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ABSTRACT
This paper introduces a new technique to simplify a 3D point cloud sampled from an elevation surface and or-
ganized in voxels. The method consists of three steps: in a first step, the boundary of the surface is extracted
and simplified; in a second optional step, we roughly simplify the surface inside its boundary; in a third step, we
present an elaborate method for simplification while keeping its boundary. Our method preserves the distribution
of points, the initial geometry and characteristics of the surface, even with high simplification rates.
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1 INTRODUCTION

Simplification of a 3D point cloud belonging to a
surface is an important step in geometric modeling
and surface processing. The purpose of surface
simplification of a 3D point cloud is to reduce the
number of points, save the memory, improve the effect
of computation and optimize the processing of the
geometric model. During simplification, the original
shape of the surface must be kept, without shrinking or
deformations.
Nowadays, the modern 3D acquisition and modeling
technology allow producing a large amount of point
samples from real-world objects. Different existing
researches (and especially for meshes) are available for
processing of the continuous surfaces, but the case of
3D point clouds simplification remains a challenging
issue.
Our problem originates in the questions of processing
large 3D point clouds issued from a seismic data
(themselves extracted from a 3D sparse volume
[Philippe09]). The seismic acquisition does not permit
to measure all the points in the 3D volume, explaining
the fact that the 3D volume is sparse. The 3D points
are actually stored in a voxel structure in this volume
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(each voxel is considered as a 3D point, and has three
real coordinates xyz), hence implicitly the 3D volume
contains neighboring information even in a sparse
context.
Most existing approaches have a common drawback:
in the case of open surfaces (that is surfaces with
boundaries), simplification induces a shrinking of the
surface. Hence, in order to preserve the initial shape,
our approach starts by an extraction and simplification
step of the boundary. In a previous work, we have
proposed a method for extracting and simplifying
the boundary of a surface [Sinh12]. The present
paper continues this work and introduces a method
to simplify the inside of this surface. To handle
potentially huge clouds, our method consists of two
steps: an optional initial rough simplification (basically
designed to adjust the sampling rate) followed by a
more elaborated simplification step. As the point cloud
is sampled from elevation surfaces, points are first
projected onto a 2D grid in xy plane to process with the
first step, while the second step is directly processed in
the 3D grid.
The remainder of this paper is organized as follows: in
section 2, we present work related to surface simplifi-
cation of a 3D point cloud. We present our method in
detail, which includes problem analysis, building the
criteria and implementing the algorithms in sections 3.
The results and evaluation of our method are presented
in sections 4 and 5. The last section is our conclusion.

2 RELATED WORKS
Different existing methods which have been stud-
ied and developed are not only applied to sim-



plify the surface of 3D point clouds, but also
applied to simplify the surface of triangular mesh
[Garland99, Pauly02, Van06, HaoSong09, Zhe07].
Among them, PCA (Principle Components Analysis)
is a popular tool, a well known method that can
be used to simplify the surface of 3D point clouds
[Mederos04, Yu06, Alexandra07, David08].
Garland et al (1999) [Garland99] developed an algo-
rithm to simplify the surface of a polygonal model
based on the iterative contraction of vertex pairs.
Starting from the initial model M1, an edge ev1,v2
will be contracted to a new position v̄ if the distance
‖v1− v2‖ < threshold. The process is repeated until
the simplification goals are satisfying. The last model
M2 approximates M1. In order to preserve the shape of
the surface and optimize the placement of vertices after
contraction, the authors used the quadric error matrices
to track the approximate error of the model. This
method is time and memory demanding, but it avoids
distortion of the original shape. However, evaluation of
the quadratic error metric is closely related to the mesh
structure (and to the face neighborhoods). Hence, it
cannot easily be adapted in our setting.
Pauly et al (2002) [Pauly02] introduced, analyzed,
compared and implemented a number of methods to
simplify the surface of 3D point clouds. One of these
methods is called “Clustering". The surface of 3D
point clouds is clustered by splitting it into a subset of
points; then, replace all points in each cluster by one
representative point. This region-growing is terminated
when the size of the cluster reaches the maximum
bound. This method leads to simplifying the surface
effectively. However, each cluster is a sphere with a
radius α on the surface. Therefore, the points outside
these clusters are not simplified completely after the
iterative processing.
Boris et al (2004) [Mederos04] proposed a method
to reconstruct and smooth a surface from noisy point
clouds. At first, he smoothed the original point clouds
to reduce the noisy points by using a robust projection
procedure, while keeping the shape of the surface. The
next step, data of 3D point clouds are clustered by
partitioning into a subset of clusters. Then, he applied
PCA to analyze, reduce the size of the original points,
and determine a representative point for each cluster.
In the next step, a triangular surface is obtained from
the representative points of each cluster to obtain a
rough surface which approximates the original surface.
The last step, this rough surface is refined to get an
optimal one. This is a complete method for surface
reconstruction of a point cloud. However, the comput-
ing is complex during projecting, clustering, reducing,
meshing and refining the point clouds, leading to a
computation heavy and costly.
Normally, to simplify the surface of 3D point clouds,
the existing approaches aim to cluster a subset of

