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ABSTRACT
The display of large point clouds of planar distributions yet comes with large restrictions regarding the normal
and surface reconstruction. The point data needs to be clustered or traversed to extract a local neighborhood,
which is necessary to retrieve surface information. We propose the usage of the rendering pipeline to circumvent a
pre-computation of the neighborhood and to perform a fast approximation of the surface.
We present and compare three different methods for surface reconstruction within a post-process. These methods
range from simple approximations to the definition of a tensor surface. All these methods are designed to run at
interactive frame-rates.
We also present a correction method to increase reconstruction quality, while preserving interactive frame-rates.
Our results indicate, that the on-the-fly computation of surface normals is not a limiting factor on modern GPUs.
Additionally, as the surface information is generated during the post-process, only the target display size is the
limiting factor. The size of the input point cloud does not influence the performance.
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1 INTRODUCTION

Huge data sets are nowadays generated by simulations
or by observational methods. Point clouds are e.g. the
result of particle based simulation codes or laser scans,
such as airborne light detection and ranging (LIDAR)
scanning. Surface related information, such as the sur-
face normal, can be used to enhance the visualization
of point clouds, e.g. for illumination. Traditional meth-
ods for reconstruction surface information require an
expensive spatial sort operation. Therefore, these are
executed during a pre-process. Our method aims at im-
proving the exploration of LIDAR datasets, before ap-
plying more expensive approaches.

In our work, we use the large data throughput of modern
GPUs to generate a fast estimation of the surface prop-
erties within screen space. Therefore, we compare three
possible approaches and compare the individual results.
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The first approach uses the fragment shader specific
dFdx and dFdy functions. The second method calcu-
lates the surface normal by computing the cross product
in a local neighborhood, which is available through the
pixel neighborhood. The third applies a moving-least-
squares approach to acquire tensor information. The re-
sulting co-variance matrix is then used to compute the
eigenvalues and eigenvectors.
In the next section, we list similar methods to our ap-
proach. Then, we present our methods and solutions
to encountered issues. These methods are compared to
each other and some examples are presented. Finally,
we conclude with a summary of our findings and an
outlook regarding future work.

2 RELATED WORK
Generic visualization frameworks, such as openWal-
nut [Walnut] or the visualization shell (in short VISH)
are utilized for data exploration and processing of a
large data. More expensive approaches to compute
visual enhancements of points distributed on surfaces
and lines, and geometrical reconstructions of lines have
been done in [Rit12b] or [Rit12a].
The calculation of a surface normal is strongly con-
nected to any surface reconstruction method. Espe-
cially for point based representations, methods using



co-variance techniques [Ber94][Bjö05] are well suited,
because no exact neighborhood is available and some
noise is to be expected. Alexa defined the so-called
point-set surfaces and presented some projection spe-
cific calculations [Ale04]. The co-variance matrix al-
lows to asses the quality of the point cloud data set
using direct tensor field visualization methods, such as
display tensor splats [Ben04]. To compute the eigenval-
ues and eigenvectors from a given co-variance matrix,
the analytical approach presented by Hasan [Has01] or
one of the methods presented by Kopp [Kop06] can be
applied.

Yet, these methods rely on the identification of an ac-
curate neighborhood. To acquire this information, the
input data set needs to be sorted. Neighbors are ei-
ther found by a brute force approach – which is not
suitable at all –, by a tree search or by a Morton or-
dering [Con10]. A tree as well as a Morton order are
highly suited for parallelization.

Instead of creating a kd-tree or a Morton order in world
space, a neighborhood can also be computed in screen
space. Thus, the computation is only performed on the
currently visible part of the dataset. This is commonly
done by splatting the data points and extract the prop-
erties from the frame buffer. Similar to the approach
presented by [Sch11] or [Yan06], we use only screen
space information for selecting the neighborhood. The
splats are projected using either a fixed or adapted point
size, as proposed by Rusinkiewicz [Rus00]. Once the
surface information is available, also high quality splat-
ting techniques [Bot05] could be applied.

