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ABSTRACT
To fulfill the unique debugging requirements of graphics programming, specialized tools are needed to aid in the
debugging process. Modern graphics debuggers allow developers to inspect the current graphics state of a running
application, and influence their control flow. However, they do not make maximum use of information about
previous graphics states, despite the possible utility of this information in debugging. We propose GLDebug, an
OpenGL debugger with novel features for using historical information to assist with graphics debugging. GLDebug
provides the ability to capture and recall OpenGL state and function call information. Developers can retrace
the graphics state history of OpenGL applications and compare different recorded states, which may come from
different applications. State differences are made clearly visible, so that the source of state-based errors can
be tracked down more easily. GLDebug was evaluated in a user study, with promising results: the participants
found the tool helped them when working on four different OpenGL debugging tasks. All participants commented
favorably on the support for tracking and analyzing state history. The results indicate that historical information is
useful for graphics debugging, and that debuggers supporting such information can improve debugging efficacy.
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1 INTRODUCTION

Computer graphics is applied in a vast number of fields
such as entertainment, medicine, and computer-aided
design. With so many applications for computer graph-
ics, there is a demand for tools that assist program-
mers with the analysis and debugging of graphics code.
However, general purpose debuggers do not cater to the
specific needs of graphics programmers.

The need for dedicated tools stems from the unique
paradigms used in graphics programming, as well as
limitations due to the graphics hardware. For example,
when programming with OpenGL, programmers must
manage the state of OpenGL, treating OpenGL as a
state machine. General purpose debuggers do not of-
fer the ability to monitor this state – a useful feature
that graphics debuggers should offer. Similarly, general
purpose debuggers cannot help inspect the internal state
of the graphics hardware – not in the same way they do
for programs running on the CPU. There are also im-
portant differences in the types of data being dealt with:
graphics debuggers must consider objects such as tex-
tures and matrices, which are of particular importance
in graphics programming.

Various graphics debuggers have been introduced over
the last decade by commercial vendors, open-source de-
velopers and researchers. These debuggers address the
problems of inspecting the internals of graphics hard-

ware, controlling the execution flow of graphics code,
and profiling it. However, their focus is on giving de-
velopers access to the current state of the graphics hard-
ware only.

In this paper, we explore the idea of using historical
information to assist with graphics debugging. We
present a novel debugger, GLDebug, which provides
the novel ability to capture and recall past OpenGL state
and function call information. GLDebug allows de-
velopers to accumulate this historical information over
time from multiple OpenGL applications, and compare
it in a user interface that is similar to other history view-
ers. Users of GLDebug can retrace the graphics state
history of OpenGL applications and compare different
recorded states, making state changes clearly visible.
This makes it easier, for example, to find defects in er-
roneous code when comparing it with working code.
In particular, we are addressing the following research
questions:

R1 How can graphics state history be supported in a
debugger and presented to the user?

R2 In how far does the use of graphics state history
facilitate debugging?

The ability to record and inspect graphics API states
has been discussed in prior work [3, 5], so we only give
a brief overview of this. In particular, we point out the



various challenges and techniques involved in capturing
the internals of graphics hardware. Then, we discuss in
more detail how graphics state history can be stored,
managed and presented to the user.

Previous works have not fully utilized and investigated
historical information about OpenGL applications. We
discuss how a graphics debugger can make this infor-
mation easily available to assist in the OpenGL debug-
ging process, addressing R1. In particular, we show
how the use of historical information can be supported
in a debugger’s user interface, and motivate the features
of GLDebug with specific use cases.

After completion of the GLDebug proof-of-concept
prototype, a user study was conducted to evaluate the
usefulness of the tool and address R2. This evaluation
was fairly small in scale and scope, but seems to
be the first of its kind: there is little or no research
that attempts to evaluate the effectiveness of graphics
debuggers.

Note that the results about the use of state history
for debugging presented here are not only applicable
to OpenGL. Our implementation is based solely on
OpenGL, but other low-level graphics APIs such as Di-
rectX are conceptually very similar. As a consequence,
the contributions of this research can also be applied to
other graphics APIs.