points, and then grow on the surface to simplify.
The problem is how to determine the neighboring
points in a local region of the surface. Y.J Zhang et
al (2010) [Zhang10] proposed a way to define the
nearest neighbouring points by using a cylinder. The
points are dropped into a bounding cylinder based on
the specified threshold (the radius of the cylinder);
then, they are projected on the line as its center axis
to simplify the points inside. The same as method
[Pauly02], for each iterative step, the outside points are
not simplified completely.
Frey et al (2007) [Frey07] presented a method (the
“affinity propagation") to cluster by passing messages
between data points. This method measures the simi-
larity of each point-pair of the input data points. Each
point in a point set is assigned as a node of a network,
the real-valued messages are exchanged between data
points (nodes) along the edge of the network until
a high-quality set of exemplars corresponds to the
cluster which gradually emerge. However, the cost
of computing is expensive because the transmission
process between the points is computed recursively.
Jae-Young et al (2005) [Jae05] and Tamal et al (2011)
[Tamal11] introduced a method by using an octree
partitioning to divide the point clouds into a small
subset, then process on each subset as a node of an
octree on 3D space and quadtree on the 2D grid. At
first, a root node of a point cloud is divided into four in
2D or eight in 3D. Then, the child nodes are recursively
divided until satisfying the condition of the threshold.
After that, each node can be considered as a point
during the simplification.
Morales et al (2010) [Morales10] suggested a method
to smooth and decimate the points from an unstruc-
tured point cloud based on the radial based function
(RBF). The points are computed based on the kd-tree
nearest neighbors. Starting from a seed point pi, the
neighboring points (pn) are calculated by an Euclidean
distance ‖pi− pn‖ to determine the radius r. All points
within r are mapped from a 3D point set to the 2D
space; the point set components are mapped into each
axis plane on each square matrix MxMx3 in domain
Nix,Niy,Niz. The next step is using a convolution

Gaussian Kernels function C = M⊗G
(

µ,σd(k)
)

for
each axis Ni j to smooth and estimate the new center
point in each component p′x,y,z. Finally, the 3D point
sets are smoothed and simplified according to the local
surface features.
As we have described and analyzed, the above methods
are suitable for dispersive data or unorganized point
clouds but lead to an expensive computation. In our
work, we take advantage on the structure of voxels and
their neighborhood information. We can adapt these
methods to simplify the surface efficiently; preserve
the shape and point distribution of the surface.



3 OUR METHOD
Our method consists of three steps (see figure 1). The
first step (boundary extraction and simplification), we
have presented in the previous work [Sinh12]. In this
paper, we present the second and the third step for sim-
plifying the surface inside its boundary.

Figure 1: A method for simplifying the surface.

