
Physics-based Water Interaction and Shading:
The SiViFlow Algorithm

David Sena
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa

davidsena@ist.utl.pt

Joao Pereira
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa
jap@inesc-id.pt

Vasco Costa
INESC-ID

Rua Alves Redol 9,
1000-029 Lisboa

vasco.costa@ist.utl.pt

ABSTRACT
Current real-time applications feature rivers that are pre-calculated off-line and present static animations and be-
haviours. These pre-calculated approaches have several limitations when used in real-time applications such as
video games as they usually do not react to changes performed by the user. Due to the continuous pursue for better
realism, the techniques used to simulate rivers have not only to improve the appearance of rivers but also allow
them to adapt to dynamic changes performed in real-time. The approach presented in this work allows the dynamic
generation of the river given any riverbed. The algorithm is also flexible enough to adapt the river flow in real-time.
This approach not only accelerates the creation of realistic rivers but also increases the realism as the river is able
to react to dynamic objects that come in contact with the flow, by properly adjusting its course.

Keywords
Water, Real-Time, River Animation, Flow Simulation.

1 INTRODUCTION
With the introduction of faster hardware and increasing
demand for more realistic nature effects, researchers
have been trying to create feasible nature models that
are computationally viable and meet the constraints im-
posed by real-time applications. Nowadays applica-
tions such as video games try to simulate fully featured
worlds with weather effects, large rivers and oceans, re-
alistic animation systems among many other traits com-
mon in the real world. Due to the tight restrictions of
real-time applications, an approach to simulate this type
of phenomena would have to contain only the minimum
amount of physical features necessary to make a river
behave correctly and still leave enough computational
resources available to draw a convincing visual repre-
sentation of the fluid being simulated. The objective of
the presented work is to create a new approach that sim-
ulates watercourses with any width, that flow correctly
and are dynamic enough to be able to adapt to the fea-
tures of their surroundings. A visually appealing rep-
resentation of the flow being simulated is also included
in order to be able to recreate with fidelity the water-
courses from a visual standpoint. Our focus will reside
mainly on the architecture description of the algorithm
and less on implementation details or specific optimiza-
tion issues. In order to focus the objectives of our work
inside a broad subject such as fluid dynamics and as this
work will be used in the context of video games, we
decided to use real-time rendering techniques that al-
low the use of this approach in highly complex scenes.
The final result had to be easily configurable both in

terms of visual appearance and physical parameters in
order to allow this approach to be used in any setting.
This would allow not only to change the visual features
but also the behaviour of the river according to its sur-
rounding, making it more flexible to adapt to different
surroundings (e.g. it should be flexible enough to able
portray both a tropical or a sea like environments). Re-
garding the dynamic flow simulation two main contri-
butions were done in our work. First the automatic gen-
eration of a velocity vector field given an arbitrary river
surface mesh. Given the mesh as input, the algorithm
analyses and generates enough data to be able to cre-
ate a vector field that describes not only the direction of
the flow but also its velocity at any point. Second once
we’ve calculated the vector field, we’ll generate a re-
alistic and adaptive flow behaviour which allows us to
portray any amount of turns in a given river network and
even take into account changes performed to the river
channel such as dynamic objects altering the flow. This
contribution takes into account the fact that the river
surface mesh might have any width, have a complex
river shape and that all the flow information drawn on
screen is updated accordingly.

2 RELATED WORK
2.1 Navier-Stokes equations
The basis of most fluid simulation models both in Com-
putational Fluid Dynamics and Computer Graphics are
the Navier-Stokes equations. These equations allow us
to represent a fluid by its velocity field and a pressure



field, varying both in time. If both fields are known at
the initial time then we can describe the state of the fluid
over time using:

∂u
∂ t

=−(u ·∇)u− 1
ρ

∇p+ v∇
2u+ f (1)

∇ ·u = 0 (2)

where · denotes a dot product between vectors, ∇ is the
vector of spatial derivatives, u and p are the velocity and
pressure fields of the fluid, ρ is the density and v is the
kinematic viscosity. f is a vector representing external
forces. Equation 2 is called the continuity equation and
means that fluids conserve mass[Sta99]. The right-hand
side of the equation 1 consists of four parts:

• Advection : −(u ·∇)u which represents the process
by which a fluid’s velocity transports itself and other
quantities in the fluid. In most simulations this rep-
resents the force that the surrounding fluid particles
exert on a particle and causes it to transport itself
along the velocity field.

• Pressure : − 1
ρ

∇p causes regions with a higher pres-
sure to accelerate the molecules away from that area.

• Diffusion : v∇2u represents the force caused by the
viscosity of the fluid.

• External forces : f represents forces that act on the
fluid like gravity.

2.2 Approaches to Fluids Simulation
Physically-based water simulation has been an active
research field for the last 30 years. Several different
approaches have been proposed but usually they can be
grouped into smaller distinct categories. In Figure 1
a schematic[GH06] is shown where the main types of
water simulation are depicted.

