a line
(i.e. points a0, a1, a2, a3 are co-circular) and we
cannot move 𝑎! to any other position. In the second
case the only possibility for 𝑎! is to rotate around the
axis going through the both 0, 𝒊. Therefore, 𝐹 𝑎!
can be any point of the particular circle (or line in
general).

Quaternionic-Bezier (QB) Formulas
Here we remind some results publicated in [Kra11].

Circular Arc
Let 𝑝! and 𝑝! be two endpoints of a circular arc C
in 𝐑! = 𝐇𝟎, and let q be some interior point on C.
QB-curve of degree 1 defined by the formula
𝐶 𝑡
= 𝑝!𝑤! 1 − 𝑡 + 𝑝!𝑤!𝑡 𝑤! 1 − 𝑡 + 𝑤!𝑡 !!

with quaternionic control points 𝑝!, 𝑝! and weights
𝑤! = 𝑞 − 𝑝! !!, 𝑤! = 𝑝! − 𝑞 !!,

defines a rational parametrization 0,1 → 𝑯𝟎 of C.
A tangent vector 𝑣! at the endpoint 𝑝! is

 𝑣! = 𝑝! − 𝑝! 𝑤!𝑤!!!. (3)
Bilinear QB-surface patch
Let us define a bilinear QB-surface patch by the
usual rational Bezier formula but with quaternionic
control points 𝑝!" and weights 𝑤!" (0 ≤ 𝑠, 𝑡 ≤ 1):

𝑃 𝑠, 𝑡 =
𝑝!"!!!,! 𝑤!"𝑠!𝑡!!!!,! 𝑤!"𝑠!𝑡!!!!,!!!!,!

!!
,

where 𝑠! = 1 − 𝑠, 𝑠! = 𝑠, 𝑡! = 1 − 𝑡, 𝑡! = 𝑡.

Here we consider just two important cases: Dupin
cyclide and Darboux cyclide (cf. [Kra11], [Pot12]).
Let 𝑝!, 𝑝!, 𝑝!, 𝑝! be any 4 points on a circle in
 𝐑! = 𝐇𝟎, and let 𝒗!,𝒗! be two orthonormal vectors,
i.e. |𝒗!| = 𝒗! = 1 and 𝒗! ⊥ 𝒗!. Then there is a
unique principal Dupin cyclide patch with corners in
these points, and bounded by circular arcs with
tangent vectors 𝒗!,𝒗! at the corner 𝑝!, which can be
rationally parametrized by the formula 𝑃 𝑠, 𝑡 , where
double index notations are changed to single ones

00, 01, 10, 11 ⟶ 0, 1, 2, 3 .
Here weights 𝑤! are computed by formulas:
𝑤! = 1, 𝑤! = 𝑞!"𝑣!, 𝑤! = 𝑞!"𝑣!,
𝑤! = 𝛿!"𝛿!"!!𝑞!"𝑤!𝑞!"𝑤!,
where
𝛿!" = 𝑝! − 𝑝! ∈ 𝐑, 𝑞!" = 𝑝! − 𝑝! 𝛿!"!! ∈ 𝐇!.

A Darboux cyclide patch is the most general case of
a bilinear QB-surface [Kra11]. For our purposes it
will be enough to consider cases with unit weights
and their images under M-transformations, when the
correct weights will be automatically computed as
explained below.
Moebius invariance
QB-curves and QB-surfaces are Moebius invariant:
their image under a certain M-transformation has the
same formula, where only control points and weights
need to be changed 𝑝 ↦ 𝑝′, 𝑤 ↦ 𝑤′:

 𝑝! = 𝐹 𝑝 = 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 !!, (4)
𝑤! = 𝐹𝑊(𝑝,𝑤) = 𝑐𝑝 + 𝑑 w. (5)

3. WEBGL FRAMEWORK
Here we describe a framework which enables us to
visualize Moebius transformations in the web envi-
ronment. Transforming, computing and rendering QB
surfaces are very computionally intensive tasks.
While it is possible to do it all in javascript, it would
be terribly slow and would not allow us to represent
real-time animations of such transformations. This
framework offloads most of the computation tasks to
the GPU which is well suited for such massively
parallelizable computations [Bro13].
We have chosen to deliver visualization content in
web environment so that it would be available to
wider audience with ease of access.
GPU is reached through an API exposed by WebGL
technology [Khr12], which is based on OpenGL ES
2.0 [Khr10]. Even if it does not allow to use the most
modern GPU features, it is possible to achieve
desired result solely through WebGL API.
An abstract outline of the framework algorithm:
1. Initialization

1.1. Loading a model
1.2. Preparing buffers

2. Computing surface points
2.1. Transforming position, weights, normals

2.2. Estimating the level of details for patches
2.3. Mapping patches to batches
2.4. Computing batches

3. Rendering surface points
Surface points are recomputed every time the surface
is transformed. Surface gets rendered when the
camera has moved or user changes any of the display
options (e.g. switches to wireframe mode).