It is interesting to summarize the main idea of the
method we applied first to extract and simplify the bor-
der of a surface [Sinh12]. We define a method to ex-
tract the boundary based on k_square neighborhood of
each point up to a fixed integer distance k. Our algo-
rithm starts from an initial boundary point of the sur-
face; then, an exterior boundary is built point by point
by iteratively computing the next point via growth func-
tions. After that, we build an algorithm to simplify this
boundary by first study the alignment of points and sec-
ond study the variation of elevation. In our method,
the complexity of algorithms is proved more efficient
than existing methods. Moreover the initial shapes of
the surface are also preserved for the simplification step
since the boundaries are kept.

3.1 Rough simplification
3.1.1 Overview
Rough simplification is a preliminary step designed to
handle large point clouds: points are imported in a fine
regular grid and each non empty voxel is replaced by
a single representative vertex. Hence, the goal of this
step is merely to adjust sampling density. In this algo-
rithm, 3D point clouds (organized in a sparse 3D regu-
lar grid) are first projected onto the 2D grid in the x,y
plane. This 2D point cloud (set of non empty voxels) is
subdivided according to a regular grid of size s (this size
is defined by the user according to the desired final sam-
pling rate) (see figure 2a). Then, each non-empty cell is
replaced by a single representative point: the barycen-
ter of contained points. This step, even if rough, can be

justified in terms of resolution: it is merely a resolution
adaptation (in case the resolution of the data is too high
compared to the expected results). The important point
in this step is that we will not simplify boundary points
(as they have already been handled in the previous work
[Sinh12]); and this step should be applied using a small
size of cells in order to avoid distorting the surface.

Figure 2: a) The size of a cell. b) The barycenter of the
points (red color) in the cell.

3.1.2 Notation
In the sequel, we use the following notations:

- G: the 2D initial regular grid,

- C: the regular grid of size s built over G,

- S: the subset of cells in C which are non empty,

- Sq: a cell on the 2D grid belonging to S,

- pq: barycenter of the points included in Sq.

3.1.3 Algorithm
As the size of the cells is small and as we want to
preserve boundary points, if a cell contains boundary
points, no further representative vertex will be inserted,
only included boundary points are kept. Otherwise, if a
cell does not contain boundary points, we compute the
barycenter of the points in this cell. Based on the above
description, we propose a very simple algorithm (Algo-
rithm 1) with a linear complexity to roughly simplify
the surface.

Algorithm 1 roughSimplification(s)
1: for each cell Sq ∈ S do
2: if Sq contains boundary points then
3: keep only boundary points;
4: else
5: replace all points by pq;
6: end if
7: end for

3.2 Elaborate simplification
3.2.1 Overview
In this step, we focus on two main points to process the
surface: curvature of the surface and point density. We



process the surface directly in the 3D grid. As previ-
ously, the sparse 3D grid (equivalent to the point cloud)
is divided according to a regular 3D grid C. The initial
size of the cells of C is large (defined by the user) and
elaborate simplification will further subdivide cells of C
according to density and curvature criteria. If cells con-
tains boundary points, they are processed based on the
combination between boundary density and local cur-
vature in these cells. Otherwise, subdivision is based
on local curvature within each cell and adapted to the
size of neighboring cells. After simplification, the dis-
tribution of points has to vary continuously; it must be
constrained regularly from the exterior boundary to the
inside of the surface. This constraint is introduced to
avoid creating bad triangles (in the sense of Delaunay
triangulation) in a further meshing step.

3.2.2 Analysis

Obviously, our rough preliminary simplification is too
basic to reach high simplification rates. It is useful only
to adjust the resolution or as a first decimation for huge
point clouds (for which a more elaborate simplification
cannot be applied directly because of time and space
complexity issues). Hence, this preliminary step is op-
tional.
In the case of complex surfaces with a high curvature,
simplification must be based both on density and curva-
ture criteria. For this reason, we develop an advanced
algorithm to simplify the surface more elaborately. This
algorithm is based on an octree subdivision of the sur-
face adapted to its curvature, point density and to the
border density. We will combine two subdivision cri-
teria to simplify the surface: subdivision according to
the boundary density and subdivision according to the
curvature.