Section 2 summarizes the requirements of graphics de-
bugging in general, and for using state history specif-
ically. Section 3 gives an overview of related work.
Section 4 introduces GLDebug and elaborates its de-
sign, including the user interface for making OpenGL
state history easily accessible to developers. Section 5
details key areas of GLDebug’s implementation. Sec-
tion 6 explains some of the debugging use cases that
can be addressed with GLDebug. Section 7 presents
the results of the user study. Section 8 concludes the
paper and points out some future work.

2 REQUIREMENTS
Common features of graphics debuggers include state
tracking, logging of graphics commands, and the in-
spection of buffers. These features are widely used in
modern graphics debuggers. In this project, we are also
looking at novel features regarding the use of graph-
ics state history, such as logging of graphics states and
comparison of graphics states. In the following sec-
tions, we will describe all these features as require-
ments of graphics debuggers.

2.1 General Requirements of Graphics
Debugging

State tracking is a functionality allowing a user to
track, view, and potentially alter the state of the under-
lying graphics system. OpenGL is generally known to

be a state machine. How this machine is configured
controls many aspects of how a command to the ma-
chine is processed. Bugs can easily be introduced by
having the machine configured incorrectly [9].

As an example, consider a situation where a program-
mer is using a third-party library that makes changes to
OpenGL state. Unfortunately, the programmer is not
aware of these changes and thus subsequent OpenGL
calls made by the program are not behaving as ex-
pected. But even if the programmer suspects this to be
the cause, they still have to track down which part of
the state is being altered.

In the above example, being able to inspect state is very
helpful. The simple act of seeing what the state is and
comparing that against what is expected saves the pro-
grammer from having to recompile code with debug in-
structions inserted to inspect state, or worse yet, from
having to expend time learning that the bug is even re-
lated to OpenGL state. There are also instances of com-
plex state interaction, where it is useful to be able to
inspect several state variables at once. Presenting state
information in a clear and easily navigable way facili-
tates this.

Command logging or call logging refers to a debugger
logging commands being issued to the graphics API,
and making the log visible to the user. This feature
is useful as a reference, in a similar way to viewing
OpenGL state: it helps verify that the actual behavior
of the program is the same as the desired behavior. For
example, this helps to make sure that a certain function
is indeed being called, or that a certain argument to a
function is correct.

Another useful, though rarer, aspect of this feature is
being able to replay the commands that are logged. By
doing this one can recreate a scene step by step, seeing
the effect that each command has (visually and/or in
the graphics state information). However, implement-
ing this functionality is technically much more difficult
than just logging calls.

Inspection of buffers is the ability of a debugger to
query OpenGL for information contained in buffers be-
longing to the program being debugged, and then to ex-
pose this information in various ways to a user. Buffers
can be used to store a variety of things, but the com-
mon inspection case is buffers storing texture (image)
data. That said, support for inspecting other types of
buffers exists in some debuggers, e.g. for buffers con-
taining shader input data such as vertices. The way data
is exposed can be visual or numeric, with different rep-
resentations being appropriate depending on the buffer
contents.

For example, a debugger could retrieve and allow in-
spection of the depth buffer, which helps determine if
an object is being culled by the Z-test. Another use



case is the inspection of an off-screen texture that is be-
ing rendered to, a common technique in deferred shad-
ing/rendering [11]. Being able to visually inspect such
a texture may be invaluable in seeing that the rendered
image is as intended.

Shader debugging is functionality helping with shader
bugs, which is becoming more and more important with
the prevalence of shaders in modern graphics program-
ming. Special support for shader debugging is neces-
sary because of the shader pipeline being opaque: while
input and output can be observed, what happens inside
the pipeline is difficult or impossible to observe, mak-
ing bugs that occur in the pipeline very difficult to diag-
nose and resolve. One of the popular shader debugging
techniques is to instrument shaders so that additional in-
formation is output [14], allowing a programmer to read
back the values of variables during shader execution
– information that is normally inaccessible. Another
technique is that of emulating the shader pipeline in
software [13], allowing for much greater visibility and
enabling identified requirements such as step-through
debugging of shaders.

2.2 Requirements for Using State History

Our work here seeks to extend upon the ability of track-
ing the current state of an OpenGL program, by track-
ing the state over the life of such a program. This
is similar to state tracking, with the additional require-
ment that captured information is persistent and is al-
ways available for recall. This contrasts with systems
that only allow for viewing of the current state of a
program, where previously captured information is not
stored. Such concepts have been explored in the context
of general purpose debuggers [10, 12], but have only
been vaguely suggested for graphics debuggers [5].