3 APPROACH
We use the information available in screen space to
reconstruct a surface and its corresponding normals.
We designed a approach consisting of three individual
steps, as illustrated in figure 1.

Object Space Screen Space

Splat Calculate Correct

Figure 1: The outline of our screen space normal recon-
struction. The first pass consists of splatting the depth
values which are used in the consecutive passes. The
second pass approximates the surface normal, while the
optional third pass smooths the resulting values.

The first pass is a simple splatting of the input data
and provides the depth information required by recon-
struction. Each pixel is hereby surrounded by neighbor
candidates. The second pass uses these depth values
and computes surface properties. The candidates are
inspected and rejected if the distance is too large, i.e.
their interpolation weight is too small. The last pass is

optional and allows a further enhancement of the qual-
ity of the reconstructed properties.

Splatting the Point Cloud
We draw the point cloud, which will be reconstructed,
using either a fixed or an approximate point size. Our
approach only requires a depth buffer for computation
of the surface information. As the depth-buffer is gen-
erated, in general, by all rendering approaches, this
method can be applied to all scenarios.
To increase the accuracy, we encourage using a multi-
sample depth-buffer. This allows the retrieval of mul-
tiple depth values per individual sample. Using a sam-
pling count of 8 means that we are able to capture –
at most – 8 individual splat depth values at once. It
is, of course, possible that the unprojected world space
coordinates are identical or invalid, i.e. the depth value
was not set. Still it increases the stability of the follow-
ing normal calculations. Multi-sampling is only applied
within the first post process.

Normal Definition
We calculate the wold space coordinates of the current
pixel by un-projecting it based on the multi-sampled
depth-buffer. The reconstruction of the surface normal
can then be performed in three ways. The first method
uses the local derivatives directly available in the frag-
ment shader. The second and third method approximate
the surface using a generic neighborhood description.
This neighborhood is defined by fixed sampling pat-
terns. The most simple version takes 5 samples within
a 3x3 neighborhood, while the most complex version
selects 25 samples in a 7x7 neighborhood, see figure 4.
The samples are focused on the diagonals, which in-
crease the overall area captured during reconstruction.
Note, that we use ascending indices for the opposite
sample positions. This enables a simple definition of
diagonals within a shader.
In our test, we did not observe any differences between
the 5 and 9 samples schemes. This indicates, that the re-
duced representation is already able to capture the sur-
face properties. The extended schemes, i.e. 17 and 25
samples, further increase stability of the results and are
more comparable to off-line methods.
We orient all normals by inverting those, where the z-
component is negative. All selected splat samples are
visible and, thus, require a normal which is facing to-
wards the camera.
To assure correct identification of possible neighbor
candidates, a maximal distance is introduced. Neigh-
boring pixels may not be true neighbors within world
space due to the projection. Therefore, we reject ev-
ery sample that is not within this configurable distance.
This is comparable with the maximal distance in the
MLS [Ale04] or tensor computations [Rit12a].
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Figure 2: The used sampling schemes for defining the
local neighborhood of a fragment. The center point 0 is
optional.

Local Derivatives
Shaders support the calculation of local derivatives
within the fragment shader since GLSL version 1.10.
For reconstruction of the surface normal, the functions
dFdx and dFdy are used. These internally extract
neighbor positions from concurrent thread blocks
and are only available in the fragment stage. This
means that the surface is completely splatted and the
individual samples may have overlapped. With c, the
current position in clip-coordinates, the surface normal
~n is computed:

~n(c) = dFdy(c)×dFdx(c)

This method is very sensitive to noise or irregularities
in the depth buffer and in many cases produces normals
not representing a good reconstructed surface. How-
ever, if the surface is continuous and the splat size is
carefully chosen, this method will suffice.