Figure 1: Water modeling techniques

The widest classification that can be made is a di-
vision between surface-based and volume-based tech-
niques. The latter apply the Navier-Stokes equations to

model the liquid’s physical flow properties. Amongst
the volume-based techniques, we can find many differ-
ent approaches. One of those categories is the Eule-
rian approach. This approach looks at fixed points in
space, discretizing the domain in regular grids, either in
2D [Sta99][Fos96][WLL04] or 3D [Ngu07][CTG10].
Each grid cell stores both scalar quantities (such as
pressure and temperature) and vector quantities such as
velocity. In this approach the computational elements
are fixed in space throughout the simulation and a fi-
nite difference method is used to solve the equations
numerically. The major advantage of this method is the
possibility to allow adaptive time steps and the inher-
ent smooth liquid surface that it allows. On the other
hand, this method suffers from a lengthy computational
time and grid resolution limitations allied with alias-
ing in the boundary discretization. It also suffers from
poor scalability in terms of computational power and
memory consumption. Another approach is the La-
grangian, where the fluid is approximated by several
discrete particles and their respective properties. Each
point in the fluid is considered as a single particle, with
a position x and a velocity u. In order to solve sev-
eral problems regarding the discretization of the con-
tinuum using the Navier-Stokes equations, the method
most commonly used are Smoothed Particles Hydro-
dynamics (SPH)[CBL+09][HKK07][DG96]. The ap-
proach taken by SPH is to define a smoothing kernel
to interpolate physical properties (velocities, densities,
etc) at an arbitrary position from the neighbouring par-
ticles, instead of defining each particle and their physi-
cal properties individually. This approach has two ma-
jor drawbacks. First the smoothing kernel should be
designed carefully because the stability, accuracy and
speed of the SPH method largely depends on the choice
of those kernels. Second there is quite a complex step
in the Lagrangian method that is constructing a smooth
surface for rendering. Many research works have pre-
sented possible solutions [vdLGS09] but up till now, the
quality of liquid surfaces constructed from the whole
bunch of particles is not as compelling as its Eulerian
counterpart.
Among surface-based techniques, there are procedural
methods which despite the fact that they don’t model
the whole fluid domain or some fluid quantities (e.g.
pressure), usually represent the fluid in terms of veloc-
ity fields. These approaches don’t start from the equa-
tions but pick a way to describe the state of the system
(usually through a velocity field of the fluid), evaluat-
ing and updating it anywhere in space and time. Even
nowadays this kind of approach is preferable because
it provides an extremely simple approach to efficiently
generate a fluid-like behaviour in a body. It also allows
to control the animation of a body of water, something
that is not as easy to obtain when using volume-based
methods as in those approaches we would have to deal



with the discretization of partial differential equations,
grids and solving systems of equations. Additionally
most of previous methods rely on data that was com-
puted with a fixed resolution, something that doesn’t
take into account a freedom of movement present inside
most real-time applications and not present in movies or
non-interactive demonstrations. One last advantage is
the possibility to control several visual features of the
fluid without having to recalculate the whole system,
set the initial values and make sure that all the bound-
ary conditions are well defined.

Method Advantages Disadvantages
Eulerian Smooth Surface Memory usage

Adaptive time Scalability
step Grid Resolution

limitation
Lagrangian More intuitive Smoothing Kernel

Irregular Surface
boundary reconstruction

Procedural Easy integration Difficult to model
Extensible some fluid values

Table 1: Water modelling techniques comparison

In Table 1 we show a summary of all the advantages
and disadvantages of each technique.
For this work we chose the procedural approach be-
cause of the advantages described above and also due
to the fact that it suits better the requirements of real-
time applications.

2.3 Water Rendering
Fluids rendering is one of the most active fields
inside Computer Graphics. As most of the physical
behaviour of water couldn’t be modelled at interactive
frame rates inside real-time applications, developers
and researchers focused most of their attention in
getting as much visual fidelity as possible when
rendering water. Reflection and refraction are ele-
ments that have been widely used in the simulation
of water since the beginning of Computer Graphics
[EMF02][GH06][PF05][Tes99]. Their use allows the
user to see through the water and at the same time see
the environment reflected on the water surface. This
apparently trivial contribution fools the eye so much
that most commercial products that include water
algorithms sometimes only have these elements plus
a wave generator. The most common way to describe
reflection and refraction phenomena are the Fresnel
equations[SJ09]. These equations allow us to describe
the behaviour of light when moving between media
with different refractive indices.

