
Hand-gesture recognition using computer-vision techniques

David J. Rios-Soria
Universidad Autónoma de Nuevo

León (UANL)
San Nicolás de los Garza, NL, Mexico

david.j.rios@gmail.com

Satu E. Schaeffer
Universidad Autónoma de

Nuevo León (UANL)
San Nicolás de los Garza, NL,

Mexico
elisa.schaeffer@gmail.com

Sara E. Garza-Villarreal
Universidad Autónoma de

Nuevo León (UANL)
San Nicolás de los Garza, NL,

Mexico
saraelena@gmail.com

ABSTRACT

We use our hands constantly to interact with things: pick them up, move them, transform their shape, or activate
them in some way. In the same unconscious way, we gesticulatein communicating fundamental ideas: ‘stop’,
‘come closer’, ‘over there’, ‘no’, ‘agreed’, and so on. Gestures are thus a natural and intuitive form of both
interaction and communication. Gestures and gesture recognition are terms increasingly encountered in discussions
of human-computer interaction. We present a tool created for human-computer interaction based on hand gestures.
The underlying algorithm utilizes only computer-vision techniques. The tool is able to recognize in real time six
different hand gestures, captured using a webcam. Experiments conducted to evaluate the system performance are
reported.

Keywords: Hand-gesture recognition, computer vision, human computer interaction.

1 Introduction

There are situations in which it is necessary to interact
with a system without touching it. The reasons include
dirty hands (when repairing a motor, for example), hy-
giene (to indicate the desired water temperature when
washing hands in a public bathroom), and focus of at-
tention (not wishing to redirect the sight towards the
controls when operating delicate equipment or interact-
ing with an augmented-reality scenario). The use of
voice commands as an alternative to touch-based con-
trols, such as keyboards, buttons, and touch screens, re-
quires a quiet environment and natural language pro-
cessing; voice commands are, additionally, language-
specific and sensitive to dialects and to speech imped-
iments. Another alternative is remote control through
gesture recognition, also known as remote control “with
the wave of a hand". Common applications for this kind
of control involve medical systems —provide the user
sterility to avoid the spread of infections—, entertain-
ment, and human-robot interaction [WKSE11].

The option explored in this work,computer vision for
gesture recognition, has advantages over touch-based
controls and voice commands. Our proposed hand-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

gesture detection algorithm works in real time, using
basic computer-vision techniques such as filters, bor-
der detection, and convex-hull detection; in addition, it
only requires a standard webcam, does not need special
markers on the hand, can detect the hand regardless of
its position (upside down, backwards, leaned to the left
or right), and is easily extended for detecting two hands
at the same time.

To test this approach, user experiments were carried
out and two applications that use our gesture-detection
system were developed. In the first application, the de-
tected gestures are used as commands for interaction
with a GPS device; in the second one, the detected ges-
tures control the movements of a robot.

This document is organized as follows: Section 2 dis-
cusses background for this work and Section 3 reviews
related work; Section 4 presents the details of our al-
gorithm for hand-gesture recognition, which is able to
recognize six different gestures in real time. Section 5
discusses our prototype implementation and user exper-
iments, and Section 7 offers conclusions and discusses
future directions.

2 Background

The use of the hand as an input device is a method that
provides natural human-computer interaction. Among
the challenges of human-computer interaction is the
creation of user-friendly interfaces that use natural com-
munication. Sophisticated applications such as virtual
environments or augmented-reality systems should pro-

vide effective human-computer interaction for applica-
tions involving complex tasks. In these applications,
users should be supplied with sophisticated interfaces
allowing them to navigate within the system, select ob-
jects, and manipulate them.

