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ABSTRACT 

In spite of a large number of techniques aimed for improvement of Direct Volume Rendering (DVR) quality and 

performance proposed in the literature, there is a lack of approaches for numerical quality estimation of the 

images obtained by visualization of medical and scientific volumetric datasets. In this paper we propose a method 

to estimate sampling artifacts in DVR. Using the proposed estimation method we compare different Ray Casting 

algorithms to expose optimal ones in quality-performance criteria. We also propose method which combines two 

techniques for sampling artifacts reduction: Preintegrated DVR and Virtual Samplings method. We show that this 

combination overcomes both basic methods when using local shading or/and tricubic filtering in RC algorithm. 
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1. INTRODUCTION 
Nowadays there are a lot of GPU-based approaches 

allowing for interactive rendering [EHK*06]. In 

addition to different acceleration structures to 

improve rendering performance by empty space 

skipping, there are many approaches to improve 

rendering quality without significant performance 

[EHMDM08], [KHW*09]. Still there is not any 

method proposed in the literature to estimate the 

quality of the output generated by RC algorithm, 

there are no criteria by which we could compare 

different quality improvement techniques. Mostly 

researchers simply put images of competing 

algorithms side by side, appointing the human visual 

system to be the judge [MHB*00].  

In this paper we propose a noise-based method to 

estimate sampling artifacts of RC. In addition we 

propose new RC rendering techniques and compare 

them with the preintegrated rendering method 

[EHMDM08] in terms of quality and performance. 

2. RAY CASTING ARTIFACTS 
Methods involving uniform sampling with post-

classification invariably miss thin features along the 

ray path, omitting the desired surface features thus 

casing sampling artifacts [KHW*09]. The regularity 

of such artifacts has a wood-like appearance, which 

can be converted to noise by stochastic jittering of 

ray starting positions or other shifting strategies 

[Sch05]. For big datasets (of size greater than 512
3
) 

or transfer functions that cause superficial thin slices 

the optimization of RC algorithm is needed to keep 

an acceptable rendering quality and performance. 

There is also another important type of DVR artifacts 

which are introduced by the interpolation method – 

filtering artifacts, caused by trilinear interpolation. 

Unfortunately they cannot be randomized like 

sampling artifacts, but they can be significantly 

reduced by using B-splines interpolation [RtHRS08]. 

 

Figure 1. RC quality for sampling rate 1(left) and 

8 (right) 

 

Figure 2. Trilinear (left) & tricubic (right) 

interpolation modes side-by-side comparison. 

3. QUALITY MEASUREMENT  
As we use stochastic jittering of starting positions of 

the rays, sampling artifacts can be captured by the 



image noise measurement. We can obtain a set of 

rendered images of the same dataset from the same 

viewpoint with the same TF and other visualization 

settings, but we can still change the jittering pattern 

changing the seed for random values generation. 

We can consider the image pixels as a set of 

independent random values to measure the noise of 

each single pixel by evaluating the dispersion of its 

color C (we use YPbPr color space for the 

calculations below). We consider dispersion of C as 

an error in pixel (i, j), or as a level of its sampling 

artifact: 

 

where T is a number of images in the series, Ci(x,y) – 

color of (x, y) pixel  from i
th

 image. It is also possible 

to use a ground truth image  (image, obtained with a 

tremendously high sampling rate) instead of the 

average one: 

 

To measure the noise level we use PSNR (Peak 

Signal-to-Noise Ratio) logarithmic decibel scale 

which is mostly used to measure the error introduced 

by images compression. In the volume rendering 

domain PSNR is mostly utilized to measure the error 

of 3d dataset compression [GS04], but not for the 

rendering quality estimation. We consider PSNR as a 

quality of the rendering algorithm, it is calculated as 

follows: 

 

D(i,j) is dispersion (or mean-square error) in (i,j) 

pixel, MSE – mean-square error of the whole image 

of size m x n, MAXI – maximum possible of length 

pixel in the color space, equal to 1 in our case, N – 

number of non-background pixels, which is often less 

than n*m, there are too many background pixels with 

a null dispersion (see Fig. 4). To avoid the quality 

overstatement these pixels should be ignored. 

We also use PSNR to estimate quality of each single 

pixel in order to build the quality map of the image 

which shows us areas of higher and lower rendering 

quality. The pixels with PSNR > 40dB have no 

noticeable noise – for these pixels the mean error is 

less than 1%. Areas where PSNR is less than 30dB 

contain rather noticeable noise. Figure 3 shows 

quality maps for different sampling rates.  

   
SR: 1.2; PSNR: 10dB;     SR: 2.2; PSNR: 20dB; 

   
SR: 4.3; PSNR: 30dB;      SR: 6.9; PSNR: 40dB; 

 

Figure 3. Quality maps and corresponding PSNRs 

for DVR with different sampling rates (SR). 

  

PSNR: 20.5dB  PSNR: 25.7dB 

Figure 4. Here we do not ignore background 

pixels in PSNR calculation. 

4. EXPERIMENTS 
There are a lot of conditions besides the sampling 

rate that have influence on RC quality and 

performance: dataset, viewpoint, transfer function, 

screen resolution, sizes of bricks we use to 

decompose our dataset, shading model, filtering 

method, GPU we use, etc. Fortunately, some of these 

parameters do not affect rendering quality. Screen 

resolution affects only the precision of PSNR 

estimation. The dependence between number of 

processed pixels and frame rendering time is almost 

linear, as well as dependence between RC sampling 

rate and rendering time.  