3.2.3 Subdivision according to the boundary
density

An important issue is that point density should vary
“smoothly" (in order to preserve the shape of triangles
in a further meshing step). It must be constrained con-
tinuously on the surface and propagate regularly from
the boundary to the inside of the surface. Therefore, in
this paper we propose a method to simplify the surface
inside its boundary. In order to subdivide cells accord-
ing to the boundary density, we have to build a sub-
division criterion. At first, we analyze the density of
boundary points (number of boundary points in a cell)
and their distribution. Our criterion is based on the size
of a cell, the number of boundary points and the dis-
tance between them.

a) Notation and formula construction

We will use the following notations:

- Cq: a cell (size s) in the 3D grid,

- Nbp: the number of boundary points in Cq,

- dmax: the maximum distance between two boundary
points in Cq,

- Ls: the level of subdivision of a cell (see figure 3),

- s′: the size of the smaller cells after each subdivision
of Cq: s′ = s

2Ls .

- pi, p j: point ith, point jth of Cq.

Figure 3: The level of subdivision in a cell.

In our context, data points are organized based on a 3D
grid structure, each point in a cell has xyz coordinates
and in the sequel, we will use the Euclidean distance
to compute the distance between points. Hence the
maximum distance between boundary points in a cell
is given by:

dmax = max
i, j∈(1..Nbp); i6= j

(∥∥pi− p j
∥∥) (1)

b) Boundary density criteria

Subdivision according to boundary density is per-
formed from cells containing boundary points (called
first ring) towards the surface interior (ring by ring,
starting from the boundary). In the sequel, we will
denote by ri the ith ring of cells based on the 8-
connectivity (hence, r1 is the set of boundary cells).
There is a relationship between the density of points
and the distance between them in a cell. Obviously,
as the density of boundary points in a cell increase,
the distance between them will decrease. The formula:
D(density) = N p(number o f points)/V (volume) can
be applied to compute the density of points on a
volume. In our case, we focused on the number of
boundary points Nbp in a cell and its size s to calculate
point density PD of that cell (PD = Nbp/s). Hence our
criterion is based on PD and dmax:(

PD > thresholdpd
)

and (dmax > thresholdd) (2)

In order to preserve the shape of the surface for a fur-
ther triangular meshing step, the size of cells must vary
smoothly. Therefore, for boundary cells (also called



first ring cells), we state a specific subdivision criterion:
if a cell Cq (containing boundary points) satisfies the
first condition (2), then we check the size of Cq. If the
size is less than or equal than a threshold, we keep only
boundary points; else, we keep boundary points and the
barycenter of inner points in that cell. Otherwise, Cq is
subdivided (as an octree).
Starting from the second ring (which contains inner
points of the surface), we subdivide cells both accord-
ing to the local curvature and previous ring cell sizes.
Cells are processed ring by ring from the outside to the
inside of the surface. The cell size in ring ri is sub-
divided according to the sizes of neighboring cells of
ring ri−1 (the outside adjacent ring of ri). It means
that, if an inner cell satisfies the curvature criterion,
we subdivide it according to the average subdivision
level of all nearest neighboring cells. Let Cq ∈ ri and
let {Ci−1

1 , . . . ,Ci−1
m } be the set of neighboring cells in

ri−1, the subdivision level of Cq is computed as:

size(Cq) =
1
m

m

∑
j=1

size(Ci−1
j ) (3)

In the end, the cell size varies smoothly; and if the cur-
vature inside a cell is low, all points in this cell are re-
placed by one representative point. In next section, we
build a flatness criteria in order to subdivide cells ac-
cording to their curvature.