The use of computer vision for human-computer in-
teraction is a natural, non-intrusive, non-contact solu-
tion. Computer vision can be used for gesture detection
and classification, and various approaches have been
proposed to support simple applications. To recognize
hand gestures using computer vision, it is first needed
to detect the hand on an image or video stream. Hand
detection and pose estimation involve extracting the po-
sition and orientation on the hand, fingertip locations,
and finger orientation from the images. Skin-color fil-
tering is a common method for locating the hand be-
cause of its fast implementation. Skin-color filters rely
on the assumption that the hand is the only skin-colored
object. Gesture classification is a research field involv-
ing many machine-learning techniques such as neural
networks and hidden Markov models [SP09].

However, hand-pose estimation is still a challenge in
computer vision. Several open problems remain to be
solved in order to obtain robustness, accuracy, and high
processing speed. The need of an inexpensive but high-
speed system is rather evident.Development of these
systems involves a challenge in the research of effective
input/output techniques, interaction styles, and evalua-
tion methods [EBN+07].

3 Related work

There are several areas where the detection of hand ges-
tures can be used, such as device interaction, virtual-
object interaction, sign-language recognition, and robot
control. Wachs et al. [WKSE11] present some exam-
ples of applications such as medical assistance systems,
crisis management, and human-robot interaction. In
the following subsection we present some examples of
gesture-based interaction systems.

3.1 Device interaction

There are works related to electronic device interac-
tion; for example, Stergiopoulou et al. [SP09] use self-
growing and self-organized neural networks for hand
gesture recognition. Another example isFinger count-
ing [CB03] a simple human-computer interface. Using
a webcam, it interprets specific hand gestures as input
to a computer system in real time.

TheUbiHand[AM06b] is an input device that uses a
miniature wrist-worn camera to track finger position,
providing a natural and compact interface. A hand
model is used to generate a 3D representation of the
hand, and a gesture recognition system interprets finger

movements as commands. The system is a combination
of a pointer position and non-chorded keystroke input
device to track finger position [AM06a].

An interactive screen developed by The Alternative
Agency1 in UK is located in a department store window
(Figure 1). TheOrange screenallows interaction just
by moving the hands in front of the window without the
need to touch it.

Figure 1: The world’s first touchless interactive shop
window

Lenman et al. [LBT02] use gesture detection to inter-
act with electronic-home devices such as televisons and
DVD players.

MacLean et al. [MHP+01] use hand-gesture recog-
nition for real-time teleconferencing applications. The
gestures are used for controling horizontal and verti-
cal movement as well as zooming functions. Schlömer
et al. [SPHB08] use hand-gesture recognition for inter-
action with navigation applications such viewing pho-
tographs on a television, whereas Roomi et al. [RPJ10]
propose a hand-gesture detection system for interac-
tion with slideshow presentations in PowerPoint. The
gesture-detection system presented in Argyros et al.
[AL06] allows to control remotely the computer mouse.

Sixthsense[MMC09] is a system that converts any
surface into an interactive surface. In order to interact
with the system, hand gesture recognition is used. In the
Sixthsensesystem, color markers are used in the fingers
to detect the gestures.

3.2 Virtual object interaction

Gesture detection can be used for interaction with vir-
tual objects; there are several works that show applica-
tions for this scenario.

Hirobe et al. [HNW+09] have created an interface
for mobile devices using image tracking. The system
tracks the finger image and allows to type on an in-air
keyboard and draw 3D pictures.

HandVu[Kol10] is a hand-gesture vision-based recog-
nition system that allows interaction with virtual objects
(Figure 2)HandVudetects the hand in a standard pos-
ture, then tracks it and recognizes key postures, all in
real-time and without the need for camera or user cali-
bration. Although easy to understand, the used gestures
are not natural.

1 http://www.thealternative.co.uk/

Figure 2: The gestures used in theHandvu system
[Kol10] are not natural gestures.

Wobbrock et al. [WMW09] propose a series of ges-
tures in order to make easier the use of interactive sur-
faces. Wachs et al. [WSE+06] use real-time hand ges-
tures for object and window manipulation in a medical
data visualization environment.