In addition to tracking OpenGL state over the program
execution, we also look at providing a means by which
users can compare the captured information in a way
that assists with debugging. It is important to report
captured information to the users in a fashion that en-
ables quick comparison of different states in order to
facilitate the debugging process.

As an example of the above two requirements, a user
should be able to record states from an OpenGL appli-
cation that is running smoothly. When a bug is encoun-
tered, the user should be able to recall the state from
when the program was running correctly, and compare
that to the current, buggy state. The GUI should allow
for a comparison such that the user is able to identify
problematic states (if any).

3 RELATED WORK
3.1 Enabling Technology for Graphics

Debugging
There are several technologies that enable and support
graphics debugging, although they are not debuggers
themselves. For example, there are systems available
that aid in the capture of calls made to OpenGL, or that
allow for querying of the state of OpenGL. A number
of debuggers, including GLDebug, are built upon such
systems.

Chromium [8] is a system for the manipulation of
OpenGL command streams. Chromium uses a client-
server model, with streams of commands being dis-
patched by clients to one or more servers from which
the streams may be passed onto other servers. Each
server can inspect and, if needed, modify the stream
sent to it. Chromium can also be leveraged to manip-
ulate the command streams, thus it is possible to alter
the behavior of a program. These features are immedi-
ately useful in that they allow for both state tracking and
command logging. However, Chromium is no longer
being developed, leading to compatibility issues with
recent versions of OpenGL.

BuGLe1 is a toolkit designed to aid in the debugging of
OpenGL applications. BuGLe makes use of filters that
are used to intercept some or all OpenGL calls. Once
a call is intercepted, it can be inspected, and modifica-
tions can also be made before the call is passed on to
OpenGL. In contrast to Chromium, BuGLe is still be-
ing developed, so it has much better compatibility with
more recent versions of OpenGL.

3.2 Graphics Debugging
The most actively developed graphics debuggers at
present are commercial products, such as PIX2 and
Nsight3. There are also several academic projects in
this area [7, 13], of which two major contributions
are described below. However, little active research
appears to be occurring in this area at the moment.

gDEBugger45 was one of the first commercial graph-
ics debuggers to become widely available in 2004. It
demonstrated many of the features seen in modern
graphics debuggers, such as all of the general features
discussed in Section 2. Furthermore, all these features
were accessible through a GUI. The contribution of
gDEBugger is in its pioneering of graphics debuggers
in the commercial space, as well as offering many

1 http://sourceforge.net/projects/bugle/
2 http://msdn.microsoft.com/en-

us/library/ee663275%28v=vs.85%29.aspx
3 http://www.nvidia.com/object/nsight.html
4 http://developer.amd.com/tools/gDEBugger/Pages/default.aspx
5 http://www.gremedy.com/



features incorporated with a GUI. gDEBugger devel-
opment has been discontinued as it became part of
another debugger, CodeXL, which is discussed below.

Microsoft PIX is a commercial graphics debugger for
use with DirectX on Windows as part of the Xbox 360
development kit, which is actively maintained by Mi-
crosoft. It is one of the few tools available for DirectX
debugging. A notable feature of PIX is its ability to
capture all of the commands used to create an image (a
frame), and then replay these commands step by step
on demand.

nVidia Nsight and AMD CodeXL6 are further exam-
ples of modern commercial debuggers. These tools pro-
vide many of the features mentioned in Section 2, in-
cluding newer features for shader debugging, similar to
those seen in GLSLDevil (see below). While they are
available free of charge, their usage is limited to their
developer’s respective hardware.

There are tools that log calls made to graphics APIs
such as OpenGL, e.g. glintercept7 and apitrace8.
These tools log the API function calls made by an
application to a file, and allow users to inspect this log,
e.g. for profiling. Some of these tools (e.g. apitrace)
also allow users to replay the log files and inspect
the current graphics state during replay, similar to a
graphics debugger.

GLSLDevil9 [14] is a tool specifically aimed at de-
bugging the shader pipeline of OpenGL applications.
GLSLDevil provides novel features in that it automat-
ically instruments OpenGL shader code. The instru-
mented code then outputs extra information that can be
used for debugging. GLSLDevil uses a GUI to present
this information to users, showing the values of the vari-
ables used in a shader. It also supports some visualiza-
tions of those values, e.g. as images.

