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ABSTRACT
Analyzing the structure of 2D shapes has been studied intensively in recent years. It is a key aspect in various
computer vision and computer graphics applications. In this paper, a new algorithm is proposed which efficiently
computes a skeleton and a corresponding decomposition of an arbitrary shape. Given the Voronoi diagram, the
pruning step has linear complexity. The skeleton is a sparse 1D representation which captures the topology as
well as the general structure of a shape. Considering the Voronoi diagram of the boundary vertices, the skeleton is
extracted as a subset of the Voronoi edges using a simple classification scheme. A parameter allows to control the
skeleton’s sensitivity to perturbations in the boundary curve. The dual Delaunay triangulation yields a topological
decomposition of the shape that is consistent with the skeleton. Each part can be classified as belonging to one
of three base types which have some interesting properties. The method has been successfully implemented and
evaluated. The presented concepts can also be applied to manifold surfaces which is particularly useful for digital
shape reconstruction as it is shown at the end of this paper.
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1 INTRODUCTION
A skeleton is a 1D representation of a shape that can
be intuitively compared to a stick figure. The skeleton
captures the topological structure of a shape. It is used
as a compact descriptor for various applications such
as shape classification or geometric modeling. Accord-
ing to Andrés et al., related approaches can be asso-
ciated to one of three categories: driven by shape thin-
ning, distance transform-based and methods that use the
Voronoi diagram of the boundary points [SM12]. Thin-
ning algorithms iteratively shrink the shape until it is
degenerated to a line. The method is commonly applied
in digital image analyses, where the discrete nature of
the data allows a precise definition of connectivity and
thinness. Recently, the idea has been transferred to 3D
voxel data [HL10]. Thinning algorithms often have a
lack in performance or produce disconnected skeletons.
They typically work on discrete pixel-based data and it
would be difficult to adapt them to continuous domains.
Aicholzer et al. introduce the straight skeleton which is
constructed by contracting the boundary towards the in-
terior of the shape [Aic96][CV12]. Distance transform-
based algorithms compute a distance map for the inte-
rior region of the shape. The map associates a scalar
value to each point, where the scalar value is the dis-
tance to the closest boundary point [RS04]. These
methods allow a geometrically accurate construction of
the medial axis. In a pruning step, unwanted branches

are deleted while the topology of the remaining skele-
ton needs to be preserved [XB07]. Amenta et al. uses
the medial axis to reconstruct a surface from a 3D point-
cloud [NA01]. Voronoi-based methods evolve the fact,
that the Voronoi diagram of the boundary points con-
sists of edges that are bisectors of opposing boundary
points. In the approach of Ogniewicz et al., the rele-
vance of each edge is computed based on the maximally
filling disk and the chord length of the corresponding
boundary segment. Compared to our approach, the al-
gorithm invokes computationally expensive processing
steps such as the estimation of the maximally filling
disk. In a similar approach, Brandt and Algazi intro-
duce a method to estimate the minimum sampling den-
sity for the boundary points [Bra92]. Beeson et al. use
the minimum spanning tree for the pruning step [PB05].
Algorithms for shape decomposition are often inspired
by psychology and human perception [JL06b]. The
work proposed by Lien et al. efficiently decomposes ar-
bitrary shapes in approximately convex shapes [JL06a].
Rosin proposes a partitioning scheme based on a simple
convexity measure which is calculated as the ratio of the
area of the shape itself and the area of its convex hull
[Ros00]. The decomposition scheme presented by Liu
et al. is based on convexity and Morse theory [HL10].
Lien et al. presents an approach, where a skeleton and a
decomposition are computed alternatively [JL06b]. Our
approach yields some significant advantages. Given an



arbitrary shape and its Voronoi-diagram, the pruning is
computed in linear time with respect to the number of
boundary points. The presented scheme elegantly con-
nects skeleton and decomposition based on the duality
between Voronoi diagram and Delaunay triangulation.
Based on the work of Aigner et al., the shape is de-
composed into a set of topologically meaningful parts
which is useful for digital shape reconstruction, regis-
tration or classification [WA12]. Compared to Aigner et
al., skeletonization and decomposition is computed si-
multaneously and the estimation of a maximally filling
disk is not required.