3.3 Sign language recognition

Zahedi et al. [ZM11] create a system for sign language
recognition based on computer vision. Wang et al.
[WP09] present a work where hand gesture detection
is used in three aplications: animated character inter-
action, virtual object manipulation, and sign language
recognition.

3.4 Robot-control

Malima et al. [ÇMÖ06] use hand-gesture detection for
remote robot-control. They have noted that images
taken under insufficient light (especially using the we-
bcam) have led to incorrect results. In these cases the
failure mainly stems from the erroneous segmentation
of some background portions as the hand region.

4 Theory

Our proposed algorithm performs hand-gesture recog-
nition by utilizing computer-vision techniques and is
able to recognize six different gestures in real-time. The
processing steps included in the algorithm are explained
in detail in the following subsections.

4.1 Hand recognition

Hand-recognition systems are based on the processing
of an incoming digital image, preferably in real time.
The first task is to separate the image of a hand from
the background. This can be achieved in several ways
and depends on whether the image includes only a hand
against a background or the entire person. Options for
detecting the hand against a background, which is the
typical case for the augmented-reality setting, where the
user wears a headset with a camera pointing towards

his or her field of vision, include either comparing the
subsequent frames in a video (to detect movement —
sensitive to motion in the background as well as shaking
of the hand itself—) or using askin-color filter(to clas-
sify the pixels of the image into two classes, “hand” or
“background”, depending on their color values). In this
work, we employ the latter approach, which is some-
what sensible to high variations of skin color (the prob-
lematic cases being very pale and very dark-skinned
users). This can be done on a single frame, that is, a
still photograph, but can often be improved by averag-
ing over a few adjacent video frames; in our work we
use the average over ten frames.

The skin-color filtering in such does not yet necessar-
ily produce a picture of the hand only, as some pixels
belonging to the background may pass through the fil-
ter whereas parts of the hand that are either shadowed or
reflect light are excluded. Hence we need to apply sev-
eral processing steps; first to extract the hand and then
to identify the gesture that the user is currently making.

4.2 Skin-color filtering

Skin color has proven to be a useful and robust cue
for face detection, localization, and tracking [Mah08,
VSA03, KMB07]. Content filtering, content-aware video
compression, and color-balancing applications can also
benefit from automatic detection of skin in images. The
goal of skin-color detection is to construct a decision
rule to discriminate between skin and non-skin pixels.
This is usually accomplished by introducing a metric,
which measures the distance of the color of a given
pixel to a defined value representing skin tone. The
specific distance metric employed depends on the skin-
color modeling method. An obvious advantage of such
methods is the simplicity of the skin-detection rules
that enables the implementation of a very fast classifier
[VSA03].

Colorimetry, computer graphics, and video-signal trans-
mission standards have given birth to manycolor spaces
with different properties. A wide variety of them has
been applied to the problem of skin-color modeling.
The red-blue-green (RGB) is a color space that origi-
nated from cathode-ray tube display applications, where
it was convenient to describe each color as a combina-
tion of three colored rays: red, green, and blue. This
remains one of the most widely-used color spaces for
processing and storing of digital image data.

YCBCR is a family of color spaces used as a part of
the color-image pimage pipeline in video and digital
photography systems.Y is theluma component, some-
times called luminance, that represents the brightness
in an image. CB andCR are the blue-difference and
red-difference chroma components; chroma is the sig-
nal used in video systems to convey the color informa-
tion of the picture

In contrast to RGB, theYCBCR color space is luma-
independent, resulting in a better performance.YCBCR

is not an absolute color space; rather, it is a way of en-
coding RGB information. The actual color displayed
depends on the actual RGB primaries used to display
the signal.
The hand-gesture detection algorithm uses skin-color
detection. The skin-color filter used in our work can
also be used for face detection, localization, and track-
ing of persons in videos.