Loading a Model
We start by loading a model from .obj file. The file
format is adjusted to accommodate weights which are
required by QB patches. Each weight is defined by a
line starting with w and following 4 real numbers
separated by spaces – representing 4 components of
the quaternion in the order: x, y, z, r. Then each face
references their weights by the index in adjusted face
vertex definition format: position/uv/normal/weight.
Three textures are created to fit positions, normals
and weights. Each face stores their vertex attributes
separately in these textures (vertices are no longer
shared among faces). Face vertices correspond to 4
subsequent pixels in textures. After this data has been
uploaded to GPU, each face vertex object in
javascript gets a reference to their respective data in
textures, that is, a fetch coordinate is stored.
After loading the model, we search for adjacent
faces. This is required later when patches of different
LOD are stitched together. Each face gets references
to their adjacent left, right, top and bottom faces.

Preparing Buffers
Buffers which do not depend on transformation state
get precomputed and uploaded to GPU in advance.
For every LOD level 7 buffers need to be pre-
computed. 4 of those will be used during the
computation stage, other 3 – during the rendering
stage. Those buffers will be described in surface
point computation and rendering sections
respectively.

Computing Surface Points
3.1.1 Render to Texture
To use GPU for arbitrary computation instead of just
rendering images, we take advantage of the technique
called render-to-texture. Instead of drawing to the
screen, custom texture is attached to the framebuffer
and rendered image gets stored in it. The data from
the framebuffer then can be read back to the main
memory and processed with the CPU. Alternatively
the texture containing rendering results can be used
in subsequent rendering passes as a data source.
A quad is drawn to cover entire texture. Quad
vertices have attributes (0;0), (0;1), (1;0) and (1;1)
which get interpolated and passed to the fragment
shader. This interpolated parameter lets the fragment
shader know which fragment it is working with and
proceed with computation accordingly.

Figure 1. Diagram showing data flow across all

stages in the framework.

3.1.2 Applying transformations
All Mobius transformations can be reduced to 4
quaternion coefficients 𝑎, 𝑏, 𝑐,𝑑 (see (2)). Those
coefficients are then set as vec4 uniform parameters
in 3 fragment shaders which transform positions,
weights and normals of control points.
Formulas (4), (5) are used for transforming control
points and weights. The transformation of normal 𝑛
at point 𝑝! can be achieved by transforming to two
points: 𝑝! and 𝑝! = 𝑝! + 𝑛. In general Moebius
transformation of a line segment [𝑝!, 𝑝!] will be a
circular arc. Therefore, to get the transformed normal
we compute a tangent to that arc according to
formulas (3)-(5):

 𝑛! = 𝐹 𝑝! − 𝐹 𝑝! 𝐹𝑊 𝑝!, 1 𝐹𝑊 𝑝!, 1 !!.

Estimating Level of Detail
Moebius transformation can significantly deform the
surface of the model. Our framework implements a
feature to estimate dynamically the level of detail
(LOD) for each patch. The more curved patches will
get higher level of detail, the more surface points will
be evaluated.
The level of detail for each patch is computed in a
separate shader by taking transformed positions and
weights of the patch. The results are then read back
to the main memory so that javascript code could
map patches to appropriate buffers.
One can choose different ways to estimate LOD.
Note that it is not crucial to have mathematically
exact formula to find the curvature of the patch. Our
implementation takes into account two measures: the
size of the patch L and the distance H between
middle points of transformed patch f and flat plane on
patch control points c.

Figure 2. Measures used in estimating LOD.

The level of detail is computed by taking ratio H/L,
raising it to the power p and then scaling by s.
Constants p and s are passed to the shader as uniform
parameters. They allow a user to fine tune surface
LOD.

 LOD = 𝑠 !
!

