
Volume Ray Casting quality estimation in terms of

Peak Signal-to-Noise Ratio

Nikolay Gavrilov Vadim Turlapov

Lobachevsky state university of Nizhny Novgorod
Gagarina 23

 Russia 603950, Nizhni Novgorod

{gavrilov86, vadim.turlapov}@gmail.com

ABSTRACT

In spite of a large number of techniques aimed for improvement of Direct Volume Rendering (DVR) quality and

performance proposed in the literature, there is a lack of approaches for numerical quality estimation of the

images obtained by visualization of medical and scientific volumetric datasets. In this paper we propose a method

to estimate sampling artifacts in DVR. Using the proposed estimation method we compare different Ray Casting

algorithms to expose optimal ones in quality-performance criteria. We also propose method which combines two

techniques for sampling artifacts reduction: Preintegrated DVR and Virtual Samplings method. We show that this

combination overcomes both basic methods when using local shading or/and tricubic filtering in RC algorithm.

Keywords
Volume Rendering, Ray Casting, Scientific Visualization.

1. INTRODUCTION
Nowadays there are a lot of GPU-based approaches

allowing for interactive rendering [EHK*06]. In

addition to different acceleration structures to

improve rendering performance by empty space

skipping, there are many approaches to improve

rendering quality without significant performance

[EHMDM08], [KHW*09]. Still there is not any

method proposed in the literature to estimate the

quality of the output generated by RC algorithm,

there are no criteria by which we could compare

different quality improvement techniques. Mostly

researchers simply put images of competing

algorithms side by side, appointing the human visual

system to be the judge [MHB*00].

In this paper we propose a noise-based method to

estimate sampling artifacts of RC. In addition we

propose new RC rendering techniques and compare

them with the preintegrated rendering method

[EHMDM08] in terms of quality and performance.

2. RAY CASTING ARTIFACTS
Methods involving uniform sampling with post-

classification invariably miss thin features along the

ray path, omitting the desired surface features thus

casing sampling artifacts [KHW*09]. The regularity

of such artifacts has a wood-like appearance, which

can be converted to noise by stochastic jittering of

ray starting positions or other shifting strategies

[Sch05]. For big datasets (of size greater than 512
3
)

or transfer functions that cause superficial thin slices

the optimization of RC algorithm is needed to keep

an acceptable rendering quality and performance.

There is also another important type of DVR artifacts

which are introduced by the interpolation method –

filtering artifacts, caused by trilinear interpolation.

Unfortunately they cannot be randomized like

sampling artifacts, but they can be significantly

reduced by using B-splines interpolation [RtHRS08].

Figure 1. RC quality for sampling rate 1(left) and

8 (right)

Figure 2. Trilinear (left) & tricubic (right)

interpolation modes side-by-side comparison.

3. QUALITY MEASUREMENT
As we use stochastic jittering of starting positions of

the rays, sampling artifacts can be captured by the

image noise measurement. We can obtain a set of

rendered images of the same dataset from the same

viewpoint with the same TF and other visualization

settings, but we can still change the jittering pattern

changing the seed for random values generation.

We can consider the image pixels as a set of

independent random values to measure the noise of

each single pixel by evaluating the dispersion of its

color C (we use YPbPr color space for the

calculations below). We consider dispersion of C as

an error in pixel (i, j), or as a level of its sampling

artifact:

where T is a number of images in the series, Ci(x,y) –

color of (x, y) pixel from i
th

 image. It is also possible

to use a ground truth image (image, obtained with a

tremendously high sampling rate) instead of the

average one:

To measure the noise level we use PSNR (Peak

Signal-to-Noise Ratio) logarithmic decibel scale

which is mostly used to measure the error introduced

by images compression. In the volume rendering

domain PSNR is mostly utilized to measure the error

of 3d dataset compression [GS04], but not for the

rendering quality estimation. We consider PSNR as a

quality of the rendering algorithm, it is calculated as

follows:

D(i,j) is dispersion (or mean-square error) in (i,j)

pixel, MSE – mean-square error of the whole image

of size m x n, MAXI – maximum possible of length

pixel in the color space, equal to 1 in our case, N –

number of non-background pixels, which is often less

than n*m, there are too many background pixels with

a null dispersion (see Fig. 4). To avoid the quality

overstatement these pixels should be ignored.