Denote byI be the entire input image, and byIY, ICB

andICR the luma, blue, and red components of the im-
age, rspectibly We denote the image height in pixels by
h and the image width in pixels byw. The pixel in posi-
tion (i, j) is denoted bypi, j and its three components by
pY

i, j , pCB
i, j , andpCR

i, j . For all componentsC∈ {Y,CB,CR},

we assume thatpC
i, j ∈ [0, 255], corresponding to eight

bits per color channel, yielding 24 bits per pixel. This
gives image size ofh×w×24 bits.

We use a pixel-based skin detection method [KPS03]
that classifies each pixel as skin or non-skin individu-
ally. More complex methods that take decisions based
not only on a pixelpi, j , but also on its direct neighbor-
hood {pi−1, j , pi+1, j , pi, j−1, pi, j+1} (and possibly also
the diagonal neighborhoodpi−1, j−1, pi+1, j−1, pi+1, j+1,

pi−1, j+1) can be formulated, but are computationally
heavier. Our aim is to operate the system in real time,
for which we seek the simplest and fastest possible
method for each step.

A pixel pi, j in I is classified —heuristically, based
on existing literature— as skin if all of the following
conditions simultaneously apply:

1. The luma component exceeds its corresponding thresh-
old value:

pY
i, j > 80. (1)

2. The blue and red components are within their corre-
sponding ranges:

85 < pCB
i, j < 135,

135 < pCR
i, j < 180.

(2)

We write S(pi, j) = ⊤ if the pixel pi, j passes the filter,
andS(pi, j) = ⊥ if it does not fulfill the above condi-
tions.

We then create a new binary imageB of the same
dimensionw× h (cf. Figure 3 for an example) where
the color of the pixelbi, j is either white (denoted by 1)
if the position corresponds to skin or black (denoted by
0) if the position did not pass the skin filter:

bi, j =

{

1, if S(pi, j) =⊤,

0, if S(pi, j) =⊥.
(3)

Figure 3: On the left, an original imageI . On the right,
the resulting binary imageB after applying the skin-
color filter defined by Equations 1-2.

4.3 Edge detection

Using the binary image corresponding to the presumed
skin pixels, we need to determine which of these form
the hand, meaning that we need to identify the edge of
the hand shape in the image.Edge detectionis an es-
sential tool in image processing and computer vision,
particularly in the areas of feature detection and feature
extraction. Anedgeis defined as the boundary between
an object and the background, although it may also in-
dicate the boundary between overlapping objects.

The process of edge detection is generally based on
identifying those pixels at which the image brightness
has discontinuities. When the edges in an image are
accurately identified, the objects in it can be located,
allowing the computation of basic properties of each
object, such as the area, perimeter, and shape [Par96].

There are two main methods used for edge detection;
namely thetemplate matchingand thedifferential gra-
dientmethods. In both of these methods, the goal is to
identify locations in which the magnitude of the inten-
sity gradient (that is, the change that occurs in the inten-
sity of pixel color when moving across adjacent pixels)
is above a threshold, as to indicate in a reliable fashion
the edge of an object. The principal difference between
the two methods is the way in which they perform lo-
cal estimation of the intensity gradientg, although both
techniques employ convolution masks.

The template matching operates by taking the max-
imum over a set of component masks (such as the
Roberts, Sobel, and Prewitt operators) that represent
possible edge configurations. This yields an approxi-
mation forg at the pixel in which the templates are cen-
tered. The differential gradient method instead com-
putes the pixel magnitudes vectorially with a nonlinear
transformation. After computingg for each pixel —
with either of these methods— thresholding is carried
out to obtain a set ofcontour points(that is, those that
were classified as being part of an edge). The orienta-
tion of the edges can be deduced from the direction of
the highest gradient (the edge being perpendicular to it
at that pixel).

