
Java on CUDA architecture

Jan Strnad
Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, 160 00 Prague 6,

The Czech Republic.
strnaj11@fit.cvut.cz

Zdeněk Konfršt
Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, 160 00 Prague 6,

The Czech Republic.
konfrst@fit.cvut.cz

ABSTRACT
This paper presents technologies, programs and Java
libraries which allow usage of a CUDA capable
GPU device within Java programming language. All
these approaches are described with their simplified
usage guide. Then, we compare performance of these
methods, as well as we compare their friendliness to
a programmer, documentation or their maturity. For
performance tests, we used matrix multiplication and
Gamma correction. We recommend to use JCuda
library as currently the best available method, followed
closely by JNI.

KEY WORDS
CUDA, GPGPU, GPU, Java, JCuda

INTRODUCTION
Compute Unified Device Architecture (CUDA) is
a general-purpose computing on graphics processing
units (GPGPU) framework and a hardware architec-
ture by Nvidia. The goal of GPGPU paradigm is
to use a graphics processing unit (GPU) as a code
execution device. This approach allows us to exploit
massively parallel nature of the GPU. The design
of GPU completely differs from CPU. GPU has its
own memory, which is much faster than the main
memory. However, the most important difference is
in a GPU core architecture. CUDA GPU cores are
generally simpler than CPU cores and they typically
run at lower frequencies (around 1 GHz). This simple
architecture allows embedding thousands cores per one
GPU device.

As mentioned above, CUDA is a technology that al-
lows us to benefit from present GPU architecture. For
a detailed description of CUDA, some definitions and
brief introduction to the CUDA GPGPU programming
please refer to [1].

However, this technology is closely tied with program-
ming language called C for CUDA. On the other side,
Java is one of the most widely used programming lan-
guage. In this paper we will present possibilities how
to utilize CUDA enabled devices using either standard
Java tools or alternatively some third party tools and li-
braries.

BACKGROUND
In this section we will introduce tools that enable Java
to cooperate with CUDA. First tool, which is a part
of standard Java distribution, is Java Native Interface
(JNI). This tool is “a standard programming interface
for writing Java native methods and embedding the Java
virtual machine into native applications”[2]. This es-
sentially means that we can implement any Java class
or method using C(++) languages. With some tweaks
that will follow, C for CUDA may be used as well.

OpenMP/Java [3] and java-gpu [4] are both tools that
are able to generate a code, that utilizes CUDA device,
directly from a Java (byte)code.

JCuda [5], jCUDA [6] and Jacuzzi [7] are standalone
Java libraries. These libraries were designed so that
they allow indirect communication of Java code and
a GPU. By indirect, we mean that these are only re-
sponsible for ‘routines’ (device initialization, memory
transfers between CPU and GPU) but the actual com-
putation is defined elsewhere. In fact, these libraries
call a CUDA kernel which has to be written in C for
CUDA.

AVAILABLE METHODS
In this section we provide relatively detailed descrip-
tion of different approaches that use CUDA device from
Java language.

As written above, the JNI is probably the most straight-
forward approach: this technology allows one to
implement any Java class method using the C or C++
languages. As a first step we need to define a method
to implement in C for CUDA using native keyword,
for example like this:

p u b l i c n a t i v e void useCUDA () ;

After that, we are able to generate C header files using
javah command. The last step is an implementation
of functions declared by those header files. These may
be implemented using C for CUDA language and thus
can utilize a CUDA device. An example of vector ad-
dition follows:

JNIEXPORT void JNICALL add

(JNIEnv ∗ env , j o b j e c t a ,
j o b j e c t b , j o b j e c t c)

{
j c l a s s c l s ;
long l p t r ; / / f o r p o i n t e r e x t r a c t i o n
i n t s i z e ; / / s i z e o f v e c t o r
f l o a t ∗ arrayA , ∗ ar rayB , ∗ a r r ay C ;
cs = env−>G e t O b j e c t C l a s s (a) ;
/ / g e t r e q u i r e d a t t r i b u t e s
g e t _ l o n g _ f i e l d (env , cs , a , " p t r " ,

&l p t r) ;
a r rayA = (f l o a t ∗) l p t r ;
/ / t h e same f o r a r r a y s b and c
g e t _ i n t _ f i e l d (env , c l s , a , " s i z e " ,