Apart from command logging and playback, histori-
cal information is not supported in any of the currently
available debugging tools. A possible reason for this is
that the storage and computation requirements make it
non-trivial [10, 12]. Furthermore, the current research
on graphics debugging exhibits a lack of evaluations
of graphics debugging tools and their use in practice,
which may make it an uncertain area to prioritize for
development.

3.3 Debugging using History
The concept of recording the state of a program
throughout its execution has been proposed for

6 http://developer.amd.com/tools/heterogeneous-
computing/codexl/

7 http://code.google.com/p/glintercept/
8 http://apitrace.github.io/
9 http://cumbia.informatik.uni-stuttgart.de/glsldevil/
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Figure 1: Architectural overview of GLDebug.

general-purpose debugging [10, 12]. The research in
this area speculates that the ability to step back through
a programs trace aids the user in certain debugging
tasks. For example, such debuggers can help when a
bug is found that is tied to a variable with an incorrect
value. In this scenario, the debugger can be used to step
backwards in time and find at what point the value devi-
ated from appropriate values. Graphics debugging has
some similarities to such general-purpose debugging
scenarios: bugs often originate from some unintended
state change [9], which is identified by inspecting the
execution flow. However, the state machine aspect of
graphics debugging is typically much stronger, with
a reliance of outputs on a complex state and different
types of potential bugs. Also, the technology involved
in graphics debugging is different.

GQL (graphics query language) was created along with
a debugging system by Duca et al. [5]. Similar to
GLDebug, it enables tracking and logging the state and
calls made by an OpenGL program over the course of
execution. However, the historical information is only
made available through an SQL-like language (GQL)
that users have to learn, and there is no direct support
for comparing states and highlighting of state differ-
ences. It is known that efficient use of a query language
such as SQL depends strongly on individual ability and
the user interface [4], hence it is questionable whether a
textual query language such GQL can adequately sup-
port day-to-day graphics debugging tasks. GQL was
not evaluated empirically to see if users find this ap-
proach effective or user friendly.

4 DESIGN
GLDebug is designed based on several high-level com-
ponents, as shown in the architecture diagram in Fig-
ure 1. The OpenGL application is the program being
debugged. It is executed on top of the debugger probe,



which is a library that intercepts the OpenGL calls made
by the application. Intercepting these calls makes it
possible to capture information about the calls them-
selves as well as other data that can be inspected while
the intercepting library has control.

The probe feeds the information it gathers into the de-
bugger controller, which provides the GUI for control-
ling the debugging process. Through the probe, the
controller can request graphics state information and
influence the control flow of the application being de-
bugged. The controller is also used to present informa-
tion about the application to the user, and in particular
let the user access the graphics state history in a conve-
nient way. To support state history, the controller stores
graphics states, OpenGL commands and related infor-
mation in a data store. The data store is queried when-
ever historical information is needed. In the following
paragraphs, the components of GLDebug are described
in more detail.

4.1 Probe
The probe is the component responsible for capturing
data from the program being debugged, and feeding
that data to the controller. It is a shared library that
provides the same interface as OpenGL. When a pro-
gram is run, the probe is linked instead of the default
OpenGL library. This means that all calls that would
normally be made to the OpenGL library are passed to
the probe instead. The probe allows for arbitrary code
to be executed once a call is intercepted, hence taking
over program control and allowing for both inspection
and modification of OpenGL calls. It can process com-
mands sent to it from the controller, such as for pausing
the application, and send data to the controller, such as
graphics state data that is queried by executing addi-
tional OpenGL commands.

There are several benefits of having the probe as a sepa-
rate component of the system. For example, GLDebug
can run on a computer separate from the computer run-
ning the OpenGL application. This provides benefits in
terms of being able to run the probe and debug OpenGL
applications on systems with less power and/or storage,
such as mobile devices. Also, the probe can be de-
veloped independently of the other components. The
downside is that there is additional work involved in
developing a communication protocol for the probe and
the controller.

The probe is lightweight, does not perform much pro-
cessing and does not impede the OpenGL application.
It is important that the probe does not alter the behav-
ior of the OpenGL application. Similar designs can be
found in other debuggers, such as the GQL debugger
mentioned in Section 3, which has a separate process
that processes the data captured from an application.