3.2.4 Subdivision according to the curvature
Our goal is to preserve the shape of the surface after
simplification. In this part we process the cells contain-
ing inner points, from the second ring to the inside of
surface. For each cell we apply a principal component
analysis (PCA) to estimate the average local curvature
of the surface. We thus define a flatness criterion and
subdivide cells accordingly.

a) PCA flatness criteria

PCA can be used as a useful statistical method to an-
alyze data. This is a technique that can be applied to
simplify a surface of 3D point clouds (see [Pauly02,
Mederos04, Alexandra07, Zhe07, MZhang11]). In or-
der to estimate the curvature/flatness of a cell, we com-
pute the PCA of the vertices of the cell. The eigenval-
ues of the corresponding covariance matrix provide a
curvature information and we define accordingly a flat-
ness criterion. Cells that do not meet this flatness crite-
rion are subdivided until either their size is lesser than
a threshold or they satisfy the criterion.
We use the formula below to compute the covariance
matrix for each cell:

C =
1
N

N

∑
i=1

(pi− p̄)(pi− p̄)t ; (4)

Where:

- N: a set of points in each Cq,

- p̄: barycenter of points in Cq,

- λi, vi: the ith eigenvalue and ith eigenvector of C.

The eigenvectors of C provide information about the
principal directions of a point set. More precisely,
the eigenvectors provide main axes of the cloud,
while eigenvalues provide its stretching along the
corresponding axes. Hence, the eigenvector associated
to the smallest eigenvalue provides an average normal
vector while both other eigenvalues are related to
principal curvatures.
Following the above analysis and applying the
ideas introduced in [Pauly02, Mederos04, David08,
MZhang11], let us sort eigenvalues: λ0 ≤ λ1 ≤ λ2.
If the value of λ0 is very small or even equal 0, that
means all the points in a cell are approximately on a
plane (it satisfied the flatness criteria). In such a case,
the average normal vector on a local surface within
a cell can be determined based on the direction of
v0. The flatness criterion “∂ " below is considered as
a condition to further subdivide cells (and hence to
control the simplification of the surface):

∂ =
λ0

λ0 +λ1 +λ2
(5)

For each point on the local surface, if their normal vec-
tors are distributed isotropically, these points will lie
on the same plane. This solution is given by Hugues
Hoppe [Hoppe92] to compute the orientation of the
tangent plane: for each data point pi, a tangent plane
is computed by least-squares approximation based on
PCA of the k nearest neighbor of pi.
In our case, we use the flatness criteria(5) to estimate
the local curvature in a cell. The minimum value of ∂

equal 0, while its maximum value equal 1/3, and our
flatness criteria is based on the range of these values.
(see figure 4)

Figure 4: Estimation of the curvature in a cell: (a) The
points are approximately on a plane within a cell (λ0 is
very small, λ1 and λ2 are large); (b) λ0 is large or (λ0 '
λ1 ' λ2 ' 1) or (∂ ' 1/3)⇒ this cell is subdivided.

The curvature in a cell is first determined by computing
∂ . Then, ∂ is compared with a threshold value from the
user. If ∂ ≤ threshold∂ , we replace all points in this
cell by one representative point. This way can simplify



the surface efficiently and the ratio of simplification is
very high (if the points in that cell are approximately
on a plane). However, the density of points could vary
irregularly after a large number of points have been re-
moved. For this reason, we have to combine with the
computation of point density and size of cells to con-
strain the distribution of points on the surface to be as
regular as possible.

3.2.5 Algorithm

According to the previous analysis, we now define our
simplification algorithm. Our algorithm covers cells
ring by ring (starting from boundary cells), each ring
is processed clockwise (see figure 5).
We start from the first ring, blue color (i.e. the ring of
boundary points). In this ring, we begin with the left-
most cell (1) and follow the clockwise direction to com-
pute, subdivide and simplify each cell. From the second
ring (yellow color), we also begin with the left-most
cell (2) and so forth for following rings (third - green,
fourth - pink, etc). The algorithms below are used to
simplify the surface: algorithm 2 is used to process the
cells containing boundary points in the first ring.