&s i z e) ;
v e c t o r _ a d d <<< g r i d , b lock >>>(

arrayA , ar rayB , ar rayC , s i z e) ;
}

When compiling to a shared library, one must make
sure that generated code is position independent. This
is achieved using following command:

$ nvcc −s h a r e d −Xcompi le r −fPIC −o
l i b o u t . so < s r c . f i l e s >

In order to start our program, we must declare where
Java should look for our shared native library. This is
done using -Djava.library.path argument. De-
tailed description of these steps can be found in [8],
page 42.
Second category of available methods uses completely
different approach. Unlike the JNI, which is very low-
level, this category does not require any knowledge
about CUDA and CUDA programming at all. This
means that methods from this category take a regular
Java code as an input and transform it to a form that
uses a CUDA device.
However, these tools do not work fully automatically.
The piece of code which should be parallelized must be
marked in some way. There are currently two imple-
mentations: OpenMP/Java and java-gpu.
Automatic code generation brings some limitations as
well. For example, it is not possible to control utiliza-
tion of fast shared memory. It is also not possible to
exploit features such as warp voting etc.
OpenMP/Java is an implementation of Open Multi-
Processing (OpenMP) for Java language, which
supports not only CPU as a backend, but a CUDA
capable GPU as well. This tool is designed as an
extension to the standard Java compiler so it can
recognize OpenMP commands. These commands are
prefixed with symbol // (one line comment). That
has one positive side effect – the code can be compiled
using standard compiler and functionality of that
code remains the same. For example, a simple vector
addition can be parallelized using single for loop:

/ / # omp p a r a l l e l f o r
s h a r e d (a , b , r e s u l t)

f o r (i n t i = 0 ; i < s i z e ; i ++)
{

r e s u l t [i] = a [i] + b [i] ;
}

, where a, b and result are float arrays.
An OpenMP/Java source can be compile using jampc
command. It can be run using jcuda_java com-
mand. Please refer to project’s homepage [3] for
details.
On the downside, OpenMP/Java contains some bugs.
This is mainly due its experimental focus. For instance,
we had troubles with compilation and we had to manu-
ally alter its source code. Nevertheless, our patch was
quite simple – it just converts int to size_t in one of
its functions. Secondly, OpenMP/Java compiler gives
us incorrect warnings. Details including installation in-
struction are available in [8] as well as in [3].
Similar solution called java-gpu uses Java annotations
to identify a code to be parallelized. However, we were
not able to make it work. Specifically, no CUDA code
was generated by this tool and CPU was used as the
backend instead.
Last tools to mention are Java libraries which wrap the
Driver API provided by CUDA. This approach is a kind
of opposite to the previous one – it requires a very de-
tailed knowledge of CUDA programming. Basically,
a source code utilizing a CUDA device is consisted of
two parts. First part is written in C for CUDA language
and contains only a code which is executed by the GPU
device. Second part is written in Java language and it is
responsible for a ‘glue’ code. This for instance include
device initialization, memory (de)allocation, memory
transfers and naturally CUDA kernel invocations.
Generally, these steps must be done: a) Select a de-
vice to work with and initialize it. b) Create a new
CUDA context. c) Load a CUDA module – file with the
CUDA code to execute(it can be compiled or in PTX
format). d) Obtain a CUDA function – the CUDA ker-
nel function, which will be used. e) Copy data from the
main memory to the GPU memory. f) Prepare CUDA
kernel’s arguments. g) Invoke the CUDA kernel and
wait for a result. h) Copy the result back from the
GPU memory to the main memory. More details can
be found again in [8].
There is currently one up-to-date implementation of the
Driver API wrapper: JCuda. Other libraries exist, such
as jCUDA and Jacuzzi. However, these are quite out-
dated and do not support all features provided by newer
devices (e.g. surface memory).