!
 (4)

Mapping Patches to Batches
The patches of the surface are computed and
rendered in groups. A bunch of patches having the
same level of detail gets layed out in the texture next
to each other. Such texture is called a batch. In other
words, a buffering mechanism for data sent to the
GPU is created in order to achieve better
performance.
All batches are of the size 256×256. It gives us a total
of 65536 (or 216) pixels in the texture. Later, when
the batch is rendered, an index buffer of triangles (or
lines) is used, where each index is of type
gl.UNSIGNED_SHORT. Therefore a whole batch
gets rendered in one draw call. There is no point to
make bigger batches since we will not be able to
render them at once anyway.
Minimum level of details is 2×2. It takes only
original control points without interpolating any
additional internal points. One such batch can hold
up to 16384 patches. Maximum available LOD –
256×256. A patch with this LOD takes up the whole
batch. So there are 8 different levels of details: 2, 4,
8, 16, 32, 64, 128 and 256.
Every time the model is transformed, we need to
remap patches since their LOD may have changed. It
is done by storing fetch coordinates of face vertices
to the attribute buffer. The shader that is used to
compute the batch will use these coordinates to fetch
transformed positions and weights from textures that
had got computed in the transform stage. At this
point we also prepare LODs buffer of adjacent
patches. Each vertex gets vec4 attribute where
components 𝑥, 𝑦, 𝑧,𝑤 store LODs of bottom, right,
top and left adjacent patches. Finally, we increment
the counter that stores the amount of patches this
batch holds. If all patches of the same LOD do not fit
in one batch, additional batches are created.

Figure 3. Example of 4×4 patches (quads) mapped

to the batch texture.

Computing Batches
3.1.3 Batch buffers
A batch gets computed by drawing a bunch of quads
to the texture. Each quad represents a patch. In order
to draw those quads we need 6 buffers. 2 of them are

prepared during the mapping stage – a buffer of fetch
coordinates and a buffer of adjacent LODs. The other
4 are precomputed in advance. Those include: quad
vertex buffer, parameter buffer, triangle index buffer
and lines index buffer.
The quad vertex buffer contains coordinates(x,y) in
batch space. That is, they are integers from zero
which refer to the pixels of the texture. For LOD=4,
this buffer would look like: (0,0), (3,0), (0,3), (3,3),
(4,0), (7,0), (4,3), (4,7)…
In the vertex shader these coordinates are
transformed to homogeneous space using this
function:

 𝑓 𝑥 = −1
−1 + !

!"#
2𝑥 + 1

1 (5)

The scaling factor 1/256 comes from the fact that we
use 256 sized batches. As fragments are evaluated at
their centers, we also need add vector (1,1). This
shifts quads so that their cornerswill be at the center
of fragments.
The previous function can also be written as matrix,
transforming quad vertices to homogeneous space.
The quad vertex vector also needs to be expanded to
4 components vector: (x,y) → (x,y,0,1).

1 128 0 0 − 255 256
0 1 128 0 − 255 256
0 0 0 0
0 0 0 1

The parameter buffer holds a repeating sequence of
(0,0), (1,0), (0,1), (1,1) vectors that will act as s and t
parameters in the equation of the bilinear QB-surface
𝑃 𝑠, 𝑡 . These vectors are passed to fragment shader,
where they will get interpolated for every fragment.
Finally, we have index buffers for drawing triangles
and lines. The usage of triangles index buffer is
straightforward – to connect vertices into primitives
(quads). However, because of rasterization rules not
all fragments get covered by triangles. A fragment is
covered by a triangle if the center of that fragment is
inside the triangle. If a fragment center happens to be
exactly on triangle edge – the top-left rule is applied
[Mic12]. It states that the fragment is rasterized if it
is on the left edge (or the top, in case the edge is
horizontal).
The bottom and right edges of the quad do not get
rasterized. For this reason we also need lines buffer
which is used for drawing edge lines of the patch.

3.1.4 Evaluating surface points
The evaluation of surface points is performed in the
fragment shader. Bilinear interpolation of 4 control
points is achieved using 3 mix instructions. Two of
them interpolates in x axis (between 0-1 and 2-3
points). The third then interpolates in y axis between
the results of the previous. This interpolation needs to

be performed for 𝑝!𝑤! and for 𝑤!. These will give us
the numerator and denominator of the bilinear QB-
surface 𝑃 𝑠, 𝑡 . The excerpt of fragment shader is
given below:
vec4 a = mix(vPW[0], vPW[1], s);
vec4 b = mix(vPW[2], vPW[3], s);
vec4 nomin = mix(a, b, t);
a = mix(vW[0], vW[1], s);
b = mix(vW[2], vW[3], s);
vec4 denomin = mix(a, b, t);
gl_FragColor = qMult(nomin, qInv(denomin));