4.2 Controller
The controller is responsible for controlling the running
OpenGL application and retrieving information about it
through the probe. It is also responsible for storing the
information in the data store, and making it accessible
to the user through a GUI. Because of the distributed
architecture of GLDebug, the controller and data store
can be hosted on a more powerful system.

Figure 2 shows the controller GUI. The buttons at the
top allow users to connect to a running probe and influ-
ence the control flow of the application being debugged,
i.e. start, pause, stop and step through it. Furthermore,
they allow users to set breakpoints on specific OpenGL
functions, and request the graphics state from the ap-
plication. The GUI also presents captured information
back to the user. Graphics state information is presented
in the right section of the window, below the top row of
buttons. The table lists all OpenGL states variables with
their values, and there is space at the bottom to show
the value of a selected variable in more detail, i.e. in
the case of longer state variables such as shader source
code.

Note that the table on the right shows two graphics
states, one in the left column and one in the right col-
umn. Differences in these two states are highlighted
using color coding: unchanged variables are shown in
black, variables with different values are highlighted in
red, and if the values are the same but there has been a
recorded state between the first and second state where
the variables are not the same, then they are shown
in purple. This allows users to quickly compare two
graphics states. The states to compare are selected in
the list on the left, which shows, among other informa-
tion, the sequence of recorded states. The two columns
of radio buttons are used to select the two states that
are shown in the table on the right. The drop down list
at the top lets users select different application sessions
to view data from. So a user can select a state snap-
shot from one execution of a program, and compare it
to another, or even compare state snapshots from two
different programs.

Finally, the controller can show users a list of function
calls that were captured by the probe. As shown in the
radio button group near the top-left, the user may select
to see only states, only function calls, or both together.
This allows the user to explore the history of all cap-
tured states and function calls over the lifetime of the
application.

Originally, the GUI had a multi-tab design where sepa-
rate tabs were used to control the probe, and to view and
compare captured information. However, this design
was discarded in favor of the current single-window de-
sign after initial user feedback. Users found a multi-tab
window to be too cumbersome as it required a lot of
switching between tabs.



Figure 2: The GLDebug interface comparing two sets of captured state.

4.3 Data Store
The data store archives the OpenGL state information
that is captured by the probe. This information con-
sists mainly of state variables with names and values,
with each graphics state containing hundreds of such
variable-value pairs. Some variables are nested, i.e.
they have child variables with values.

The data store also archives the function calls made by
the OpenGL application that were logged by the probe.
This includes the function name, parameter names and
values, as well as the call order. Finally, the data store
stores metadata about the logged information. This in-
cludes identifying information about the application be-
ing debugged and the debugging sessions, as well as
timestamps for debugging sessions, states and function
calls.

Our design makes use of a temporal database that per-
forms delta encoding on stored information automati-
cally. That is, when storing state information, it stores
only the values of states that have actually changed.
This means different states can be stored and recalled
with minimal overhead, and comparison between the
different states is somewhat simplified.

5 IMPLEMENTATION
GLDebug’s probe was implemented using BuGLe (see
Section 3.1) as a basis. The complexity and time re-
quirements of implementing a debugger from scratch
are significant. Using BuGLe as a basis greatly de-
creased the time required to develop the probe and im-
plement the ability to capture OpenGL commands and
state. However, BuGLe still had to be extended to
meet the needs of GLDebug, e.g. with functionality for
logging and sending information about OpenGL com-
mands.

All communication between the probe and the con-
troller is done through a single TCP connection. This

allows the probe to run on the same system as the con-
troller or on another system, as required. The commu-
nication is primarily initiated by the controller, issuing
requests to the probe, such as those for state, or those
to start or stop the execution of the OpenGL applica-
tion. When the probe receives a command, it attempts
to carry out that command and reply to the controller as
necessary. There are some cases where the communica-
tion is initiated by the probe, e.g. the sending of logged
function calls.

The data store was implemented using a temporal triple
store called PDStore, which was developed in our
working group in a separate project. PDStore’s ability
to recall previous database states makes it possible to
access any of the previously stored OpenGL states. Per
default, the controller uses PDStore as an embedded
database, so both run in the same process. As with
many database systems, it is also possible to connect
the controller to a remote PDStore database.