At this point, we have the set of contour pixels and
need to determine the connected components of the
contour, meaning that we must compute the connected

sets of edge points. To create a connected set we select
one contour pixel as a seed and recursively add to the
set pixels that are also contour pixels and are adjacent
to at least one pixel in the set, until there are no more
adjacent contour pixels. If there are contour pixels left,
then we select another contour pixel as a seed to create
a new connected set; we repeat iteratively until all the
contour pixels are in a connected component.
In our case, we assume the hand to be in the image fore-
ground, making it likely that the largest connected con-
tour component will correspond to the hand, whereas
any smaller components of the contour set, if present,
correspond to some objects on the background.
We denote the set of contour pixels of the largest con-
nected component byE. We construct a new binary im-
ageO by copyingB and then setting to zero (black) all
those pixels that correspond to the smaller connected
components of the contour and their insides, leaving
only E and the pixels inside it at one (white). This can
be done by a standard bucket-fill algorithm.

4.4 Convex hull and convexity defects

At this point, we have identified the edge of the hand in
the image. We now proceed to determining which hand
gesture is being made in the image. The way in which
this is done depends on the the type of hand gestures
supported by the system —no single design is adequate
for all possible hand positions–. The gestures that we
wish to detect are shown in Figure 4.

Figure 4: The gestures used in our proposed system that
correspond to the numbers from zero to five. Note that
the separation of the individual fingers is relevant to the
detection of these gestures.

As our gestures correspond to distinct numbers of fin-
gers elevated, our detection method is based on count-
ing the elevated fingers in the image. It will not be rel-
evant which finger is elevated, only the number of fin-
gers (cf. [CB03, ÇMÖ06]). This gives us the advantage
of the system not being sensitive to which hand is be-
ing used, left or right. Additionally we gain not having
to control the position of the hand: we can look at the
palm or the back and have the person hold his or her
arm at nearly any angle with respect to the camera. All
we require is that either the palm or the back of the hand
faces the camera and that the fingers are separated. This
second requirement can be relaxed in future work; we
discuss later in this paper how we expect to achieve this.

We identify the peaks of the fingers in the image by
computing theconvex hullof the hand edge. The con-
vex hull is a descriptor of shape, is the smallest con-
vex set that contains the edge; intuitively explained —
in two dimensions— as the form taken by a rubber band
when placed around the object in question; an example
is given in Figure 5). It is used in computer vision to
simplify complex shapes, particularly to provide a rapid
indication of the extent of an object.

We now copy the binary imageO to a new image
C. We will then iteratively seek and eliminatecon-
caveregions. Intuitively, this can be done by examining
the values of the pixels in an arbitrary straight segment
with both endpoints residing in white pixels. If any of
the pixels along the segment are black, they are col-
ored white, together with any black pixels beneath the
segment. This repeated “filling” will continue until no
more segments with white end points and intermediate
black pixels exist. An algorithm for achieving this is
given in the text book of Davies [Dav04].

The resulting white zone inC is nowconvexand the
edge of that zone —all those white pixels that have at
least one black neighbor— form the convex hull of the
hand-shape inE. We denote this edge byH.

(a) Edge and hull. (b) Vertices and defects.

Figure 5: On the left, the background (in black), the
hand-shape regionO (in white), the hand edgeE (in
blue), and the convex hullH (in green). On the right,
we add the vertices of the convex hull (in red) and the
convexity defects (in yellow).

We now proceed to comparingH to E to detect the
defects, points in which the two differ greatly. First,
from H, we compute theverticesof the convex hull,
that is, the points in which it changes direction. Then,
we examine the segments ofE between pairs of consec-
utive vertices ofH and find that pixel in each segment
that maximizes the distance fromH. This maximal dis-
tancedi is called thedepthof the defecti. The points
themselves are calledconvexity defects. Figure 5 shows
an example.

From the defect depths, useful characteristics of the
hand shape can be derived, such as the depth average
µd. We use the defect depths, together with the depth
average and the total hand length, to count the number
of elevated fingers. An above-average depth indicates
a gap between fingers, whereas a clearly below-average
depth is not a finger separation. Using the number of
defects we can estimate the number of elevated fingers

on the hand: an open hand showing five fingers has four
convexity defects, whereas a hand showing four fingers
has three convexity defects, and so forth.