2.4 River Simulation and Rendering
A situation where fluid simulation is commonly applied
to is when water flows between two or more bound-

aries, moving from a source into a sink. An exam-
ple of that can be a river flowing where we have at
least two river boundaries and the water flows to the
river mouth or estuary. A river simulation can be de-
composed in two main components: a simulation com-
ponent where the physical behaviour is simulated and
a visual component where the looks of the fluid are
created. The work "Scalable Real-Time Animation of
Rivers"[YN08][YNBH09] was able to simulate large
scale rivers with realistic flow, yielding very appealing
results. This work depicted a very realistic flow be-
haviour thanks to their new texture advection method,
allowed real-time editing of the river channel with the
respective flow adaptation to the new river boundaries
and best of all it didn’t depend on the scene complexity.
Despite all these advantages there were still a couple
of drawbacks. First the computational cost of the algo-
rithm was linearly dependent with the projected river
surface being rendered. Second the amount of data
transferred between the Central Processing Unit (CPU)
to the Graphics Processing Unit (GPU) is directly re-
lated with the Poisson-disk radius which increases lin-
early and quickly becomes prohibitive even with recent
hardware. A final disadvantage was the need for the
advection step to run on the CPU and the fact that this
work assumed completely flat world profiles, excluding
potential effects related with slopes of the terrain.
On the visual component there’s a very visually ap-
pealing algorithm called Tiled Directional Flow[vH11].
This new algorithm offered several advantages over
other flow simulation algorithms, was very cheap in
terms of resources and yielded visually appealing re-
sults. They achieve a very realistic flow animation
through the decomposition of the river surface in tiles,
generating overlapping tiles all over the river channel
(like a chess board on top of the river surface). Each
tile has its own flow, local speed, direction and size of
waves. By combining several normal maps together, the
final result doesn’t resemble sliding normal maps any-
more and portrays a very pleasant appearance and ani-
mation. Even though the results of this algorithm were
very satisfactory the fact that the authors have relied on
the use of static flow maps limited the usage of this al-
gorithm for big sized domains as it would require to
either load a very large flow map or have some kind of
spatial division algorithm to load the flow maps on the
fly. Another disadvantage related with the use of static
flow maps is that they can’t take into account the in-
fluence of dynamic objects interacting with the river in
real-time, which was something that had already been
solved [YN08].

3 SIVIFLOW
SiViFlow is composed by two main elements: the Sim-
ulation Engine and the Visualization Engine. Figure 2



illustrates the block architecture of the SiViFlow algo-
rithm. The Simulation Engine is where all the calcu-
lations related to physics of the river take place. This
engine is divided in three main modules: the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. From the programming point of
view, the River Particle Generator and the Flow Tex-
ture Mapper make up a larger block called the River
Particle Processor which will be described later in de-
tail. The Visualization Engine is responsible for receiv-
ing the simulation data from the Simulation Engine and
to output a graphical representation. This engine is di-
vided in two main modules: the Flow Renderer and the
Reflection.

Figure 2: Block Architecture of SiViFlow

3.1 River Surface Generator
At this stage a river surface mesh needs to be created,
which can either be done using an external modelling
application or by generating it in real-time. At the be-
ginning we don’t know how many vertices go from one
shore to the other in one single section of the river, so
we start by calculating the river width and flag which
vertices can be considered shore vertices. A river sec-
tion is a set of vertices that are placed between two
shore vertices and form a line that is perpendicular with
both river shores as shown in Figure 3. In order to find
out which vertices are shore vertices, we start by iden-
tifying the first vertex from the river mesh and calculate
differences in distance between this vertex and all the
other vertices that follow. When we reach the end of
the river section we’re processing, the difference stops
increasing and it means we’ve reached the vertex which
is on the same shore as our first vertex (the shore vertex
right next to the one we’re processing), thus the last ver-
tex we processed belongs to the opposite shore. With
that we calculate the river width (see Algorithm 1).

Algorithm 1 sums up all the steps taken during this pre-
processing phase. The only input information required
are the river mesh vertices. The algorithm starts looping
from the first vertex which we know it’s a shore vertex
as it’s located in a corner of the river mesh. We compare

for all vertices do
if vertex is a shore vertex then

Flag vertex
RiverWidth(vertices)
DistanceToMargins(vertices)
CalculateFlow(vertices)

Algorithm 1: River surface generation algorithm

the width between this first vertex and the following
vertices, making sure to always store a new width if the
value is larger than what was previously stored. When
the section of the river ends and we’re processing the
shore vertex which is on the same shore and right next
to the first one, the distance between both vertices will
be smaller than the full width of the river. We store the
current width value and the amount of vertices that go
from one shore to the other. At this stage we know the
river width at each section as we have looped through
all the river sections that compose the river surface. We
also know the amount of vertices that go from one shore
to another, allowing us to flag the vertices that belong to
the river shore. These vertices need to be handled dif-
ferently because they’ll be used for calculating the flow.
Now for each vertex in the river mesh, we store its dis-
tances to each of the river shore vertices at their river
section. This information will later be used to calculate
the flow velocity. Lastly we calculate the river flow at
each river section, storing the information in every ver-
tex. Both the flow velocity and flow generation will be
described in more detail in the following sections.

3.1.1 Flow Generation

In order to calculate the flow we pick two shore vertices
in the same river section, then we calculate their mid-
point and translate in the positive up axis, as shown in
Figure 3 where the up vector used is aligned with the y
axis.