Algorithm 2 SimplifyBoundaryCells(s)
1: Nbp = 0, Ls = 0; //start from the left-most cell, fol-

low the clockwise direcrion.
2: for each boundary cell Cq(size s) ∈ S do
3: compute Nbp, dmax;
4: if Cq satisfy the density criteria(2) then
5: if size s≤ thresholds then
6: keep only boundary points;
7: else
8: replace all points by boundary points

and the barycenter of inner points;
9: end if
10: else //subdivide Cq by Ls.
11: Ls = Ls + 1;
12: s′ = s/(pow(2,Ls));
13: for each Cq(s′) ∈Cq(s) do
14: if Cq(s′) contains boundary points then
15: SimplifyBoundaryCells(s′);
16: else
17: SimplifyInnerCells(s′);
18: end if
19: end for
20: end if
21: end for

Figure 5: Illustration of the elaborate algorithm.

Algorithm 3 is used to process the cells containing inner
points from the second ring to the inside of surface.

Algorithm 3 SimplifyInnerCells(s)
1: Ls = 0; //start from the left-most cell, follow the

clockwise direcrion.
2: for each inner cell Cq (size s) ∈ S do
3: compute the covariance matrix of points in Cq;
4: if Cq satisfy the flatness criteria(5) then
5: subdivide Cq based on (3);
6: replace all points by the barycenter in each

sub-cell;
7: else //subdivide Cq by Ls.
8: Ls = Ls + 1;
9: s′ = s/(pow(2,Ls));
10: SimplifyInnerCells(s′);
11: end if
12: end for

For each inner cell, we compute the curvature criterion
(5). If it satisfies the threshold, we first subdivide this
cell based on (3); then, replace all points in each sub-
cell by their barycenter. Otherwise, we subdivide this
cell and repeat the process until all conditions of the
criterion are satisfied.
In this step, our computing experiences have seen that
the processing time mostly depends on values of ∂ ; be-
fore and after combining with step one (rough simpli-
fication) (see table 2), and less depends on s (size of a
cell). Normally, the number of points in a cluster (using
PCA) is around from 30 points [Carsten04, RenFang08,
Morales10]. In our case, the curvature within a cell of
a geologic surface is low and the 3D points are sparse.
Therefore, we choose s ≤ 10 (that is initial cells con-
taining at most 100 voxels) and many values of ∂ to
implement. As a result, the time is affected if the num-
ber of points in a cell greater than 36 or ∂ close to 0 and
before combining with step one. We keep the bound-
ary and combine two steps (rough and elaborate) to
simplify a surface; thus, the surface is simplified com-



pletely, the initial shapes of the surface are preserved,
and the time is controlled.

4 RESULTS
In this section, we present some of our results. For
the step one (rough simplification), the computation are
very fast. The algorithm has been tested on many sur-
faces with different number of points to compare the
running time and simplification rate with an existing
method (cluster vertices) [Pauly02]. The results are
presented in table 1, the running time of our method
is faster than the clustering method, while the simpli-
fication rate is slightly lower (depending on the initial
shapes of input surface) because we kept the boundary
points.

Input Our method Cluster method
points Output time Output time

points/s.rate (ms) points/s.rate (ms)
32402 1881/94% 36 1075/96% 303
68956 3695/95% 53 2432/96% 544
148317 6368/96% 98 4675/97% 1149
346796 13030/96% 206 11068/97% 2766
664582 22388/96.6% 377 19872/97% 5739

1006712 67360/93% 651 28850/97% 8501
Table 1: The comparison between our method (rough
simplification) and clustering method. We use the same
size of a neighboring distance between the points, and
run on the same computer (s.rate: simplification rate;
ms: milisecond).