The controller was implemented using Java, while the
probe had to be coded in a lower-level language (in this
case C) in order to be compiled into a shared library.
This separation was helped by the fact that both com-
ponents communicate over a remote interface based on
TCP, as explained earlier.
The implementation of the probe was fairly demand-
ing, even when considering the use of BuGLe as a ba-
sis. It required extending BuGLe for capturing extra
information and sending extra data, which required a
detailed understanding of BuGLe’s internals. Further-
more, a deeper understanding of linking was required
in order to make sure that BuGLe was linked instead
of OpenGL. For a more in-depth view of GLDebug’s
implementation see [16].

6 USE CASES
In the following we describe important use cases for the
use of state history during graphics debugging. We de-



scribe what kind of bug is involved in a use case, its sig-
nificance in real-world graphics applications, and how
state history can help to find the bug more easily.

6.1 Incorrect Graphics State
GLDebug is useful in cases where bugs are caused
by incorrect OpenGL state, and particularly in cases
where the state shifts from intended to unintended val-
ues (so-called ”snake in the grass” style bugs [10]). In
cases where OpenGL is configured incorrectly, GLDe-
bug makes it easier to view the values of state variables
and thus find problems. However, GLDebug is of par-
ticular usefulness in the case where the state was con-
figured correctly, and then shifts to an incorrect config-
uration. In such cases, being able to compare states can
reveal not only the incorrect variable, but also shows
in which state snapshot and at what time the problem
occurred.

An example is a program that is rendering correctly,
but then, through programming error, switches to an
incorrect shader that results in a blank screen. In this
scenario a comparison of the state captured when the
program was performing correctly and incorrectly, re-
spectively, would show that the shader source code is
different. The user could then examine the source code
from each of the different captured states, revealing that
the incorrect code is being used in the error case.

Many bugs in OpenGL are caused by incorrect state [9],
and being able to easily view OpenGL state is useful in
diagnosing such bugs. These kinds of bugs can differ
significantly in their severity depending on which and
how many state variables are incorrectly set.

6.2 State Leakage
State leakage is a specific kind of incorrect configura-
tion of state, where some code configures the state that
then affects code elsewhere in a program. There are
two major issues with this: first, the source of the issue
is removed from the code where the problem occurs,
making the bug hard to find. Secondly, the code caus-
ing the problem may not be available to the developer;
for example, it may be part of a linked library. In addi-
tion to the above, while it may be apparent that a leak
is happening, it is not always apparent which state vari-
able(s) are being leaked and causing problems.

An example of this kind of bug is usage of an external
library to draw a model using OpenGL. However, the
library used has a bug in that it alters and does not reset
the model-view matrix before returning control to the
calling code. In this scenario, through no fault of the
programmer using the library, bugs are introduced.

The use of external libraries is very common in graphics
programming. There are numerous graphics libraries
that build on OpenGL and other grahics APIs, and with

the continuing developments in processing power and
computer graphics techniques, many of these libraries
are subject to continuous change. Particularly for larger
projects, it is rare that a single developer knows all the
code in which graphics state is changed. As a result,
state leakage problems can happen fairly easily.

GLDebug aids in these circumstances by making state
information from different points in the application
readily accessible, allowing users to find where and
which state variables are being leaked. Being able to
capture a state snapshot before and after the state leak
allows users to use the state comparison features of
GLDebug to identify the variables that have changed,
and locate problematic state changes.

6.3 Missing Error Handling
OpenGL produces its own kind of errors, which require
their own kind of error handling code. Without this er-
ror handling code, many errors would pass silently. An
example is a compilation failure of a shader – some-
thing that would silently fail without error checking
code, and simply lead to an incorrect output.

Programs often lack sufficient error handling code [17],
and sometimes such code is omitted altogether. This
can be particularly dangerous if errors happen silently
and can lead to later problems, which is often the case
with OpenGL. When these errors go undiagnosed, only
to lead to problems later, finding the place where the er-
ror actually occurs can be particularly time consuming.

GLDebug simplifies catching of errors raised by
OpenGL, meaning that such errors can be discovered
even if a programmer has omitted error handling code.
GLDebug can pause the execution of the program
when OpenGL raises an error, and display information
about the error to the user. By being able to catch such
errors when they occur, GLDebug reduces their impact.

7 EVALUATION
A user study was performed to evaluate GLDebug and
investigate in how far the use of graphics state history
actually facilitates debugging. Interestingly, there do
not seem to be any published studies on the usability
of graphics debuggers at the moment. Our user study
provides some insight into graphics debugging in gen-
eral, and assesses the efficacy of the support for state
history in GLDebug. It also serves as a building block
for future studies in that area.