Figure 3: Flow vector created from a plane defined by
two shore vertices and their midpoint translated in the
+y axis



With these three points we generate a plane that will al-
low us to create a vector that is perpendicular with the
river section being processed. As the flow is constant
for each river section and is parallel to the margins, the
normal vector of the plane describes correctly the flow
direction of that section as shown in Figure 3. Since
the generated plane has two possible normal vectors,
the normal generation procedure must take into account
this direction and return the correct normal vector. In
the end we have a flow field that is as detailed as the
mesh of the river surface and where each vertex con-
tains its own flow vector stored.

One advantage of generating the flow this way regards
its flexibility to dynamically recalculate the flow when
an object interacts with the river. In case a dynamic
object alters the course of the flow, the boundaries of
the object will be used to recalculate the new flow and
will substitute the shore vertices that were previously
used.

As the values are tied to the river mesh and the collision
vertices are known, SiViFlow is able to recompute the
flow of the river and immediately reflect the changes.

3.1.2 Flow Velocity
In order to obtain the flow velocity we calculate a
stream function field(Ψ) for the river channel flow using
an existent interpolation scheme [YN08][YNBH09].
At this stage we have all the information required to
calculate the following equations. We run for each
vertex all the Equations 3, 4 and 5 [YN08][YNBH09]
and store their values.

Ψ(P) =
∑i w(di)Ψi

∑i w(di)
(3)

with P being the position of each river surface vertex,
di the distance from point P to the each of the bound-
aries, Ψi the stream function value of a margin and the
weighting factor w is:

w(d) =

{
d−p · f (1− d

s ), i f 0 < d ≤ s,
0, i f s < d,

(4)

where s is the radius used to search for boundaries, p is
a positive real number and f is defined as:

f (t) = 6t5 −15t4 +10t3 (5)

3.2 River Particle Processor
River particles are a concept we created in order to sam-
ple information from our domain and retrieve its values.
As we want to be able to handle large watercourses, it’s
not feasible to rely on loading all the river surface in-
formation to Video RAM (VRAM) every frame. In our

case we’re interested in getting only the visible river
mesh values so we can retrieve and send them to be
rendered on the GPU. One of the main features of the
river particles is that they’re created in screen space in
order to guarantee a uniform distribution of the parti-
cles over the visible domain at each frame. The rea-
son for generating these points in screen space is that
as each particle contains a defined radius to make sure
no two particles are too close to each other, analysing
this problem in screen space guarantees that these ra-
dius disks maintain a uniform radius. In world space
these disks would be ellipses which would make the de-
tection of overlapping particles harder. Another advan-
tage of this scheme is that we only process visible infor-
mation as we eliminate all non-visible particles which
minimizes the waste of resources. There are some sim-
ilar approaches to ours such as texture sprites [Ney03]
and wave sprites [YN08][YNBH09].

3.2.1 River Particle Generator

We start by generating several randomly distributed
points, generating a Poisson-disk pattern using a mod-
ified boundary sampling algorithm [Bri07][DH06].
We’ve adapted this algorithm to start from a fixed set of
points instead of a random point. An advantage of this
algorithm is that it guarantees that all points are equally
distributed over the given domain, which in this case
as we’re aiming to generate particles in screen space,
means they’re all equally distributed over the screen.

In the end of running this algorithm, we end up with
a set of points that we’ll convert to river particles.
In order to generate a 3D world position for each of
these points (after being generated we only have their
2D coordinates) we proceed as Figure 4 shows. A
ray is cast for each particle and we store the collision
point between the ray and the 3D world. Using this
method we can compute at each frame, for each
point, its 3D world position. Besides calculating the
world position we also calculate other features such
as global identifiers to be able to identify each of the
particles, velocity and flow. Unlike other algorithms
[YN08][YNBH09], we don’t advect our particles
during our CPU update loop. The reason for this is due
to the fact that our particles aren’t concerned with the
fluid’s motion, they’re simply a way to sample the nec-
essary information in screen space and send it from the
CPU to the GPU. An inherent advantage of not having
to advect particles during the update loop is that it
allows us to offload the work from the CPU to the GPU.

All of this information will allow us to find out in the
next stage what’s the nearest flow data to load into the
flow texture. We just search inside a radius r for the
closest vertex and assign that flow information to the



Figure 4: Ray cast performed from camera position and
mapped into world space to obtain each particle’s world
position

river particle. The value of the radius r used for each
situation was obtained through trial and error, although
more sophisticated approaches can be used. This step
differs from [YN08][YNBH09] as they first render the
river surface to a buffer inside the GPU, find out which
particles are inside the river surface and then query each
individual pixel to find out which particle sits inside.
Our approach despite being a bit more computationally
intensive, doesn’t have the inherent problems that might
arise from relying in performing constant transfers be-
tween the CPU and GPU.