Plane Approximation
Similar to the computation of mesh surface properties,
we approximate face normals within this approach. The
normals are accumulated and the resulting vector is nor-
malized. Finally, we impose an orientation and align
the vector.

To obtain the needed vectors, we use one of the pro-
posed sampling schemes. Each direction vector is built
up either by diagonal or counter-clock-wise (ccw) sam-
ples. The diagonals generate smoother results and do
not require the center point at sample 0. This is sim-
ilar to the anti-alias algorithms used in the rendering
pipeline. The ccw approach accounts more for local
changes and take the center point into account. In the
diagonal case, we obtain the surface normal by using
the following formula:

~n(c) =
1
N

bN/2c

∑
i=1

S2i−1×S2i

We optimized the sampling schemes for a diagonal pat-
tern, as we intend to create smooth surface normals with
minimal noise.

Tensor Information

Using tensor information instead of flat patches leads
to a smoother reconstruction. To derive this informa-
tion, the computation of eigenvalues and eigenvectors
is mandatory. We compute the point distribution tensor
by deriving the co-variance matrix for the current posi-
tion c, as presented by [Rit12a] and similar to [Bjö05]:

CM(c) =
1
N

N

∑
k=1

wik(dik⊗dT
ik)

where dik = c−Sk, dT
ik is the transpose, N is the number

of samples around center point c, Sk the sample and wik
is a weighting function. Here, we apply a weighting of
wik =

1
‖dik‖2

.

The tensor product ⊗ is built by the direction vectors
pointing from the current fragment’s world coordinate
to its points in the neighborhood. The weighted sum of
these vectors result in the final point distribution tensor.

We compute the eigenvalues with the “Cordano"
method presented by [Kop06]. This approach results
in more stable vectors than the method proposed by
Hasan et al. [Has01]. Similar findings were made
by the developers of openWalnut [Walnut]. The
eigenvector related to the minor eigenvalue hereby
represents the surface normal. The orientation of the
vector is fixed easily, as calculation is performed in
clip-coordinates.

Smoothing Normals
In a second, optional, screen space pass we correct the
computed normals. We extract and scale adjacent nor-
mals within a local neighborhood, where the center nor-
mal is being favored. The surface normal is yield by
accumulation of the weighted vectors.

Different weights and neighborhood sizes can increase
the accuracy of the result. However, this does not apply
to all situations. Especially, when using the plane ap-
proximation method, quality decreases, when the nor-
mals contain lots of noise.

4 RESULTS
We implemented a prototype, which has been tested on
a i5 670 system with 8 GB RAM and a GeForce 680
running on Windows 7.
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Figure 3: Timing results achieved using a screen size
of 1024x768 with 8 multi-samples and the 9 samples
scheme. LD denotes the local derivatives, PD the plane
approximation using diagonals, PC the plane approx-
imation using counter-clock-wise pattern, and TI the
tensor information.

Timings
On all systems, we observed interactive frame rates
with all methods. The fasted method is the local deriva-
tives (LD) approximation, while the tensor information
(TI) is the most expensive variant. The plane approx-
imation with diagonals (PD) is slightly faster than the
tensor variant. The ccw plane approximation (PC) is
worse in means of performance in comparison to the
PD, due to the definition of the sampling scheme.

In figure 3, the average processing times are shown, in-
cluding the generation of the depth values. We used
a fixed multisampling count of 8 in all presented tim-
ing results. Thus, the real number of samples taken per
pixel needs to be multiplied by 8. For better readability,
we continue to use the introduced sampling count.

The splatting of the point cloud requires a significant
amount of time. In our tests, it varied in the range of
30% to 50% and mainly depend on the used screen and
splat sizes.

The used sampling scheme size has a large influence
on the performance and quality of the reconstruction,
as seen in figure 4. The performance scales linearly
with the number of used samples. However, the quality
of the reconstruction is not necessarily improved when
using a very high sampling count. This is due to the
fact that the surface is smoothed and local information
is suppressed.