7.1 Methodology
In this evaluation participants were asked to complete
graphics debugging tasks with and without GLDebug.
By letting them use GLDebug for some tasks but not for
others, all participants got an impression of how useful
GLDebug can be. A mixed-methods approach was used
to collect data during this study:



• Think-aloud protocol: While working on the
debugging tasks, participants were encouraged to
speak out their thoughts aloud and make comments
at any point.

• Observations: Participants were observed through-
out the tasks, and significant observations were
recorded.

• System Usability Scale (SUS): After performing
the debugging tasks, participants were asked to fill
in the System Usability Scale [2] (a common usabil-
ity questionnaire based on Likert-scales).

• Likert-scale questions: Five custom Likert-scale
questions were used for evaluating specific features
of GLDebug.

• Open questions: Open questions were used to ask
what users liked and disliked about GLDebug, about
improvements they could think of, and any other
comments they may have.

Initially, also task completion times were recorded.
However, this revealed one of the challenges when
evaluating domain-specific tools for complex tasks,
such as graphics debuggers: the performance of
individual participants varied strongly, depending on
how much graphics programming experience and pro-
gramming skills they had, and other personal factors.
This did not only introduce a lot of noise into the
measurements, but also meant that some participants
took an excessive amount of time to complete the tasks.
Therefore, measurement of task completion times was
abandoned after a few participants, and a maximum
time of 15 minutes was allocated for each task. If a
participant did not complete a task in the allocated
time, the solution was presented and the participant
could comment on it. To get meaningful results from
quantitative measures such as task completion time,
a lot of training would have to be incorporated into a
study, or participants would have to be selected more
carefully with regard to their graphics programming
skills, to create a more homogeneous sample.

Each participant performed four debugging tasks: two
with and two without GLDebug (i.e. using only text ed-
itor and compiler). Each task was performed by about
half the participants with and the other half without
GLDebug. The tasks were performed in the order pre-
sented below. The tasks were designed to each incorpo-
rate a single and unique bug. This helped us cast light
on the utility of GLDebug for different kinds of bugs,
and reduced any learning effects between the tasks that
may have made tasks easier than usual. The tasks were
modeled on real-world problems, but smaller in scale
to allow for them to be solved in an appropriate time-
frame. The four bugs involved were:

1. Incorrect graphics state: An incorrectly configured
Z-buffer, resulting in an output with a polygon that
has clipping issues.

2. State leakage: A call to an external library (for
which the source code is not available) leaves tex-
turing enabled, resulting textures being applied to
polygons not intended to be textured.

3. Missing error handling: A shader is not compati-
ble with the shader model of the VM being used
for the test, so that the shader is not being compiled
and used, and the resulting polygon not colored cor-
rectly.

4. Incorrect graphics state: An incorrectly configured
model-view matrix that causes the output to be
drawn progressively further and further away from
the camera, instead of remaining static as desired.

Before undertaking the tasks, participants were given
general training on the use of GLDebug, as well as
a briefing on each task, in the form of instructional
videos. Participants were encouraged to give verbal
feedback during the tasks, and following completion of
a task. Following completion of all the tasks, partici-
pants were given the questionnaire to complete.

7.2 Results and Discussion
There were 7 participants, all of whom were male Com-
puter Science postgraduate students. All but one had
completed at least one course on Computer Graphics
and had some experience in using OpenGL. Some had
more extensive OpenGL project experience (more than
a year of OpenGL development). The participants var-
ied widely in both their general programming experi-
ence and their OpenGL programming experience. As
discussed previously, this variation prevented us from
using performance measures to assess the utility of
GLDebug, but did provide us with the perspectives of
users with different skill levels.

The results of the study were generally positive, indi-
cating that participants found GLDebug useful for the
tasks. Participants indicated that they found GLDebug
especially useful when there were conspicuous state
differences, or when they had a clear idea of what state
variables to inspect. The less experienced users in par-
ticular were sometimes not sure which state variables
were related to an issue, so they found it difficult to
identify the relevant state changes. Users indicated
in both the Likert-scale and open-ended questions that
they liked the ability to compose a view of state over the
course of program execution. However, users indicated
they would like more flexibility and automation in how
state was captured. In summary, people found GLDe-
bug useful when it was clear how they could leverage
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I feel the instructional videos prepared me for usage of GLDebug.