3.2.2 Flow Texture Mapper
In order to feed the GPU with the information required
to render the flow, we used a flow texture and an auxil-
iary texture. Similar ideas have been explored by other
authors [YN08][YNBH09][PF05] to achieve other ob-
jectives. In our approach we store all the information
we need inside each color channel and read it back
when it reaches the GPU. In Figure 5 we can see the
distribution of each of the components in both the flow
texture and auxiliary texture.

Figure 5: How each component is stored inside each of
the 8 bit size texture channels

These textures will store the river particles previously
generated using each of the color channels of the tex-
ture.

In the flow texture we will store for every entry data
such as the global identifier of the river particle and its
respective flow. The identifier in this texture will be
used as a way to look-up the remaining data from the
auxiliary texture. For each entry of the flow texture, we

Figure 6: Storage scheme used in the flow and auxiliary
textures

while true do
for all particles do

if Particle is outside of frustum then
Delete Particle

if Particle violates the minimum distance cri-
terion in Screen Space then

Delete Particle
Insert new particles to keep the Poisson-disk
for all new particles do

Convert to river particles
Write new data to the flow texture
Write new data to the auxiliary texture

Render
Algorithm 2: Application loop

store the flow information that covers that pixel. For
performance reasons we used a flow texture that had a
lower resolution than the screen resolution being used.
The auxiliary texture will have other parameters such
as velocity, river bed slope and river depth. In Figure 6
we can see how each river particle is stored in a smaller
sized version of the flow texture and how the global
identifier for each particle will be used to address the
auxiliary texture.

In Algorithm 2 we can see that the whole update
process is performed at every frame update. First we
start by having to delete the particles that are not visible
as they are wasting resources and won’t affect the final
result. Then we need to delete the particles that are too
close to one another violating the initial Poisson-disk
requirement that all particles must be no closer to each
other more than a specified radius distance. In order to
keep a reasonable number of particles in screen, after
deleting all the unnecessary particles we generate new
ones using the previously mentioned algorithm. After
this, for all new particles, we have to convert them to
river particles by calculating all their features. To end
the algorithm we fill the flow and auxiliary textures
with the current data from that frame and get them
ready to be sent to the GPU.

3.3 Visualization Engine
The Visualization Engine is the last stage of SiViFlow
and consists of mapping a material to the river surface



Access flow texture to find covering sprite index and
flow information
Access auxiliary texture to find velocity and depth
Use flow information for Tiled Directional Flow al-
gorithm
Use new normal vector for reflection
Blend all the elements

Algorithm 3: Fragment Shader of the Visualization En-
gine

mesh. This stage is divided in two main elements: the
Flow Renderer and the Reflection algorithm which are
implemented in a fragment shader. We start by access-
ing the flow texture and consult the river particle iden-
tifier of this pixel. In order to optimize the texture look-
up, the flow information is also saved during this op-
eration. Now we can use the river particle identifier to
look-up the rest of the parameters contained inside the
auxiliary texture.

We also use the flow information to generate the nor-
mal which will be used to compute the scene’s reflec-
tion. All the steps of the algorithm are summed up in
Algorithm 3.

3.3.1 Flow Renderer

Our flow algorithm is based in the "Tiled Directional
Flow" described in[vH11]. In our approach one of the
main differences is that all the flow information being
fed to the algorithm is not based on a fixed flow map
but comes from our flow and auxiliary textures. This
allows us to work with a much smaller amount of in-
formation at each render cycle because our flow tex-
ture only contains information that’s visible during that
frame. The fact that our flow texture is updated every
frame, means that we can change the flow if any dy-
namic object changes river flow.

Figure 7: Example of the tiling division performed on
top of the river surface for the flow algorithm

The way this approach works is by dividing a river
channel in tiles, similar to a chess board. We show this
division in Figure 7. Each tile is independent from its

peers and its composed by several normal maps. In or-
der to get a more convincing look, we used for each
tile four normal maps that are combined and blended
together. First the regular normal map is loaded for the
tile being processed. Then we sample a normal map
with half a tile shift in the x direction and we rotate it
in order to have independent features from the previous
normal map. These two tiles are blended together using
a blending factor. The next two normal maps follow
the same idea, the first one is sampled with a shift in
the y direction and the second is shifted in the x and y
direction. Both normal maps are rotated and combined
together using the same blending factor. To get the fi-
nal normal value, both normal maps are blended once
more by using the same blending factor. To conclude
this final blending step of normal maps a scaling opera-
tion has to be performed. This scaling operation avoids
the problem of having a resulting normal closer to the
actual average normal, which is common when several
normal vectors are added together.

3.3.2 Reflection

In order to simulate dynamic reflections of objects on
our river surface we used the well-known planar reflec-
tions algorithm [AMHH08][Eng03][PF05].

This approach has been widely used since the introduc-
tion of the programmable pipelines because of its ease
of use and how inexpensive it is in terms of resources.
An example of this technique can be seen in Figure 8
where it is visible the reflection of the house near the
shore. This technique is based on the use of a texture
called a reflection map, which is an inverted version of
what it is visible above the water level and that we want
to reflect. To obtain a reflection map, we start by defin-
ing a clipping plane, which has to be about the same
height as the river surface.