We also use PSNR to estimate quality of each single

pixel in order to build the quality map of the image

which shows us areas of higher and lower rendering

quality. The pixels with PSNR > 40dB have no

noticeable noise – for these pixels the mean error is

less than 1%. Areas where PSNR is less than 30dB

contain rather noticeable noise. Figure 3 shows

quality maps for different sampling rates.

SR: 1.2; PSNR: 10dB; SR: 2.2; PSNR: 20dB;

SR: 4.3; PSNR: 30dB; SR: 6.9; PSNR: 40dB;

Figure 3. Quality maps and corresponding PSNRs

for DVR with different sampling rates (SR).

PSNR: 20.5dB PSNR: 25.7dB

Figure 4. Here we do not ignore background

pixels in PSNR calculation.

4. EXPERIMENTS
There are a lot of conditions besides the sampling

rate that have influence on RC quality and

performance: dataset, viewpoint, transfer function,

screen resolution, sizes of bricks we use to

decompose our dataset, shading model, filtering

method, GPU we use, etc. Fortunately, some of these

parameters do not affect rendering quality. Screen

resolution affects only the precision of PSNR

estimation. The dependence between number of

processed pixels and frame rendering time is almost

linear, as well as dependence between RC sampling

rate and rendering time.

We used 10 different volumetric datasets of sizes

512х512х420 to 512х512х5382 12-bit. We make

datasets decomposition into bricks of size 256
3
 which

appears to be optimal for the GPU we used (GeForce

GTX 580 3GB). We used 6 different TFs, some of

them impose strict visualization conditions causing

presence of thin slices in space.

Figure 5. Examples of datasets used in

experiments.

Quality-Performance dependence
When comparing efficiency of different quality

improvement methods it is necessary to consider not

only quality but the rendering performance as well.

We change RC sampling rate, thus varying rendering

quality and performance. As the result, we obtain

quality-performance dependence for each rendering

method. Depending on rendering conditions we have

obtained a set of dependencies. There are 4 cases:

use/not use local shading and trilinear/tricubic

filtering. Mostly these two options define the optimal

RC algorithm, while other visualization conditions do

not have such influence on the efficiency of method.

On Figures 6 and 7 we present typical dependencies

we obtained in our experiments. Each line

corresponds to a rendering method. We vary

sampling rate from 1 to 8 samplings per voxel.

Rendering methods we used are: UDVR

(Unoptimized DVR), PDVR (Preintegrated DVR

[EHMDM08]), CVS (virtual samplings with cubic

spline interpolation [LYS*10]), LVS (virtual

samplings with linear interpolation), ASM (adaptive

step method), PLVS and PCVS (are modifications of

LVS and CVS: we make pre-integrated classification

instead of post-classification)

In all cases experiments have showed inefficiency of

UDVR method. When comparing PSNR values we

mostly take in account [30dB, 40dB] range which

corresponds to convenient rendering quality. When

PSRN>40dB the artifacts are hardly perceptible by a

human.

In many cases PDVR height efficiency is caused by

its high performance, but when using shading its

quality is dramatically limited. ASM is efficient only

in cases with shading and trilinear filtering because

we perform many samplings causing low

performance. On the other hand, we calculate

gradient on each ray step thus providing higher

shading quality.

Figure 6. Quality-performance dependencies for

different RC algorithms in case of not using

tricubic filtering and without local shading.

Figure 7. Quality-performance dependencies for

different RC algorithms in case of using tricubic

filtering and local shading.

DVR Output; PSNR: 36.4dB; PSNR: 22.1dB;

Figure 8. Quality maps for PDVR method without

(middle) and with shading (right); sampling rate

used here is 2 per voxel.

For LVS and CVS we use interpolated gradient, thus

providing acceptable shading quality. But they have

lower performance than PDVR has at the same

sampling rates and they use post-classification

method instead of preintegration, so that often they

have lower efficiency.