Note that premultiplied 𝑝!𝑤! and 𝑤! of each control
point are passed from vertex shader as varying
parameters. Even though varying parameters are
interpolated, we do not need that. They are used just
as a way to pass data from the vertex shader. To
cancel interpolation, each vertex in the quad has to
compute the same values for the varyings.
The vertex shader receives fetch coordinates in an
attribute buffer that was assembled during patch
mapping. Using those coordinates, it can fetch
transformed positions and weights of control points.
It is not enough for a vertex to fetch its own position
and weight. All 4 control points need to be fetched so
that they could be passed to the fragment shader
canceling unwanted interpolation.
Consider that current quad vertex has fetch
coordinate (𝑥, 𝑦). Then all 4 fetch coordinates
𝑓! , 𝑖 = 0,1,2,3, can be found using:

 𝑓! =
𝑥 −𝑚𝑜𝑑 𝑥,4 + 𝑖

𝑦 (6)

Note that if we were working with triangle patches
(instead of quad patches), this varying-cancelation
mechanism would not be required. Every vertex
would simply fetch its own attributes and pass them
through varyings to the fragment shader where they
would be already interpolated. However, the
interpolation that occurs during rasterization, works
only for triangles, that is why we need our own
interpolation system for quads.

3.1.5 Stitching patches of different LODs
Dynamically computing patches of different level of
detail allows us to render them with enough accuracy
while keeping performance required for real-time
animations. Due to this, patches with different LOD
do not align perfectly and create gaps.
We have established a patch stitching mechanism
which alters how border points of the patch surface
are evaluated. The idea is to supply every patch with
information about LOD of neighbouring patches. In
this way the patch checks if neighbouring patch has
lower LOD, and if this is the case, that means the
points of the edge are snapped to the nearest points of
the neighbour patch.

Figure 4. Surface without patch stiching (upper)

and surface with patch sitching (lower).
Given that surface point evaluation coordinate
(across X axis) is x and n is required LOD for the
edge of this patch, evaluation coordinate can be
adjusted using the following formula

 𝑥' = round 𝑥 𝑛 − 1 𝑛 − 1 . (7)

This correction has to be applied to the bottom
(𝑦 = 0) and top (𝑦 = 1) edges. Similarly for the left
(𝑥 = 0) and right (𝑥 = 1) edges the same correction
is applied, except for different axis – Y.

Figure 5. Patch edge vertices snapped to lower

level of detail neighbouring patch.
Shader program does not need to know what the
LOD of current patch is. It needs only 4 LODs for
patch edges. This information is collected in
javascript and passed to the shader as an attribute
buffer.

Rendering Batches
Batches are rendered by fetching vertex positions
from textures computed in the last stage. Fetch
buffers for every different LOD are precomputed in
advance. They contain (x,y) coordinates of vertices
that make up patches. Two index buffers are also
prepared for every different LOD batch. The lines
index buffer is used for displaying a model in
wireframe mode. The triangle index buffer is used for
a solid mode. Alternatively, a user can choose to
display only surface points. No index buffer is used
then.

Figure 6. Different display modes: points,

wireframe and solid.
While geometry of the surface is approximated to a
certain level of detail, normals are computed exactly.
They get evaluated per-fragment when rendering the
final image which results in more accurate and better
looking lighting.
For each batch auxiliary texture, containing fetch
coordinates and parameters, is prepared. The texture
components xy are used to store QB-patch parameter.
The components zw store fetch coordinates. The sole
purpose of this texture is to carry information that is
available during computation phase to the rendering
phase. This texture would not be required if we have
chosen to compute normals together with positions in
the batch computation stage. Positions/Normals
textures would be passed from the compute stage to
the rendering stage. However, this approach would
only give us normals per-vertex.

Performance
The prototype of the framework was implemented
and its performance was evaluated. Below there are
the results of the visualization of various models. The
evaluation was performed on the Nvidia 9400M
GPU, Safari 6 browser. The results were collected
while the 5 seconds animation of Clifford
transformation was rotating model from 0 to 2π.

During transformation number of computed points
varied because LOD of patches was changing.
Model Patch

count
Min
points

Max
points

Min
FPS

Max
FPS

Square 1 4 65536 39 74
Cube 6 24 82944 31 52
Sphere 4 4096 4096 45 76
Cone 2 2048 2048 47 84
Cylinder 2 2048 8192 49 77
Torus 4 1024 40960 36 55
Teapot 3305 13220 467648 12 16
Model1 150 21504 40512 35 56
Model2 96 22800 34176 38 58
Model3 56 37376 57344 28 65

Table 1. Performance of the framework.
The results show that the performance of all models
except for the teapot was high enough to visualize
transformations in real-time.
An alternative for this framework could be brute
force approach: precompute points of all patches
with high enough fixed LOD. Transformation would
then be applied for all final points directly. Even
though this might work well on modern GPUs, we
would lose the structure of the surface. That is, it will
no longer be possible to modify control points as well
transformation parameters without recomputing data
buffers.