In this step, the simplification rate is controlled by the
cell size. In our method, although boundary points are
kept to preserve a part of the shape of surface, this ap-
proach does not take into account the curvature of the
surface and hence is too rough to be applied with high
simplification rates. If we use a larger size of cells to
simplify, the received results are not accurate (see figure
7). Therefore, this step can only be applied to simplify
a simple surface of 3D points or to adjust the resolution
of a 3D point cloud by using a small size of cell. In the
clustering method, all points of the surface (boundary
points and inner points) are simplified; the shape of the
output surface is not well preserved (see figure 8).
In step two (elaborate simplification), we have tested
our approach on different surfaces with different num-
bers of 3D points and different values for ∂ . The results
are detailed in table 2. We provide the values of ∂ in
order to show that: if the value of ∂ is close to 0, the
obtained surface is smooth, close to the initial surface
(small simplification rate) and the processing time is
low; otherwise, if the value of ∂ is close to 1/3, the ob-
tained surface is far from the original one (higher sim-
plification rate) and the running time is higher. How-
ever, we have maintained boundary points, and con-
strained the point distribution from the boundary to the

inside of the surface. Therefore, we have obtained the
output surfaces preserving the initial geometry of the
surface (see figure 10). Figure 9 shows the result of
the point distribution constrained from the boundary to
the inside of the surface. As a result, a good triangular
surface can be obtained in a further meshing step.

P.input Values Time1 Time2 P.output
(kb) of∂ (ms) (ms) (s.rate)

60511 ∂ ≤ 0.03 5271 3231 9879/84%
(976) ∂ ≤ 0.12 5026 2958 9377/84.5%

∂ ≤ 0.20 3776 2910 6786/89%
148317 ∂ ≤ 0.03 22106 14194 21122/86%
(2461) ∂ ≤ 0.12 21167 13825 20820/86%

∂ ≤ 0.20 15896 12079 18916/87%
346796 ∂ ≤ 0.03 114795 111362 56448/84%
(5727) ∂ ≤ 0.12 111289 107309 52187/85%

∂ ≤ 0.20 110623 101544 50112/86%
866639 ∂ ≤ 0.03 832865 191153 147328/83%
(14500) ∂ ≤ 0.12 786980 185491 138622/84%

∂ ≤ 0.20 581159 166116 112633/86%
Table 2: The running time of step two before (Time1)
and after (Time2) combining with step one; the simpli-
fication rate (s.rate) after using the same size of cells;
different values of ∂ (kb: kilobyte; ms: millisecond).

5 EVALUATION
Our method has two advantages compared to existing
methods. First, we use a cell to gather and compute
the points in a local neighborhood to simplify the sur-
face. By using a cell, there are no outside points be-
tween the cells; only one loop is used to consider all
points of the surface. On the contrary, the other meth-
ods [Pauly02, Zhang10, Morales10] use a sphere or a
cylinder (both are the same) to compute the neighboring
points within a threshold value of a radius r (see figure
6). Therefore, after each iterative operation, they have
to process the points outside of these sphere/cylinder.
The second advantage is that searching to compute a
neighboring point within a cell is faster than within a
sphere [Matthew96]. Our approach also takes advan-
tage of the fact that our data are already organized in
a sparse numeric volume, and hence we don’t need to
lose time and memory space to build accelerating data
structure for k_neighbors computation (such as kd-trees
or octrees).

Figure 6: Determining of a neighboring point.



6 CONCLUSION
In this paper, we have presented a method to simplify
an elevation surface defined by a 3D point cloud. It is a
part of our research in the field of geometric modeling
of oil reservoir. The input data are a mass of 3D point
clouds, and the number of points can reach millions of
points. Therefore, our first approach focuses on data
processing and surface simplification. Successively, we
succeed in boundary extraction and simplification of
the surface, while preserving the original shape of the
surface as expected [Sinh12]. The surface simplifica-
tion of 3D point clouds using PCA can normally yield
an expensive computation. In our case, the input data
are stored in the 3D grid volume, implicitely containing
the neighborhood information for each point. We have
taken this advantage; combined two steps for rough and
elaborate simplification; and two ways of subdivision
by using a cell to grow and simplify the surface. The
output surface preserves the initial shape of the input
surface, the point density and the point distribution are
kept regularly, constrained from the boundary to the in-
side of surface. This good distribution of points is an
advantage to obtain a good triangulation of the point
clouds. Obtaining this triangulation by a fast method
corresponds to our forthcoming work.
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