Figure 8: Example of the final scene appearance using
planar reflections

This clipping plane will be useful to cut all the geom-
etry below the river surface that we’re not interested
in rendering. If we didn’t clip the contents below the
river surface, we would reflect also the contents of the
river which would break all illusion of reflection. Af-
ter that we save an inverted copy of this clipped scene



Figure 9: Example of a reflection map created clipping
all the geometry below the river surface and reflecting
the remaining contents

to a texture as in Figure 9 where we can see the con-
tents of Figure 8 inverted and the whole river surface
clipped. As the inverted copy is saved into a texture,
we can send it to the GPU in order to be read inside
our material. When we render our river material, we
sample the correspondent pixel and blend the reflected
information with the color we’ll be outputting from the
fragment shader.

4 RESULTS
This section provides the results and corresponding
analysis for both the Simulation Engine and Visual-
ization Engine. For the Simulation Engine we con-
sider all the stages that deal with the creation, update
and destruction of river particles and have to pack the
required information in order to make it readable by
the GPU. For the Visualization Engine we consider the
Flow Renderer and Reflection stages which are com-
prised within the river material. We implemented our
approach on top of the open-source game engine Ogre1

version 1.7.3.(Cthuga). The algorithm was coded in
C++ using the DirectX 9 API renderer provided by
Ogre and the shaders were coded in HLSL. The plat-
form used for testing is a computer with an Intel Core i7
running at 3 GHz with 8GB of RAM, a Nvidia GeForce
GTX 480 with 1536 MB of VRAM and Microsoft Win-
dows 7 x64 as the operating system. In order to measure
the timings that each stage of our algorithm takes, we
used Intel’s VTune Amplifier2 for the code that runs in
the CPU and Intel’s Graphics Performance Analyzer3

to profile the timings in the GPU.

4.1 Simulation Engine
The Simulation Engine is composed of the River Sur-
face Generator, the River Particle Generator and the
Flow Texture Mapper. As the River Surface Gener-
ator only runs once to create the river surface mesh

1 http://www.ogre3d.org/
2 http://software.intel.com/en-us/intel-vtune-amplifier-xe
3 http://software.intel.com/en-us/vcsource/tools/intel-gpa

and it is not part of the application loop, all the mea-
surements performed focused on the remaining compo-
nents. This means that the application update loop can
be divided in two main phases: the River Particle Gen-
erator and the Flow Texture Mapper. In Table 2 we can
see how many particles were used in average to sample
the whole screen.

Screen Resolution Average Number Frames per
of River Particles second

800x600 336 32
1280x800 369 30
1440x900 407 29
1680x1050 384 28

Table 2: Average amount of river particles existent for
different screen resolutions and average frames per sec-
ond obtained throughout the tests.

We didn’t use a fixed number of particles across all
tests due to the nature of the sampling method we used.
As the Poisson disk method randomly samples points
across the domain, in order to minimize possible holes,
some distributions might require more points than oth-
ers. As shown when the screen resolution increases, the
average frames per second decreases. This is due to the
fact that as screen resolution increases, more particles
are used and more pixels need to be processed in the
CPU in order to map the best particle into the flow tex-
ture.

4.1.1 River Particle Generator

As mentioned in Section 3.2, the River Particle Genera-
tor is responsible for deleting river particles that are not
visible, delete river particles that are too close to one
another and generate new particles making sure they’re
converted to river particles.

Figure 10: Time taken in milliseconds to update the
river particles

In Figure 10 we can see that the time taken to update
the river particles varies slightly across different res-
olutions. It’s possible to see a slight increase in time
taken to update the particles as the resolutions increase
but the difference is less than 0.4 millisecond from the
smaller resolution to the largest one.



4.1.2 Flow Texture Mapper

The loading of new data into the flow and auxiliary
textures is a step that must run at every frame and is
performed in the Flow Texture Mapper. We’ll start by
analysing the time taken by the flow texture and af-
ter we’ll analyse the auxiliary texture. As soon as we
started profiling the application, we saw that the loading
of data into the flow texture was the step in the whole
algorithm that consumed more time. We used for all
tests a flow texture with 64 by 64 pixels, meaning we
had to map the screen resolution being used to the size
of the flow texture and find the best particle that cover
that section of the screen.

Figure 11: Time taken in milliseconds to load all the
data into the Flow texture

We can see in Figure 11 that all the values tend to stay
relatively close to one another. This is due to the fact
that this step is not only our application’s bottleneck
but it’s not directly influenced by the screen resolution
as we always load a flow texture with the same dimen-
sions. Upon closer look we noticed that the operations
that were taking most of the time were finding the par-
ticle that better covers the largest amount of the pix-
els that are being processed and making sure that there
were no sections of the texture without river particles.
As the flow texture has a smaller size than our screen
resolution, we map an amount of screen pixels that cor-
respond to a single entry in the flow texture and process
it. We retrieve all the river particles that cover this sec-
tion and choose the one that covers the largest amount
of the area being processed. The second costly opera-
tion is the second pass that we must perform in the flow
texture to make sure that when one section without river
particles is found, a suitable value is retrieved.
On the other hand, we have the auxiliary texture that
contrary to the flow texture, is only affected by the
amount of particles used as we load all the particles data
into it.