Figure 7. “Rotating” a cube about the fixed circle.

Figure 8. Deformation of a smooth Dupin cyclide patchwork (surface model by [Bo10]).

Figure 9. Clifford translation of Utah Teapot.

4. EXAMPLES
Using Theorems 1 and 2 one can control M-trans-
formations by 3 or 4 points. Several examples are
illustrated by figures:
Example 1. Rotation about a circle (Fig. 7): 3 points
are fixed on the given circle and the 4-th point is a
vertex of the cube and moves in circular orbit (cf.
Theorem 2). Faces of the cube are deformed to
spherical patches.
Example 2. Hyperbolic transformation (Fig. 8): 2
endpoints of the circular arc are fixed and the 3-rd
point moves along that arc (see Theorem 1). The
model is a smooth patchwork of Dupin cyclides,
borrowed from [Bo10] (look for details in [Bo11]).
Example 3. Clifford translation (Fig. 9): M-trans-
formation of Example 1 composed with Euclidean
rotation along the circle going through the first 3
points. The model is the quad mesh of Utah Teapot.

5. CONCLUSIONS
A web-based approach for real time interactive
visualization of Moebius transformations in 3-space
was introduced. Both surface constructions and space
transformations were presented in a uniform
quaternionic setting based on Quaternionic-Bezier
formulas. Original proofs of the main properties of
Moebius transformations in 3-space were derived.
The proposed WebGL framework was evaluated in
the prototype implementation.
One possible extension of the proposed visualization
method is related to increasing degrees of surface
patches. Indeed, the formulas (4) and (5) used for the
transformed control points and weights can be
generalized for arbitrary degrees. Then, for example,
one can apply Moebius transformations to arbitrary
NURBS surfaces.
We hope this paper will not only be useful for better
understanding of Moebius transformations in space
but also will attract attention to new opportunities for
shape modeling and animations.

6. ACKNOWLEDGMENTS
Our thanks to Pengbo Bo for allowing us to use
models of smooth Dupin cyclide patchworks from his
PhD thesis [Bo10].

7. REFERENCES
[Arn08] Arnold D.N., Rognes J., Moebius

Transformations Revealed, Notices of the AMS
55 (2008), 1226-1231.

[Arn09] Arnold D.N., Moebius Transformations
Revealed, Webpage, updated February 14, 2009,
http://www.ima.umn.edu/~arnold//moebius/

[Bo10] Bo P., Surface Fitting and Developable
Surface Modeling, PhD Thesis, The University of
Hong Kong, 2010.

[Bo11] Bo P., Pottmann H.,Kilian M., Wang W.,
Wallmer J., Circular arc structures, ACM
Transactions on Graphics 30 (2011), #101,1-11.
http://www.geometrie.tugraz.at/wallner/cas.pdf

[Gwy12] Gwynne E., Libine M., On a Quaternionic
Analogue of the Cross-Ratio, Advances in
Applied Clifford Algebras 22 (2012), 1041-1053.

[Bis10] Bisi C., Gentili G., Moebius Transforma-
tions and the Poincare Distance in the
Quaternionic Setting, Indiana University
Mathematics Journal 58 (2010), 2729-2764.

[Kra11] Krasauskas R., Zube S., Bezier-like para-
metrizations of spheres and cyclides using
geometric algebra, in: Guerlebeck, K. (Ed.),
Proceedings of 9-th International Conference on
Clifford Algebras and their Applications in
Mathematical Physics, 2011, Weimar, Germany.
http://www.mif.vu.lt/~rimask/old/pdf/Bezier-
like.pdf

 [Pot12] Pottmann H., Shi L. and Skopenkov M.,
Darboux cyclides and webs from circles,
Computer Aided Geometric Design 29 (2012),
77–97.

 [Khr10] The Khronos Group. OpenGL ES Common
Profile Specification. Version 2.0.25, November
2, 2010. http://www.khronos.org/registry/gles/
specs/2.0/es_full_spec_2.0.25.pdf

[Khr12] The Khronos Group. WebGL Specification,
Version 1.0.1, 2012. https://www.khronos.org/
registry/webgl/specs/1.0.1/

 [Bro13] Brodtkorb A.R., Hagen T.R, Sætra M.L.,
GPU Programming Strategies and Trends in GPU
Computing, Journal of Parallel and Distributed
Computing 73 (2013), 4-13.

[Mic12] Microsoft Developer Network, Rasterization
Rules, 2012. http://msdn.microsoft.com/en-us/
library/windows/desktop/cc627092(v=vs.85).aspx

