
Compressed Grids for GPU Ray Tracing of Large Models

Vasco Costa
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
vasco.costa@ist.utl.pt

João M. Pereira
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
jap@inesc-id.pt

Joaquim A. Jorge
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
jaj@inesc-id.pt

ABSTRACT
Ray tracing on GPUs is an area of ongoing research. GPUs are well suited for this parallel rendering algorithm.
GPU computing devices typically have characteristics which make them quite different from CPUs: increased
data parallelism, increased memory bandwidth, smaller caches, lower memory capacity. Presently it is difficult to
visualize large scenes with tens of millions of triangles in these memory constrained platforms. In this paper we
present a compressed grid data structure, capable of state of the art rendering performance, using up to 6× less
memory than conventional grid storage schemes. The compressed grid is built and traversed on the GPU.

Keywords
Ray-tracing, gpu, grid, compression.

1 INTRODUCTION
Display devices have been increasing in resolution at a
more rapid pace than in the past. This means scenes
with low polygon counts are no longer suitable as users
can perceive the large polygons therein thus reducing
their level of immersion. In addition the ray tracing
rendering algorithm has been gathering increased at-
tention. It is possible to ray trace complex scenes at
real-time frame rates on a single GPU of the latest gen-
eration.

The ray tracing algorithm is more amenable for photo-
realism as it is a global illumination algorithm which
can easily display shadows, reflections, or refractions.
It is possible to extend it for diffuse interreflections as
well using path tracing, or photon mapping albeit at
much reduced frame rates. In this paper we focus on
solving the basic ray shooting algorithm which is used
for all these cases.

To provide real-time ray tracing performance an accel-
eration structure must be employed in order to reduce
the number of ray/polygon intersection tests required to
render the scene.

Existing work for GPU ray tracing includes [LGS+09,
PL10] which focuses on bounding volume hierarchy

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(BVH) acceleration structures, [HSHH07] which de-
scribes kd-tree acceleration structures, and [KBS11]
which focuses on grid acceleration structures. Other
interesting developments on CPU ray tracing include:
[Áfr12] which implicitly stores a BVH acceleration
structure with reduced space requirements (still it uses
temporary storage for bounding boxes and other aux-
iliary data), [LD08] which employs row displacement
compression to reduce grid memory storage require-
ments.

Figure 1: The Lucy model (28 Mtri) rendered at
1024×1024 resolution. The grid acceleration structure
is compressed to 210.45 MB. An uncompressed uni-
form grid of the same dimensions uses 1258.48 MB of
memory.



Our work implements row displacement compressed
grids in streaming computing architectures such as
GPUs.

The organization of this paper is as follows: we de-
scribe a novel parallel algorithm for construction of row
displacement compressed grids on the GPU, next we
analyze the algorithm’s performance compared to state
of the art grid implementations.

2 GRIDS
Uniform grids are spatial partitioning structures which
divide space into identical cubically shaped cells also
named voxels in the literature. Typically a grid con-
struction algorithm first computes the scene bounding
box then uses an heuristic to compute the number of
grid split planes along each major axis of the scene
bounding box. These heuristics commonly attempt to
use an amount of space directly proportional to the
number of primitives in the scene. Thus we arrive at
the following heuristic common in grid literature:

Mi = Si
3

√
ρN
V

i ∈ {x,y,z}

Where ρ is the grid density parameter which in our case
is equal to 5. The number of cells M is equal to the grid
resolution Mx×My×Mz. N is the number of objects in
the scene. Si is the scene bounding box size in dimen-
sion i. V is the bounding box volume.

Ray shooting is implemented by traversing the grid
cells intersected by a ray [AW+87] from its point of
entrance to its point of exit.

For typical scenes most uniform grid cells will be
empty. This means some form of sparse matrix
compression scheme is desirable. In our case we im-
plemented the row displacement compression scheme,
represented in Figure 2, described in [LD08].

The process of computing the offsets for each row can
be parallelized in the GPU as can the other steps of uni-
form grid construction. Hence we arrive at Algorithm 1.

3 METHOD
The row displacement compression method stores grid
rows, in an overlapped fashion, inside a 1D array L. A
2D array O stores the offsets to the start of each grid
row inside L. Prior to accessing this hashed grid a 3D

...

...

offsets

Figure 2: Row displacement compression.

Algorithm 1 Parallel compressed grid build.

1: function BUILDCOMPRESSEDGRID(M,ob jects)
2: D← DOMAINBITS(M,ob jects)
3: . population count followed by reduce
4: nonEmpty← NONEMPTYCELLS(D)
5: NO,NbH←My×Mz,2×nonEmpty
6: O, last← FILLOFFSETS(NO,NbH,M,D)
7: NH← last +1
8: H← COMPUTEOFFSETS(NH,M,O,ob jects)
9: . inclusive scan
10: NL← COMPUTEPREFIXSUM(H)
11: L← INSERTINDICES(NL,M,O,H,ob jects)
12: return D,O,H,L
13: end function

bit array D, also known as the domain bits array, is con-
sulted to determine if that particular cell is occupied.