5 Material and methods

We used OpenCV2 under Python3 to implement a pro-
totype of the proposed hand-gesture detection system.
As we wanted the system to be able to run on mod-
est hardware, we performed all our experiments on a
netbook with a 1.6 GHz processor and 1 GB of RAM
memory, using a webcam with a resolution of 640×480
pixels. The prototype operates in real time and indicates
on the screen the detected gesture; Figure 6 shows a
screen capture.

Figure 6: A screen capture of the implemented proto-
type for the hand-gesture detection tool.

5.1 Experimental setup

We carried out experiments with users to evaluate the
functionality of the proposed gesture-detection algo-
rithm. We requested the users to carry out a series of
gestures in front of the webcam and measured whether
the detection was successful. An observer recorded
whether the output produced by the algorithm corre-
sponded to the actual gesture being made. The light-
ing, camera position, and image background were con-
trolled, as illustrated in Figure 7. We hope to relax these
requirements in future work, as the proposed method is
designed to accommodate a less restricted use setting.

The user was shown a gesture sequence —on a com-
puter screen (see Figure 8 for an example)—. Each ges-
ture sequence contains a randomly permuted sequence
of hand gestures to perform. The sequence was avail-
able on the screen while the user performed the gestures
one at a time. We instructed the users to a take three-
second pause between gestures. Each sequence was
performed once with the right hand and then again with
the left hand. When the user finished to perform the last
gesture in the sequence, a new random sequence was
show. Each user carried out five different sequences.

2 http://opencv.willowgarage.com/
3 http://www.python.org/

Figure 7: The experimental setting: our arrangement
for controlled background, fixed camera position, and
constant illumination.

Figure 8: An example of a random gesture sequence
assigned to a user.

6 Results of user experiments

We evaluated the prototype with ten users; each per-
formed five sequences of gestures with both hands (each
sequence was composed of six gestures from zero to
five, in random order). Therefore, each user performed
60 gestures, giving us a total of 600 gesture-detection
attempts. Table 6 shows the percent of gestures cor-
rectly detected, grouped by the gesture made and the
hand used.

Hand used
Gesture detected

0 1 2 3 4 5 Total
Right hand 100% 72% 96% 94% 98% 100% 93.33%
Left hand 100% 76% 94% 96% 98% 94% 93.00%
Total 100% 74% 95% 95% 98% 97% 93.17%

Table 1: Percentage of correctly identified gestures.

Figure 9: Correctly detected gestures.

In total, 93.1% of the gestures were correctly de-
tected, improving the results for a previous work [RSS12];
the gestures for numbers three, four, and five have
the highest accuracy and present low variation between
hands. The gestures for number one, however, has the
lowest detection percentage. Also, gestures for zero,
one, and two show variability according to the hand
used. The gesture-detection algorithm works correctly
a majority of the time, under the conditions used in our
experiments. User observation helped us notice that the
primary cause for incorrect gesture detection was the
particular form in which each user performs the gesture:
sometimes, for example, the fingers were very close to
each other. Some examples are shown in Figure 10. We
discuss a possible work-around to this problem as part
of future work in the next section.

Figure 10: Some examples of correct and incorrect de-
tection from the user experiments. Above, a correctly
detected gesture, and below, an incorrect detection of
that same gesture. The gestures requested were, from
left to right, one, three, and five.

7 Conclusions and future work

We have presented a method for detecting hand gestures
based on computer-vision techniques, together with an
implementation that works in real time on a ordinary
webcam. The method combines skin-color filtering,
edge detection, convex-hull computation, and a rule-
based reasoning with the depths of the convexity de-
fects. We had reported as well user experiments on the
detection accuracy of the developed prototype, detect-
ing correctly nine in ten hand gestures made on either
hand, in a controlled environment.