We used 10 different volumetric datasets of sizes 

512х512х420 to 512х512х5382 12-bit. We make 

datasets decomposition into bricks of size 256
3
 which 

appears to be optimal for the GPU we used (GeForce 

GTX 580 3GB). We used 6 different TFs, some of 

them impose strict visualization conditions causing 

presence of thin slices in space. 



 

 

Figure 5. Examples of datasets used in 

experiments. 

Quality-Performance dependence  
When comparing efficiency of different quality 

improvement methods it is necessary to consider not 

only quality but the rendering performance as well. 

We change RC sampling rate, thus varying rendering 

quality and performance. As the result, we obtain 

quality-performance dependence for each rendering 

method. Depending on rendering conditions we have 

obtained a set of dependencies. There are 4 cases: 

use/not use local shading and trilinear/tricubic 

filtering. Mostly these two options define the optimal 

RC algorithm, while other visualization conditions do 

not have such influence on the efficiency of method. 

On Figures 6 and 7 we present typical dependencies 

we obtained in our experiments. Each line 

corresponds to a rendering method. We vary 

sampling rate from 1 to 8 samplings per voxel.  

Rendering methods we used are: UDVR 

(Unoptimized DVR), PDVR (Preintegrated DVR 

[EHMDM08]), CVS (virtual samplings with cubic 

spline interpolation [LYS*10]), LVS (virtual 

samplings with linear interpolation), ASM (adaptive 

step method), PLVS and PCVS (are modifications of 

LVS and CVS: we make pre-integrated classification 

instead of post-classification) 

In all cases experiments have showed inefficiency of 

UDVR method. When comparing PSNR values we 

mostly take in account [30dB, 40dB] range which 

corresponds to convenient rendering quality. When 

PSRN>40dB the artifacts are hardly perceptible by a 

human.   

In many cases PDVR height efficiency is caused by 

its high performance, but when using shading its 

quality is dramatically limited. ASM is efficient only 

in cases with shading and trilinear filtering because 

we perform many samplings causing low 

performance. On the other hand, we calculate 

gradient on each ray step thus providing higher 

shading quality.  

 

Figure 6. Quality-performance dependencies for 

different RC algorithms in case of not using 

tricubic filtering and without local shading. 

 

Figure 7. Quality-performance dependencies for 

different RC algorithms in case of using tricubic 

filtering and local shading. 

 

 

DVR Output; PSNR: 36.4dB; PSNR: 22.1dB; 

Figure 8. Quality maps for PDVR method without 

(middle) and with shading (right); sampling rate 

used here is 2 per voxel. 

For LVS and CVS we use interpolated gradient, thus 

providing acceptable shading quality. But they have 

lower performance than PDVR has at the same 

sampling rates and they use post-classification 

method instead of preintegration, so that often they 

have lower efficiency.  

As for techniques PLVS and PCVS, they are most 

acceptable in cases of using tricubic filtering or 



shading. Expensive tricubic filtering compensates the 

additional computations in these methods to 

interpolate data values, which are absent in PDVR. 

On the other hand they provide with better shading. 

Figure 8 shows low PSNR for the Preintegrated 

rendering with shading on, while PLVS (or PCVS) 

methods interpolate gradient to avoid such artifacts. 

Optimizing RC algorithms  
Before comparing efficiency of RC algorithms we 

have made their optimization by searching theirs 

optimal parameters. For instance, in all RC 

algorithms we have proposed in this paper (all except 

UDVR and PDVR) there is such parameter as 

number of ray step division which defines number of 

internal steps. Varying this parameter for an 

algorithm we change its quality and performance like 

we did this by varying the sampling rate. At some 

point the augmentation of this parameter does not 

significantly improve quality.  

We can also consider a RC method as a set of 

different RC methods with different number of step 

divisions in order to build quality-performance 

dependencies. Figure 9 shows that optimal numbers 

of divisions in LVS method are 3 and 4. In general 

we obtain the same result for all other RC methods. 

However, in cases of TF that causes thin slices in 

object space we need more step divisions for non-

preintegration methods, i.e. LVS, CVS and ASM. In 

that cases we need up to 10 divisions to avoid severe 

sampling artifacts. Surely in those cases approaches 

that use preintegration table work much better. 

 

Figure 9. Quality-performance dependencies for 

LVS algorithm with different number of step 

divisions. 

Shading & Filtering influence on PSNR  
Unfortunately filtering artifacts cannot be measured 

as a noise like sampling artifacts. Still those regions 

on the image where trilinear filtering artifacts appear 

have lower PSNR in comparison to those on the 

image obtained with tricubic filtering. The overall 

PSNR is almost the same. 

The local shading makes the image darker and this 

causes lower dispersion of intensities of pixels, i.e. 

higher overall PSNR. Still PDVR method shows 

better quality when the shading is off. 

5. CONCLUSION 
A method for Ray Casting quality numerical 

estimation was proposed. By evaluating noise we 

calculate PSNR for each single pixel and for the 

whole image as well. The usage of PSNR allowed us 

to measure RC noise in decibel scale, and like in 

images compression domain, the desired quality lies 

in [30dB, 40dB] range. Comparing PSNR produced 

by different RC algorithms at fixed fps and varying 

their parameters we can compute optimal ones for 

any particular class of visualization cases, e.g. 

reconstruction filter or shading options. 
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