In our implementation the domain bits, which state if
a grid cell is empty or not, are stored as a linear bit
array. Internally the bit array is composed of unsigned
ints with 32 bits each. Domain bit computation, as other
steps in the algorithm, is made in parallel: for all objects
in the scene we determine which cells they overlap, then
insert then into the domain bits with atomic memory op-
erations. The computation of the number of non-empty
cells is done by a population count pass, followed by a
scan pass.

Row displacement compression offsets are computed in
the next step and stored in the O array. This step of the
algorithm is computationally expensive since it com-
putes a mapping of the grid rows into a compressed 1D
array using a find-first-fit scheme. The H array is com-
puted by storing the number of objects which overlap
each cell with atomic memory operations. The prefix
sum is then computed so each cell points to the tail of
its item list. Finally object indices are inserted into the
item list with atomic operations. The atomic locks have
a fine granularity in order not to constrain parallelism.

0% 20% 40% 60% 80% 100%

Lucy

Thai

Buddha

Conference

Fairy Forest

compute domain bits non-empty cells fill offsets

compute offsets compute prefix sum insert indices

Figure 3: Percentage of time spent in each step of GPU
grid construction.

As can be seen in Figure 3 the most time consuming
operation is the FILLOFFSETS step where row offsets
are computed using the first-fit method.



0 500000000 1000000000 1500000000

Lucy

Thai

Buddha

Conference

Fairy Forest

bytes 

scene uncompressed grid compressed grid

(a) Memory used to store the scene and the grid acceleration
structure with and without compression.

0 10 20 30 40 50 60 70

Lucy

Thai

Buddha

Conference

Fairy Forest

fps 

(b) Framerates for selected scenes.

Figure 4: Memory consumption and rendering frame rates for the test scenes.

The singled-threaded CPU implementation of this algo-
rithm has better performance for scenes with small grid
row Mx sizes since these are mostly serial workloads
where it is not possible to extract enough row paral-
lelism for the GPU to prevail. However as can be seen
in Figure 5 the GPU implementation dominates for the
larger scenes with more geometry and correspondingly
larger row sizes.

4 RESULTS
Our test platform is an AMD FX 8350 8-core CPU @
4.0 GHz powered machine with 8 GB of RAM. The
graphics card includes a NVIDIA GeForce GTX 660 Ti
GPU with 2 GB of RAM.

The implementation language is ANSI C++ for the host
code and OpenCL running on the GPU for the compute
kernels. During rendering the local work group size is
set to 16x16 blocks in order to maximize cache locality
and take advantage of pixel parallelism. The applica-
tion runs on the Linux operating system. All images
were rendered at 1024×1024 resolution using one ray
per pixel and diffuse shading.

Ray/triangle intersection is done with the Möller-
Trumbore algorithm [MT97] since it does not require
the usage of any additional memory. Each triangle
uses 12 bytes of memory to store the vertex indices
and each vertex uses 12 bytes of memory. For scenes
with normals each vertex normal also uses 12 bytes of
memory.

The Fairy Forest and Conference scenes are representa-
tive of the scenes you can typically find in a computer
game with irregular polygon density i.e. high polygon
count objects inside a lower polygon count environment
with walls. The Buddha, Thai Statue, and Lucy mod-
els represent scanned scenes with triangles of similar
area. These scanned scenes feature larger total polygon
counts than the first two.

As can be seen in Table 1 our algorithm has good
rendering performance compared to previous work on
GPU single-level grids [KS09] and two-level grids

SCENE GRID 2LVL GRID COMPRESSED GRID

GTX 280 GTX 470 GTX 660 TI

CPU GPU

FAIRY FOREST 24 MS 8 MS 20 MS 65 MS

3.5 FPS 21 FPS 28 FPS

CONFERENCE 27 MS 17 MS 48 MS 78 MS

7.0 FPS 26 FPS 61 FPS

THAI STATUE 417 MS 257 MS 537 MS 375 MS

- - 21 FPS

Table 1: Performance comparison of our Compressed
Grid implementation, with the Grid from [KS09], and
the 2lvl Grid from [KBS11]. The table lists grid build
times and rendering frame rates. The Thai Statue scene
frame rate performance was not specified in those ar-
ticles. For the Compressed Grid the CPU and GPU
implementations of FILLOFFSETS were tested on grid
construction.

[KBS11]. This is probably due to our algorithm having
improved cache coherence. Our algorithm requires less
memory bandwidth per cell traversal. The GPU we are
using, the GTX 660 Ti, has similar bandwidth com-
pared to the earlier GTX 480. However the GTX 660
Ti has much improved peak floating point performance
making it hard to judge the improvement of the work
based on the strengths of a software implementation
alone. Two-level grids typically have better render
time performance than single-level grids. However
our single-level grid implementation on a GTX 660 Ti
has better rendering performance than the previously

1.559 

483 

54 

12 

11 

675 

321 

90 

42 

56 

0 500 1000 1500 2000

Lucy

Thai

Buddha

Conference

Fairy Forest

ms 

CPU GPU

Figure 5: Time required to fill the offset table using the
GPU vs the CPU.