As the number of particles doesn’t change abruptly
across screen resolutions, we can see in Figure 12 that
the difference in values is no bigger than 0.05 millisec-
onds. As the auxiliary texture only needs to go over all
river particles and load their respective values in the tex-
ture, this operation can be seen as a linear copy of data

Figure 12: Time taken in milliseconds to load all the
data into the auxiliary texture

from the river particles array into the texture, which can
be performed quite fast.

4.2 Visualization Engine
As we’ve previously mentioned the components that
make up the Visualization Engine are implemented as
two distinct elements: the vertex shader and the frag-
ment shader. Both the Flow Renderer and the Reflec-
tion make use of information existent in both of these
elements.

Figure 13: Camera far away from the river surface
where little detail can be seen

Figure 14: River surface sharing almost the same per-
centage of screen as all the other elements where sev-
eral visual details are visible

Figure 15: River occupies almost the entire screen
where details can be clearly seen

All the tests were performed with the same river mesh
and the camera placed in the positions seen in Figures
13, 14 and 15. This way we can not only understand



how the cost evolves across different resolutions but
also how it varies according to different percentages of
river mesh present on screen.

Figure 16: Time taken in milliseconds by the vertex
shader to run at different resolutions and different cam-
eras distances

Figure 17: Time taken in milliseconds by the fragment
shader to run at different resolutions and different cam-
era distances

4.2.1 Vertex Shader
We have in Figure 16 the results of several mea-
surements performed at different class distances
(near, medium and far) and with different resolutions.
As most of our computations are performed in the
fragment shader, the vertex shader performs only
very simple calculations such as transforming vertex
positions from one space to another, calculate the cam-
era direction and pass the vertex normal and texture
mapping coordinates to the pixel shader. This means
that all values are very small and despite the apparent
increase in the near distance values when compared
with the medium and far values, we see it never reaches
differences higher than 0.05 milliseconds.

4.2.2 Fragment Shader
In Figure 17 we can see the time in milliseconds taken
by the river fragment shader to complete.

As the resolution increases, the cost of performing the
fragment shader increases along with the number of
pixels to color. We can also see that the cost increases
as we get closer to the river. As the far and medium
distances have a smaller amount of river covering the

screen, their costs are much smaller than the near dis-
tance which covers almost the entire screen. Despite
doing several reads from textures, the cost of running
the fragment shader even in the highest resolution is
quite small. This is due to the fact that most of the oper-
ations we perform are based on reading the information
provided by the textures created in the CPU and as far
as new calculations go, we perform only the flow algo-
rithm and the reflections which are not very expensive.

4.3 Conclusions and Future Work
We presented a new approach called SiViFlow which
simulates realistic rivers in real-time. SiViFlow has two
main components: the Simulation Engine and the Vi-
sualization Engine. Thanks to the Simulation Engine,
SiViFlow is able to adapt to an arbitrary shaped river
bed with any number of turns and dynamically calcu-
late the necessary data based on the river surface mesh
alone. It also utilizes a concept called river particles to
retrieve flow information from the river surface mesh
and send it to be drawn in the GPU. The Visualization
Engine renders the river flow and is flexible enough to
be combined with any visual technique used to simu-
lated water, not being bounded only to the techniques
presented in this work. SiViFlow also allows for dy-
namic objects to alter the course of the flow and change
in real-time its behaviour through access to the flow in-
formation stored at the river surface mesh.While this
approach fulfilled all of the objectives initially defined,
there’s still room for improvement. With all the ad-
vances in the computing capabilities of the new GPU’s
and respective API’s that allow them to perform gen-
eral computations, a future improvement would be to
move the particle update, creation and destruction to the
GPU, performing the whole update loop there. As the
loading of new data to the flow texture does not have
interdependencies among entries, this means that in the
limit the whole process of filling the flow texture can
be performed completely in parallel. As the approach
presented does not have any limitation when it comes to
the shading of the water, all visual techniques are com-
patible with the algorithm and are easily implementable
within the Visualization Engine.

4.4 Acknowledgements
This work was supported by national funds through
FCT - Fundacao para a Ciencia e a Tecnologia, under
project PEst-OE/EEI/LA0021/2013.

5 REFERENCES
[AMHH08] Tomas Akenine-Möller, Eric Haines, and

Natty Hoffman, Real-time rendering 3rd
edition, ch. Reflections, pp. 386–391, A.
K. Peters, Ltd., Natick, MA, USA, 2008.