I think GLDebug presented information I used in debugging in an easily accessible manner.

I feel using GLDebug aided me in locating bugs.

I found it useful to compare historical state information while debugging.

0 1 2 3 4 5 6 7

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3: Participant responses to additional Likert-scale questions about the experience with GLDebug.

state information to debug a problem. Our results in-
dicate that graphics state history can aid in debugging
when users find information within that state that is
clearly applicable to the problem at hand.

The average system usability scale score for GLDebug
was 68.2, which is around average [1], and indicates
that no serious usability issues are present. The par-
ticipants suggested various improvements (see below),
which helps to explain why the system got only an av-
erage score. For a research project such as GLDebug it
is to be expected that it is not as polished and exhaus-
tive in its functionality as a commercial product. The
main point for this study was that debugging with state
history was sufficiently supported.

Figure 3 shows the results of the additional Likert-scale
questions. Q1 indicates that the instructional videos
shown as training were perceived as sufficient. Q2 is
in line with the results of the SUS, indicating no seri-
ous issue, but also indicating room for improvement in
the presentation of information, which is discussed be-
low. Q3 indicates that all users found GLDebug useful
for debugging, which is a promising result for the proto-
type. Furthermore, Q4 shows that most users found the
ability to compare captured state information useful.

The improvements suggested by the participants ranged
from improvements to the GUI to thoughts on extra data
that could be logged by the probe. Much of the feed-
back differed between the participants; for example, a
common suggestion was making the GUI behave like
an IDE the participant was familiar with. However, a
strong majority of participants stated in the open ques-
tion section that they wanted greater control over the
ability to filter the information presented. Another de-
sired feature mentioned in the open questions was the
ability to automatically capture states based on certain
conditions, such as each frame, or when a certain func-
tion call occurs. Filtering and conditional state capture
would help to reduce the amount of information to that
which is relevant for a specific bug. Participants also
indicated a desire for functionality to show the original
source code (if available) where an OpenGL call oc-
curred, indicating the importance of putting the infor-
mation provided by the debugger into proper context.

Our study has some limitations: a small sample size,
a lack of professional graphics developers among the

sampled participants, and possible order effects. Small
sample sizes are generally acceptable for qualitative us-
ability studies, as experience shows that most usabil-
ity problems can be identified even with few partici-
pants [6]. Furthermore, there is evidence that senior
Computer Science postgraduate students as participants
are a reasonable approximation of performing an ex-
periment with software professionals [15]. Each task
dealt with a different kind of bug to reduce learning be-
tween tasks, and training was given before undertaking
the tasks to reduce the impact of learning. However,
as all participants performed the tasks in the same or-
der, it is possible that later tasks became easier. As
the study was mostly qualitative, we do not consider
this a severe problem. In conclusion, this study does
provide evidence for the benefits of state history, but
it should be validated with a larger sample taken from
professional graphics programmers, or at least people
with more extensive training and experience in graph-
ics programming.

8 CONCLUSION
In this paper we investigated history-based graphics de-
bugging – a practice that has remained largely unex-
plored in previous work. We illustrated how state his-
tory can be supported in a graphics debugger, and pro-
vided some empirical evidence for its utility. In sum-
mary, we have made the following contributions:

• The design and implementation of GLDebug, a
graphics debugger with features for working with
graphics state history.

• A discussion of use cases for history-based graphics
debugging, and how they are supported by GLDe-
bug.

• An evaluation of GLDebug, indicating that features
for comparing historical states are useful.

Overall, historic state and call information seems to be
useful for graphics debugging, and the evidence indi-
cates that it would be a good idea to extend mainstream
graphics debuggers with features similar to those of
GLDebug. Our study also indicates that state history
would be even more useful when combined with fea-
tures for filtering it, to narrow down the flood of data



to relevant states. Another potential way to improve the
use of state history is a better visualization of histor-
ical information. Filtering functionality and visualiza-
tion of information are known to play a role for general-
purpose debugging, so it would be interesting to inves-
tigate how they can further improve the use of graphics
state history. Another area of interest is expanding the
ability to specify when to capture states, such as captur-
ing after particular OpenGL functions, or after drawing
a particular entity.
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