FAIRY FOREST CONFERENCE BUDDHA THAI STATUE LUCY

SCENE

TRIANGLES 173.98 K 282.76 K 1.09 M 10.00 M 28.06 M
MEMORY 4.21 MB 5.15 MB 18.67 MB 171.66 MB 481.60 MB

UNCOMPRESSED GRID

MEMORY 11.22 MB 15.44 MB 53.50 MB 455.90 MB 1.22 GB

COMPRESSED GRID

MEMORY 5.41 MB 5.44 MB 13.84 MB 83.85 MB 210.45 MB
BUILD TIME 64.77 MS 77.83 MS 98.68 MS 375.08 MS 870.15 MS
FRAME RATE 28.30 FPS 60.72 FPS 60.40 FPS 21.22 FPS 13.52 FPS

Table 2: Scene statistics and grid performance results versus an uncompressed grid data structure [KS09].

mentioned two-level grid implementation on a GTX
480.

The advantages of the compressed grid are more de-
batable on grid construction. While our implementa-
tion features better performance than previous work on
larger scenes with tens of millions of triangles, like the
Thai Statue, it has poorer performance on the lower
polygon scenes. This is due to the time spent perform-
ing grid compression namely the FILLOFFSETS phase,
as seen in Figure 3, where rows offsets are computed
using a first-fit method. For such low polygon count
scenes a single-threaded CPU implementation has bet-
ter performance than our GPU kernel as can be seen in
Figure 5. While build times are not an issue for static
scenes this remains an open problem in this GPU grid
implementation.

Our most important objective is the reduction of mem-
ory consumption in order to enable the visualization
of larger scenes. As can be seen in Table 2 the im-
plemented single-level compressed grids feature much
lower memory consumption than uncompressed single-
level grids. Thus compressed grids enable the visual-
ization of more complex scenes. In our case we can
visualize the Lucy statue using a sixth of the memory
required for a grid without compression as can be seen
in Figure 4a.

5 CONCLUSIONS AND FUTURE
WORK

This work enables the visualization of large scenes,
with tens of millions of triangles, on the GPU. The ac-
celeration structure construction and rendering is per-
formed in parallel in the GPU. The algorithm provides
real-time frame rates for scenes with millions of trian-
gles.

For dynamic scenes with destructible geometry we re-
quire more rapid grid construction times. This may be
achieved with alternative hashing or sparse matrix stor-
age algorithms. This work also does not have optimiza-

tions for highly coherent rays such as the use of ray
bundles.

6 ACKNOWLEDGEMENTS
This work was supported by national funds through
FCT - Fundação para a Ciência e Tecnologia, under
project PEst-OE/EEI/LA0021/2013.
We would like to thank the Stanford 3D Scanning
Repository (Buddha, Thai Statue, Lucy), the Utah 3D
Animation Repository (Fairy Forest), Anat Grynberg
and Greg Ward (Conference) for the test scenes.

REFERENCES
[Áfr12] A.T. Áfra. Incoherent ray tracing without acceleration

structures. In Eurographics - Short Papers, pages 97–
100. Eurographics Association, 2012.

[AW+87] J. Amanatides, A. Woo, et al. A Fast Voxel Traversal Al-
gorithm for Ray Tracing. In Proceedings of Eurograph-
ics, volume 87, pages 3–10. Eurographics Association,
1987.

[HSHH07] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan.
Interactive k-D Tree GPU Raytracing. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and
Games, pages 167–174. ACM, 2007.

[KBS11] J. Kalojanov, M. Billeter, and P. Slusallek. Two-Level
Grids for Ray Tracing on GPUs. In Computer Graphics
Forum, pages 307–314. Wiley Online Library, 2011.

[KS09] J. Kalojanov and P. Slusallek. A Parallel Algorithm for
Construction of Uniform Grids. In Proceedings of the
Conference on High Performance Graphics, pages 23–
28. ACM, 2009.

[LD08] A. Lagae and P. Dutré. Compact, Fast and Robust Grids
for Ray Tracing. In Computer Graphics Forum, pages
1235–1244. Wiley Online Library, 2008.

[LGS+09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast BVH construction on GPUs. In Com-
puter Graphics Forum, pages 375–384. Wiley Online Li-
brary, 2009.

[MT97] T. Möller and B. Trumbore. Fast, Minimum Storage
Ray-Triangle Intersection. Journal of Graphics Tools,
2(1):21–28, 1997.

[PL10] J. Pantaleoni and D. Luebke. HLBVH: Hierarchical
LBVH Construction for Real-Time Ray Tracing of Dy-
namic Geometry. In Proceedings of the Conference on
High Performance Graphics, pages 87–95. Eurographics
Association, 2010.