[Bri07] Robert Bridson, Fast poisson disk sam-
pling in arbitrary dimensions, ACM SIG-
GRAPH 2007 sketches (New York, USA),
SIGGRAPH ’07, ACM, 2007.

[CBL+09] Yuanzhang Chang, Kai Bao, Youquan Liu,
Jian Zhu, and Enhua Wu, Particle impor-
tance based fluid simulation, Proceedings
of the 2009 Sixth International Confer-
ence on Computer Graphics, Imaging and
Visualization (Washington, DC, USA),
CGIV ’09, IEEE Computer Society, 2009,
pp. 38–43.

[CTG10] Jonathan M. Cohen, Sarah Tariq, and Si-
mon Green, Interactive fluid-particle sim-
ulation using translating eulerian grids.,
SI3D, ACM, 2010, pp. 15–22.

[DG96] Mathieu Desbrun and Marie-Paule Gas-
cuel, Smoothed particles: a new paradigm
for animating highly deformable bodies,
Proceedings of the Eurographics work-
shop on Computer animation and simu-
lation ’96 (New York, USA), Springer-
Verlag New York, Inc., 1996, pp. 61–76.

[DH06] Daniel Dunbar and Greg Humphreys, A
spatial data structure for fast poisson-disk
sample generation, ACM Transactions on
Graphics 25 (2006), no. 3, 503–508.

[EMF02] Douglas Enright, Stephen Marschner, and
Ronald Fedkiw, Animation and render-
ing of complex water surfaces, Proceed-
ings of the 29th annual conference on
Computer graphics and interactive tech-
niques (New York, USA), SIGGRAPH
’02, ACM, 2002, pp. 736–744.

[Eng03] Wolfgang Engel, Shaderx shader pro-
gramming tips and tricks with directx
9, ch. Rippling Reflective and Refractive
Water, pp. 357–362, Wordware Publish-
ing, 2003.

[Fos96] Nick Foster, Realistic animation of liq-
uids, Graphical Models and Image Pro-
cessing 58 (1996), no. 5, 471–483.

[GH06] Jostein Gustavsen and Dan Lewi
Harkestad, Visualization of water surface
using GPU, Master’s thesis, Norwegian
University of Science and Technology,
2006.

[HKK07] Takahiro Harada, Seiichi Koshizuka, and
Yoichiro Kawaguchi, Smoothed Particle
Hydrodynamics on GPUs, Proceedings of
Computer Graphics International, 2007,
pp. 63–70.

[Ney03] Fabrice Neyret, Advected textures,
Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville,
Switzerland, Switzerland), SCA ’03, Eu-
rographics Association, 2003, pp. 147–
153.

[Ngu07] Hubert Nguyen, Gpu gems 3, ch. Real-
Time Simulation and Rendering of 3D
Fluids, pp. 633–675, Addison-Wesley
Professional, 2007.

[PF05] Matt Pharr and Randima Fernando, Gpu
gems 2 - programming techniques for
high-performance graphics and general-
purpose computation, ch. Octree Textures
on the GPU, pp. 595–613, Addison Wes-
ley, 2005.

[SJ09] Raymon Serway and John Jewett, Physics
for scientists and engineers 8th edition,
ch. The Nature of Light and the Principles
of Ray Optics, pp. 1010–1025, Brooks
Cole, 2009.

[Sta99] Jos Stam, Stable fluids, Proceedings of
the 26th annual conference on Computer
graphics and interactive techniques (New
York, NY, USA), SIGGRAPH ’99, ACM
Press/Addison-Wesley Publishing Co.,
1999, pp. 121–128.

[Tes99] Jerry Tessendorf, Simulating ocean wa-
ter, SIGGRAPH’99 Course Notes, vol. 2,
ACM, 1999.

[vdLGS09] Wladimir J. van der Laan, Simon Green,
and Miguel Sainz, Screen space fluid ren-
dering with curvature flow, Proceedings
of the 2009 symposium on Interactive
3D graphics and games (New York, NY,
USA), I3D ’09, ACM, 2009, pp. 91–98.

[vH11] Frans van Hoesel, Tiled directional flow,
ACM SIGGRAPH 2011 Posters (New
York, USA), SIGGRAPH ’11, ACM,
2011, pp. 19:1–19:1.

[WLL04] Enhua Wu, Youquan Liu, and Xuehui Liu,
An improved study of real-time fluid sim-
ulation on gpu: Research articles, Com-
puter Animation and Virtual Worlds 15
(2004), no. 3-4, 139–146.

[YN08] Qizhi Yu and Fabrice Neyret, Models of
animated rivers for the interactive explo-
ration of landscapes, Ph.D. thesis, Insti-
tut National Polytechnique de Grenoble,
November 2008.

[YNBH09] Qizhi Yu, Fabrice Neyret, Eric Brune-
ton, and Nicolas Holzschuch, Scalable
real-time animation of rivers, Computer
Graphics Forum (Proceedings of Euro-
graphics), vol. 28 (2), March 2009.