We also measured the contribution of the individual
steps performed by our approach. Interestingly, the
splatting itself consumes a large amount of the overall
processing time, while the correction almost requires no
processing at all. The larger the number of used sam-
ples, the higher the reconstruction times. Table 1 lists
the detailed timings of the involved steps: “Splat” rep-
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Figure 4: Influence of changing sampling scheme size
for the reconstruction methods. Results taken with a
screen resolution of 1600x1200. All methods use a 8
times multi-sampled depth-buffer.

9 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.963 9.030 9.000
Normal 17.521 18.435 17.968
Correction 0.468 0.717 0.493
17 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.801 10.654 8.980
Normal 34.278 35.711 34.890
Correction 0.466 5.740 0.702

Table 1: Distribution of the processing times among the
individual operations of the proposed method. Results
taken with a screen resolution of 1600x1200 using the
tensor method.

resents the splatting of the depth values, “Normal” the
reconstruction and “Correction” the final smoothing.

Visual Results
All methods are able to reconstruct both noisy and
smooth surfaces. We use several splatted objects point
clouds as test cases. All point clouds consist of at least
250k points to assure a high sampling density.

The results of the described reconstruction methods
are shown in figure 5. The results indicate that the
TI method provides stable and accurate reconstruction.
The PD approach provides excellent results in smooth
data sets. The LD approach always generates large
noise. Despite not being suitable for a high quality sur-
face approximation, it is the fasted approach.

To simulate noisy data, we alter the vertex positions
within the splat shader. A light source is positioned
below the object. The illuminated scene is shown in
figure 6. The TI method generates the smoothest re-
sult, while the PD method generates more normals that
differ widely from the original ones. The LD method
provides the worst reconstruction. All methods gener-



(a) Original

(b) Tensor (c) Plane approximation (diag-
onals)

(d) Plane approximation (ccw) (e) Local derivatives

Figure 5: Reconstruction of the surface normal used
for illumination. ?? shows the original object with pre-
computed normals. ?? to ?? depict the proposed recon-
struction methods.

ate more invalid normals in the low sampled region on
the top.

Figure 7 illustrates the influence of the optional correc-
tion pass. The corrected normals are smoother and the
number of correctly oriented surface normals is higher.
The vectors are visualized via colors showing the x-, y-,
and z-coordinates as red, green, and blue values.

(a) Original

(b) Tensor (c) Plane approxi-
mation

(d) Local derivatives

Figure 6: Reconstructed normals used for illumination
in a test scenario with two planes. Noise is added to the
input data. Even normals at the edge are well recon-
structed, but tend to be smoothed.

(a) Uncorrected (b) Corrected

(c) Difference Image

Figure 7: The influence of the correction pass applied
to an ellipsoidal surface. The surface xyz-normal is il-
lustrated as a rgb-color. The corrected version ?? con-
tains more valid normals. The difference is visualized
in ??.

Since the correction pass is very fast and increases the
stability of the reconstruction, we always enable this
pass in the following tests.

Application to a LIDAR Dataset
A point could stemming from an airborne laser-scan is
used for further investigation of the technique and to
validate the technique by a real-world application. We
chose a small section of a bathymetric scan of the river
Loisach in Bavaria (Germany), acquired with the hy-
drographic laser scanner Riegl VQ-820G [Ste10]. The
scan contains different kinds of structures: fields, trees,
lower vegetation, a river, a street with cars, power ca-
bles and a steep slope partially covered with vegetation.
Figure 8 shows a side and a top view of the scan.

The two million points are colored by the minor
eigenvector of the point distribution tensor computed
in world-space.