As future work, we plan to add in the gesture detec-
tion phase an estimate of the width of each finger. This
allows us to determine whether a single finger is ele-
vated at that position or whether multiple fingers are
elevated but held together. The finger width can be
calibrated for each person by measuring the width of
the hand base itself and assuming that anything that has
the width between one sixth and one fourth of the base
width is a single finger. The number of fingers in a
wider block can be estimated as the width of the block
(computable from the points used for finger counting at

present) divided by one fifth of the base width, rounded
down to the preceding integer value.

Another aspect that needs to be addressed in future
work is the sensibility of the system to lighting condi-
tions, as this affects the skin-color filtering, particularly
with reflections and shadows. We expect these addi-
tions to improve the accuracy of the detection system,
as well as ease the cognitive burden of the end user as it
will no longer be necessary to keep the fingers separate
—something that one easily forgets—.

8 References

REFERENCES
[AL06] Antonis Argyros and Manolis Lourakis. Vision-

based interpretation of hand gestures for re-
mote control of a computer mouse. In Thomas
Huang, Nicu Sebe, Michael Lew, Vladimir
Pavlovic, Mathias Kölsch, Aphrodite Galata,
and Branislav Kisacanin, editors,Computer Vi-
sion in Human-Computer Interaction, volume
3979 of Lecture Notes in Computer Science,
pages 40–51. Springer, Berlin / Heidelberg, Ger-
many, 2006.

[AM06a] Farooq Ahmad and Petr Musilek. A keystroke
and pointer control input interface for wearable
computers. InIEEE International Conference
on Pervasive Computing and Communications,
pages 2–11, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[AM06b] Farooq Ahmad and Petr Musilek. Ubihand: a
wearable input device for 3D interaction. In
ACM Internacional Conference and Exhibition
on Computer Graphics and Interactive Tech-
niques, page 159, New York, NY, USA, 2006.
ACM.

[CB03] Stephen C. Crampton and Margrit Betke. Count-
ing fingers in real time: A webcam-based
human-computer interface game applications.
In Proceedings of the Conference on Universal
Access in Human-Computer Interaction, pages
1357–1361, Crete, Greece, June 2003. HCI In-
ternational.

[ÇMÖ06] Müdjat Çetin, Asanterabi Kighoma Malima, and
Erol Özgür. A fast algorithm for vision-based
hand gesture recognition for robot control. In
Proceedings of the IEEE Conference on Signal
Processing and Communications Applications,
pages 1–4, NJ, USA, 2006. IEEE.

[Dav04] E. Roy Davies.Machine Vision: Theory, Algo-
rithms, Practicalities. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[EBN+07] Ali Erol, George Bebis, Mircea Nicolescu,
Richard D. Boyle, and Xander Twombly.

Vision-based hand pose estimation: A review.
Computer Vision and Image Understanding,
108:52–73, 2007.

[HNW+09] Yuki Hirobe, Takehiro Niikura, Yoshihiro
Watanabe, Takashi Komuro, and Masatoshi
Ishikawa. Vision-based input interface for mo-
bile devices with high-speed fingertip tracking.
In 22nd ACM Symposium on User Interface
Software and Technology, pages 7–8, New York,
NY, USA, 2009. ACM.

[KMB07] P. Kakumanu, S. Makrogiannis, and N. Bour-
bakis. A survey of skin-color modeling
and detection methods.Pattern Recognition,
40(3):1106–1122, 2007.

[Kol10] Kolsch. Handvu.www.movesinstitute.org/
\textasciitildekolsch/HandVu/HandVu.
html, 2010.

[KPS03] J. Kovac, P. Peer, and F. Solina. Human skin
colour clustering for face detection. InInterna-
cional conference on Computer as a Tool, vol-
ume 2, pages 144–147, NJ, USA, 2003. IEEE.

[LBT02] S. Lenman, L. Bretzner, and B. Thuresson.
Computer vision based hand gesture interfaces
for human-computer interaction. Technical re-
port, CID, Centre for User Oriented IT Design.
Royal Institute of Technology Sweden, Stock-
hom, Sweden, June 2002.