As for techniques PLVS and PCVS, they are most

acceptable in cases of using tricubic filtering or

shading. Expensive tricubic filtering compensates the

additional computations in these methods to

interpolate data values, which are absent in PDVR.

On the other hand they provide with better shading.

Figure 8 shows low PSNR for the Preintegrated

rendering with shading on, while PLVS (or PCVS)

methods interpolate gradient to avoid such artifacts.

Optimizing RC algorithms
Before comparing efficiency of RC algorithms we

have made their optimization by searching theirs

optimal parameters. For instance, in all RC

algorithms we have proposed in this paper (all except

UDVR and PDVR) there is such parameter as

number of ray step division which defines number of

internal steps. Varying this parameter for an

algorithm we change its quality and performance like

we did this by varying the sampling rate. At some

point the augmentation of this parameter does not

significantly improve quality.

We can also consider a RC method as a set of

different RC methods with different number of step

divisions in order to build quality-performance

dependencies. Figure 9 shows that optimal numbers

of divisions in LVS method are 3 and 4. In general

we obtain the same result for all other RC methods.

However, in cases of TF that causes thin slices in

object space we need more step divisions for non-

preintegration methods, i.e. LVS, CVS and ASM. In

that cases we need up to 10 divisions to avoid severe

sampling artifacts. Surely in those cases approaches

that use preintegration table work much better.

Figure 9. Quality-performance dependencies for

LVS algorithm with different number of step

divisions.

Shading & Filtering influence on PSNR
Unfortunately filtering artifacts cannot be measured

as a noise like sampling artifacts. Still those regions

on the image where trilinear filtering artifacts appear

have lower PSNR in comparison to those on the

image obtained with tricubic filtering. The overall

PSNR is almost the same.

The local shading makes the image darker and this

causes lower dispersion of intensities of pixels, i.e.

higher overall PSNR. Still PDVR method shows

better quality when the shading is off.

5. CONCLUSION
A method for Ray Casting quality numerical

estimation was proposed. By evaluating noise we

calculate PSNR for each single pixel and for the

whole image as well. The usage of PSNR allowed us

to measure RC noise in decibel scale, and like in

images compression domain, the desired quality lies

in [30dB, 40dB] range. Comparing PSNR produced

by different RC algorithms at fixed fps and varying

their parameters we can compute optimal ones for

any particular class of visualization cases, e.g.

reconstruction filter or shading options.

6. REFERENCES
 [EHK*06] Engel K., Hadwiger M., Kniss J.,

Rezksalama C., Weiskopf D.: Real-time volume

graphics. Eurographics Association (2006), 112–

114.

[EHMDM08] El Hajjar J. F. et al. Second order pre-

integrated volume rendering //Visualization

Symposium, 2008. PacificVIS'08. IEEE Pacific. –

IEEE, 2008. – С. 9-16.

[GS04] Guthe S., Strasser W.: Advanced techniques

for high-quality multi-resolution volume

rendering. Computers & Graphics 28, 1 (2004),

51–58.

[KHW*09] Knoll A., Hijazi Y., Westerteiger R.,

Schott M., Hansen C., Hagen H.: Volume ray

casting with peak finding and differential

sampling. Visualization and Computer Graphics,

IEEE Transactions on 15, 6 (2009), 1571–1578.

[MHB*00] Meissner M., Huang J., Bartz D., Mueller

K., Crawfis R.: A practical evaluation of popular

volume rendering algorithms. In Proceedings of

the 2000 IEEE symposium on Volume

visualization (2000), ACM, pp. 81–90.

[LYS*10] Lee, B., Yun, J., Seo, J., Shim, B., Shin, Y.

G., & Kim, B. (2010). Fast high-quality volume

ray casting with virtual samplings. Visualization

and Computer Graphics, IEEE Transactions on,

16(6), 1525-1532.

[RtHRS08] Ruijters D., Ter Haar Romeny B.,

Suetens P.: Efficient gpu-based texture

interpolation using uniform b-splines. Journal of

Graphics, GPU, and Game Tools 13, 4 (2008),

61–69.

[Sch05] SCHARSACH H.: Advanced gpu raycasting.

Proceedings of CESCG 5 (2005), 67–76.