EXPERIMENTS
In order to compare performance of different ap-
proaches, we designed performance tests. In our

1.094

3.849

23.286

54.671

2.313

8.217

49.106

116.509

2.259

287.546

2546.36
4380.99JCuda

OpenMP�Java

Pure Java

Matrix size

1024 4096 8192 11 000

10

100

1000

Time @sD

Figure 1: Matrix multiplication performance of differ-
ent approaches. Note that JNI is covered by JCuda. JNI
and JCuda were much faster than OpenMP/Java.

experiments we used PC with following configuration:
Intel Core i5 760 (2.8GHz, 4 cores, 8MB cache), 4GB
RAM, Nvidia GeForce GTX 480, Ubuntu 11.04 and
CUDA tookit 4.0.
We chose algorithms from linear algebra and image
processing for our performance tests. Specifically, we
used matrix multiplication and Gamma correction.
We used various input data sizes. For linear algebra,
we used matrices with width and height from 1024
to 11000, while all matrices were square shaped.
Similarly for images which were also square shaped
and had sizes from 500 to 10000 pixels. All test were
run three times and average value of those was taken
into account.
All algorithms which were implemented using JNI
and JCuda were optimized in terms of reducing
global memory access using shared memory as
described in [1]. This was not possible to achieve
using OpenMP/Java. The plot also contains pure Java
algorithm (single thread) which does not use a GPU at
all.
Figure 1 shows performance of different methods for
matrix multiplication algorithm. Results of other algo-
rithms from linear algebra can be found in [8].
The plot does not show performance of JNI. The reason
is that it would be covered by JCuda otherwise. Those
are the two fastest while OpenMP/Java was the slowest.
Still, OpenMP/Java was much faster than pure Java.
Results for Gamma correction are in Figure 2. We ex-
cluded OpenMP/Java from this test because it lacked
of support for pow (power) function which was nec-
essary. This plot shows that JCuda was the fastest for
Gamma correction. However, all CUDA based algo-
rithm were slower than pure Java. This is not a fault,
because programs that use CUDA also contain a device
initialization, memory transfers etc. which are included
in a result time. Figure 3 shows an impact of memory
transfers on overall speed-up in Gamma correction al-
gorithm.

1.054

1.121

1.413

2.41

1.053

1.128

1.557

3.058

0.107
0.162 0.453

1.4

JCuda

JNI

Pure Java

Image size

500 2000 5000 10 000

0.5

1.0

1.5

2.0

2.5

3.0

Time @sD

Figure 2: Gamma correction performance of different
approaches. OpenMP/Java was not included because it
does not support pow function.

 0

 5

 10

 15

 20

 25

lenna256

lenna
car

train
nam

es

sattelite

S
p

e
e

d
-u

p

Legend: CUDA

CUDA (no transfer)
Java

Figure 3: The impact of memory transfers on over-
all speed-up in Gamma correction algorithm. Memory
transfers consumes most of the time.

Aside the results of our performance tests, a devel-
opment time and effort were noted during our exper-
iments. Our experience and some empirical properties
(such as operating system support) resulted in an overall
subjective method evaluation. To be more specific, ev-
ery attribute was scored with numbers 1,2 and 3 where
1 is the best. All attributes have the same weight. The
best approach was determined as the method with min-
imal sum of scored attributes. See Table 1. Details and
table with operating system support can be found in [8].

Attribute jC
U

D
A

JC
ud

a

O
pn

eM
P/

Ja
va

JN
I

dev. time 2 2 1 3
friendliness 2 1 3 1

docs 2 1 3 1
status 3 1 3 1

Total points 8 5 10 6
Table 1: Comparison of different approaches. JCuda
and JNI provide the best support to a programmer while
OpenMP/Java the worst.

DISCUSSION
All these approaches can be used to improve perfor-
mance of Java applications. Nevertheless, there were
significant performance differences between different
methods. To be more specific, tools that transform Java
code automatically such as OpenMP/Java could not
utilize advanced CUDA specific features e.g. shared
memory.

On the other hand, methods like JNI and JCuda were
able to utilize all possible features. As mentioned be-
fore, performance was not the only one criterion. Other
criteria included productivity, stability and documenta-
tion. JNI’s productivity was very low – this is mostly
because even simple operation like copying value of
class variable has to be done in about three steps. We
have spent at least twice as much programming time
when using JNI than with any other method. Since JNI
was a part of a standard Java distribution, it does not in-
clude any obvious bugs and was documented very well.

OpenMP/Java was a complete opposite of JNI. It had
very high productivity (e.g. for cycle could be par-
allelized using one line of code) but it contained some
bugs such as incorrect warnings. There was no docu-
mentation available. Another evidence of impractical
usability is a lack of support for basic mathematic func-
tions such as pow. Note that only Linux was supported.

JCuda provides a level of productivity which was
generally greater than JNI’s but exceptions exist. For
example, a device initialization has to be handled
manually and also CUDA kernel invocation was more
complicated (kernel arguments have to be copied
manually). This was caused by a requirement to use
the Driver API. JCuda is being developed very actively
and it is documented quite well.