[Mah08] Tarek M. Mahmoud. A new fast skin color
detection technique. World Academy of Sci-
ence, Engineering and Technology, 43:501–505,
2008.

[MHP+01] J. MacLean, R. Herpers, C. Pantofaru, L. Wood,
K. Derpanis, D. Topalovic, and J. Tsotsos. Fast
hand gesture recognition for real-time telecon-
ferencing applications. InProceedings of the
IEEE ICCV Workshop on Recognition, Analy-
sis, and Tracking of Faces and Gestures in Real-
Time Systems, pages 133–140, Washington, DC,
USA, 2001. IEEE Computer Society.

[MMC09] Pranav Mistry, Pattie Maes, and Liyan Chang.
WUW - wear ur world: a wearable gestural in-
terface. InProceedings of the 27th international
conference extended abstracts on Human factors
in computing systems, pages 4111–4116, New
York, NY, USA, 2009. ACM.

[Par96] J. R. Parker.Algorithms for Image Processing
and Computer Vision. John Wiley & Sons, Inc.,
New York, NY, USA, 1 edition, 1996.

[RPJ10] S.M.M. Roomi, R.J. Priya, and H. Jayalak-
shmi. Hand gesture recognition for human-
computer interaction.Journal of Computer Sci-
ence, 6(9):1002–1007, 2010.

[RSS12] David J. Rios Soria and Satu E. Schaeffer. A tool
for hand-sign recognition. In4th Mexican Con-
ference on Pattern Recognition, volume 7329 of
Lecture Notes in Computer Science, pages 137–
146. Springer, Berlin / Heidelberg, 2012.

[SP09] E. Stergiopoulou and N. Papamarkos. Hand ges-
ture recognition using a neural network shape
fitting technique. Engineering Applications of
Artificial Intelligence, 22(8):1141–1158, 2009.

[SPHB08] Thomas Schlömer, Benjamin Poppinga, Niels
Henze, and Susanne Boll. Gesture recognition
with a Wii controller. In Proceedings of the
2nd international conference on Tangible and
embedded interaction, pages 11–14, New York,
NY, USA, 2008. ACM.

[VSA03] Vladimir Vezhnevets, Vassili Sazonov, and Alla
Andreeva. A survey on pixel-based skin color
detection techniques. InProceedings of inter-
national conference on computer graphics and
vision, pages 85–92, Moscow, Russia, 2003.
Moscow State University.

[WKSE11] Juan Pablo Wachs, Mathias Kölsch, Helman
Stern, and Yael Edan. Vision-based hand-
gesture applications. Communications ACM,
54:60–71, feb 2011.

[WMW09] Jacob O. Wobbrock, Meredith Ringel Morris,
and Andrew D. Wilson. User-defined gestures
for surface computing. InProceedings of the
27th international conference on Human factors
in computing systems, pages 1083–1092, New
York, NY, USA, 2009. ACM.

[WP09] Robert Y. Wang and Jovan Popović. Real-time
hand-tracking with a color glove.ACM Trans-
actions on Graphics, 28:63:1–63:8, jul 2009.

[WSE+06] Juan Wachs, Helman Stern, Yael Edan, Michael
Gillam, Craig Feied, Mark Smith, and Jon Han-
dler. A real-time hand gesture interface for
medical visualization applications. In Ashutosh
Tiwari, Rajkumar Roy, Joshua Knowles, Erel
Avineri, and Keshav Dahal, editors,Applica-
tions of Soft Computing, volume 36 ofAdvances
in Soft Computing, pages 153–162. Springer,
Berlin / Heidelberg, 2006.

[ZM11] Morteza Zahedi and Ali Reza Manashty. Ro-
bust sign language recognition system using ToF
depth cameras.Information Technology Journal,
1(3):50–56, 2011.