The point distribution tensor was computed by using a
neighborhood radius of 0.5, 1.0 and 2.0 meters. Two
different weighting function have been tested: constant
weight and 1

‖dik‖2
weight. Using a kd-tree for finding

neighbors and 6 OpenMP parallel threads on an In-
tel Xeon X560@2.67GHz the according computation
times are 41, 85, and 218 seconds for the three radii.
This computation of the tensor is a demanding com-
putational tasks. However, it has been shown, that
the tensor can be used for feature extraction, object
recognition, and to improve the segmentation of point
clouds, [Rit12a][Rit12b][Bjö05]. When just looking at
the minor eigenvector via color the fields, the river, the
street, the slope and the vegetation can be well distin-
guished from each other, visually.



(a) Side view

(b) Top view

Figure 8: LIDAR laser-scan of a small section of the
Bavarian river Loisach in Germany. Laser echoes are
illustrated as colored points. Color shows the minor
eigenvector of the point distribution tensor. Vegetation
can be visually distinguished from the ground and the
river.

Next, we compare this expensive, fine grain computa-
tion in world space with our screen space technique.
The results indicate that the approach is able to recon-
struct the normals with rather high quality. The normals
do not differ in a large scale from the world space calcu-
lation, as shown in figure 9. However, differences in the
forest areas of the scan are discernable. The sampling
density near the camera position is not high enough to
ensure high quality reconstruction in this region.

To compare the results of the different methods, we
recorded a series of images from the Loisach dataset.
The TI method produces the most reliable results, while
requiring a high sampling count. The PD method is able
to create very smooth normals, while not accounting for
small surface changes, e.g. the missing power line in
the upper region 10. The PC method includes it, but
is more unstable. The LD method is the most efficient
approach. Yet, the quality is very low in comparison to
the other approaches.

The correction pass increases the quality by reducing
the number of invalid surface normals. Also, the overall
results are more stable. This is shown in figure 10c,
where the correction pass has been enabled. Without,
the quality of the normals is worse (refer to 10d).

5 CONCLUSION
Our results show that a fast approximation of the sur-
face normal is achieved in real-time. The surface is
solely reconstructed from the depth-buffer and projec-
tion parameters. A preprocessing of surface informa-
tion may be delayed with this approach, until the cor-
rect data has been selected. The results indicate that the
tensor-based approach to determine the surface normal
from a point cloud is a well-working method.

In comparison to the off-line world space method,
we are able to create comparable results at interactive
frame rates. The loss of quality is negligible and is
only visible in under-sampled regions.

Obviously, this method can only provide an approxima-
tion of the real point-cloud’s surface information. The
tests show that an increase of the neighborhood size de-
creases the performance linearly. A good quality is al-
ready achieved with small neighborhood sizes. The fo-
cus on the diagonals in the schemes further reduce the
number of required samples.

6 FUTURE WORK
We plan to combine this technique with level of de-
tail rendering to provide good visual representations of
large airborne LIDAR scans. The surface normals pro-
vide important information to control a level of detail
algorithm.

The splatting technique could be enhanced by utilizing
more information represented in the point distribution
tensor. Extracting some features of the tensor will im-
prove the readability of point clouds without expensive
pre-computations.

Additionally, we plan to enhance the reconstruction
method. Currently, only the 1

‖dik‖2
weight is imple-

mented during construction of the co-variance matrix.
This increases the flexibility of the presented approach.

To avoid expensive re-calculations, we also plan to em-
ploy a caching strategy. A re-computation of the surface
normals would only be required when camera location
or point coordinates are altered. This would further in-
crease the overall performance of the approach.
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(a) Loisach screen space normals, tensor, 9 samples (b) Loisach screen space normals, tensor, 9 samples, illuminated

(c) Loisach world space normals, 1m, squared (d) Loisach world space normals, 1m, squared, illuminated

Figure 9: The reconstruction of the minor eigenvector using the fast screen space approach.
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(a) World space, 1m squared (b) Local derivatives

(c) Tensor, 25 samples (d) Tensor, 25 samples, no correction

(e) Plane approximation, diagonals, 25 samples (f) Plane approximation, ccw, 25 samples

Figure 10: Comparison of the different reconstruction methods used on the Loisach LIDAR dataset.