CONCLUSION
This paper listed and briefly described solutions for
cooperation between CUDA GPGPU technology and
Java programming language. These solutions were di-
vided into three categories. First category was JNI.
Second category was based on an automatic CUDA
code generation from a Java (byte)code. Last solu-
tion utilized a Java library which wrapped the standard
CUDA Driver API.

JNI and Java libraries were not easy to develop with but
they had very good performance. On the other hand,
second category was fairly easy to develop with but fi-
nal performance was not as good as the former. Second
category was not production ready yet.

We recommend to use JCuda library. The reason for
it is that less development time is required when using
JCuda in comparison to JNI. This library is documented
quite well, supports various types of operating systems,
is production ready and overall performance is identical

with JNI. There is currently no other solution which can
be both time efficient (in terms of development time)
and powerful.
In the matter of future work one can explore another
solutions. The first on is Rootbeer. Rootbeer provides
additional abstraction so that it can run complex Java
objects on a GPU [9].
There are also tools that target more general OpenCL
architecture [10] instead of CUDA. There are at least
two projects worth trying: JavaCL [11] and Aparapi
[12]. Another alternative is ScalaCL that is designed for
another JVM language called Scala. This project tries
to develop domain specific language that translates to
OpenCL code during compilation time [13].

REFERENCES
[1] CUDA Programming Guide, Nvidia. [On-

line]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[2] Java Native Interface. Oracle corp. [Online].
Available: http://docs.oracle.com/javase/7/docs/
technotes/guides/jni/index.html

[3] M. Philippsen, R. Veldema, M. Klemm,
G. Dotzler, and T. Blaß, OpenMP/-
Java, Friedrich-Alexander University Erlangen-
Nuremberg. [Online]. Available: https:
//www2.informatik.uni-erlangen.de/EN/research/
JavaOpenMP/index.html

[4] P. Calvert, java-gpu, Computer Laboratory,
University of Cambridge. [Online]. Available:
http://code.google.com/p/java-gpu/

[5] jcuda.org, JCuda library. [Online]. Available:
http://jcuda.org/

[6] jCUDA, Hoopoe. [Online]. Available: http:
//www.hoopoe-cloud.com/Solutions/jCUDA/
Default.aspx

[7] A. Heusel, Jacuzzi. [Online]. Available:
http://sourceforge.net/apps/wordpress/jacuzzi/

[8] J. Strnad, “Java on CUDA architecture,” Banch-
elor’s thesis, Czech Technical University in
Prague, Faculty of Information Technology,
2012. [Online]. Available: https://dip.felk.cvut.
cz/browse/pdfcache/strnaj11_2012bach.pdf

[9] T. Kiefer and A. Miftah. Rootbeer GPU compiler.
[Online]. Available: http://rbcompiler.com

[10] OpenCL, The Khronos Group. [Online]. Avail-
able: http://www.khronos.org/opencl/

[11] JavaCL. JavaCL team. [Online]. Available: http:
//code.google.com/p/javacl

[12] Aparapi. Aparapi team. [Online]. Available:
https://code.google.com/p/aparapi

[13] ScalaCL. ScalaCL team. [Online]. Available:
https://github.com/ochafik/ScalaCL

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html
https://www2.informatik.uni-erlangen.de/EN/research/JavaOpenMP/index.html
https://www2.informatik.uni-erlangen.de/EN/research/JavaOpenMP/index.html
https://www2.informatik.uni-erlangen.de/EN/research/JavaOpenMP/index.html
http://code.google.com/p/java-gpu/
http://jcuda.org/
http://www.hoopoe-cloud.com/Solutions/jCUDA/Default.aspx
http://www.hoopoe-cloud.com/Solutions/jCUDA/Default.aspx
http://www.hoopoe-cloud.com/Solutions/jCUDA/Default.aspx
http://sourceforge.net/apps/wordpress/jacuzzi/
https://dip.felk.cvut.cz/browse/pdfcache/strnaj11_2012bach.pdf
https://dip.felk.cvut.cz/browse/pdfcache/strnaj11_2012bach.pdf
http://rbcompiler.com
http://www.khronos.org/opencl/
http://code.google.com/p/javacl
http://code.google.com/p/javacl
https://code.google.com/p/aparapi
https://github.com/ochafik/ScalaCL