2 SKELETON EXTRACTION

As stated, the skeleton is a suitable 1D-representation
of a shape. Clearly, there is a relation to the Voronoi
diagram, where each Voronoi edge is an equidistant bi-
sector of two points. In the following it is shown, how
the skeleton can be constructed based on the Voronoi
diagram of the boundary points. Consider an arbi-

(a) (b)

Figure 1: Shape boundary (a) and Voronoi diagram (b).

trary shape S ∈ R2, which is given by a set of closed,
continuous and non-intersecting boundary curves ∂S =
{C0, . . . ,Cn}. For the sake of simplicity, a curve is as-
sumed to be given in a parametrized form: Ci(ti), ti ∈
[0 . . .1]. Each curve of ∂S is approximated by a set of
points V = {V0, . . . ,Vn}. All points in Va ∈ V lie on the
respective curve: {∀vi ∈ Va : vi = Ca(ti)}, where ti is
the associated parameter. A given point v ∈R2 is either
classified as lying inside or outside the shape, L (v) ∈
{lI , lO}. Consider an open curve segment which is de-
fined to be the shortest curve between two vertices lying
on the same curve: Ca[ti, tq],{vi,vq} ∈ Va. The situa-
tion is visualized in (a) of Figure 1. The arc length of
this curve segment can be computed by: L(Ca[ti, tq]) =∫ tq

ti ‖Ċ(t)‖dt. According to Ogniewicz et al., curve po-
tentials are an elegant way to calculate the arc length
of an arbitrary curve segment [RO95]. Given a curve
Ca, an arbitrary reference point v0 is defined. The curve
potential of a point vi with the corresponding parameter
ti is given by: φa(vi) = L(Ca[v0,vi]). φa(vi) needs to be
calculated only once for each boundary point. A weight

function ω(·, ·) that corresponds to the arc length of a
curve segment is introduced as:

ω(vi,vq) =

{
‖φa(vi)−φa(vq)‖ if vi,vq ∈Va

∞ otherwise. (1)

It can be efficiently calculated based on a difference
of potentials. Note that the function ω(·, ·) is defined
to be infinity if the vertices do not belong to the same
curve. The boundary vertices V define the sites of a
Voronoi diagram D. The Voronoi diagram consists of
vertices, edges, sites and regions: D = {Ṽ , Ẽ, S̃, R̃}.
All elements of the Voronoi diagram are indicated by
a tilde. The sites are given by the boundary vertices.
Let s̃i = vi and s̃ j = v j be two sites, then all points
which are closer to s̃i than to s̃ j can be defined as:
r̃i j = {p ∈ R2 : δ (p, s̃i) < δ (p, s̃ j)}. Where δ (., .) is
the distance function. The corresponding Voronoi re-
gion r̃i is then the set of all points which are closer to s̃i
than to any other site: r̃i =

⋂
i6= j

r̃i j . The Voronoi regions

meet at Voronoi edges which can be seen as equidistant
bisectors of their adjacent sites. A plot of the problem
can be seen in (b) of Figure 1. The skeleton F̃ is defined
as a subset of the Voronoi diagram. F̃ is a graph struc-
ture that consists of vertices and edges, F̃ = {Ṽ , Ẽ}.
A Voronoi edge ẽo is associated with its correspond-
ing source and target vertex {ṽs(ẽo), ṽt(ẽo)} and its right
and left site {s̃r(ẽo), s̃l(ẽo)}. ẽo is classified as belong-
ing to the skeleton ẽo ∈ F̃ , if the following conditions
are fulfilled:

1. The Voronoi edge must have a source and a target
vertex: (ṽs(ẽo) 6= /0)∩ (ṽt(ẽo) 6= /0).

2. The source and the target vertex must lie inside the
shape: (L (ṽs(ẽo)) = lI)∩ (L (ṽt(ẽo)) = lI).

3. Consider the boundary points that correspond to the
sites: s̃r(ẽo) = vr, s̃l(ẽo) = vl . The weight of the
points has to be larger than a defined threshold:
ω(vr,vl)> ωmin.

The edge classification scheme is visualized in (a) of
Figure 2. The first and second condition imply that the
resulting skeleton lies inside the corresponding shape.
The classification can be performed for each edge
which implies linear complexity O(n) with respect to
the number of Voronoi edges. The computation of the
Voronoi diagram has a complexity of O(n logn).

3 SEGMENT GRAPH
Given a skeleton F̃ = {Ṽ , Ẽ}, each vertex is associ-
ated with a degree d(ṽ) that gives the number of ad-
jacent skeleton edges. According to the properties of
the Voronoi diagram, the degree of a vertex ṽ ∈ F̃ is ei-
ther one, two or three, d(ṽ) ∈ {1,2,3}. Edges which



are adjacent to at least one vertex with a degree not
equal to two are defined as bridges: Ẽb: {∀ẽo ∈ Ẽb :
d(ṽs(ẽo)) 6= 2∪ d(ṽt(ẽo)) 6= 2}. Ẽb implies a decom-
position of the skeleton, such that each part only con-
tains vertices of the same degree. A is introduced as the
Delaunay triangulation which is dual to the underlying
Voronoi diagram of the boundary points: D � A. All
elements of the Delaunay triangulation are indicated by
a hat. A bridge ẽb ∈ F̃ is now associated with its dual
Delaunay edge: ẽb � êb. êb is referred as separator
edge. êb connects two boundary vertices and splits the
shape into two parts. The set of all bridges and their
corresponding separator edges decomposes the skele-
ton and the shape into a set of three different types of
parts: S = {P0

j,t,l , . . . ,Pm
j,t,l}:

1. Junction. A junction P j is given by a single vertex
ṽ j,d(ṽ j) = 3 and its dual Delaunay triangle: ṽ j � t̂ j.
t̂ j coincides with the three adjacent separator edges.

2. Terminal. A vertex with the degree of one ṽt ,d(ṽt)=
1 yields a terminal part Pt . Consider the dual De-
launay triangle: ṽt � t̂t . The boundary of Pt is now
given by the adjacent separator edge êt and the curve
segment of the corresponding boundary curve that
passes through the vertices of t̂t .

3. Linear. A linear part Pl represents a branch that is
defined by a linear sequence of edges, Ẽl : {∀ẽo ∈
Ẽl : d(ṽs(ẽo)) = d(ṽt(ẽo)) = 2}. The adjacent sepa-
rator edges define a left and a right segment on the
corresponding boundary curves.

Now, G is introduced as the segment graph, where the
set of all parts represents the nodes of G. The edges
of G are given by the bridges and their respective sep-
arator edges. The resulting decomposition into junc-
tions (yellow), terminal (green) and linear parts (pur-
ple) as well as the corresponding segment graph is vi-
sualized in (b) of Figure 2. The dashed lines represent
the bridges (black) and the separator edges (white).

(a) (b)

Figure 2: Topology of a Voronoi edge (a) and semantic
decomposition (b).

4 EVALUATION AND APPLICATION
In this section, the presented algorithm is applied to var-
ious shapes which are taken from the MPEG-7 library
[TZ01]. The decomposition as well as the skeleton is

(a) (b) (c)(1)

(2)

(3)

(4)

Figure 3: Comparison of the presented method (c) with
the approach of Beeson et al. (a) and Lien et al. (b).

compared with competitive algorithms [JL06a][PB05].
The results are shown in Figure 3. The skeleton com-
puted based on the approach of Beeson et al. can be
found in (a), the convex shape decomposition corre-
sponds to (b) and the combined outcome of our method
is to be found in (c). The skeleton in (c) clearly reflects
the most important features of the boundary curve while
unimportant details are ignored. Each junction in the
skeleton yields a triangle (yellow) which allows to de-
compose the shape into compact and meaningful parts
along its topology. The approach based on approxi-
mate convexity has several disadvantages. The overall
structure of the decomposition is very sensitive to small
perturbations in the boundary curve as it can be seen
in (1,b). While the shape of each spike of the star is
almost similar, the decomposition varies significantly.
Moreover, the decomposition is often characterized by
a bad scaling (3,b). Some small regions such as the
neck or the upper part of the hind legs are heavily over-
segmented. The approach presented by Beeson et al.
is designed for grid-based data structures only. The re-
sulting skeleton appears to be quite sensitive to small
deformations of the shape as it can be seen in (1,a). The
inner part of the skeleton looks not very symmetrical
while the shape itself has a symmetric structure. The
skeleton in (c) looks much smoother especially at ver-
tices where multiple branches intersect. The presented
approach has been developed in the context of digital
shape reconstruction, where CAD (Computer aided de-
sign) models are reconstructed from triangulated sur-
faces. Man-made objects can be seen as a composi-
tion of smooth surface patches which meet at curved
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Figure 4: The decomposition is applied in digital shape
reconstruction.

regions. The approach presented by Wekel et al. is used
to segment and classify the surface into smooth and crit-
ical regions [TW13]. These regions represent a skele-
ton that captures the topology of a triangulated surface.
In order to describe the model by typical CAD entities
such as vertices, curves and parametric surfaces, it is
important to decompose the polyhedral surface into a
set of reasonable components. The reconstructed CAD
models can be seen in (b) and (d) of Figure 4. Smooth
surface patches are described by trimmed b-spline sur-
faces (grey). Using the presented algorithm, the blend-
ing regions are decomposed into junctions (yellow) and
linear segments (purple). The presented method can be
directly transferred to the domain of 2D manifolds in
R3. As described in Section 3, each resulting part is
characterized by a unique and compact structure which
enables a straight forward representation in common
CAD systems. The images (1), (2) and (3) in Figure
4 demonstrate, how the Voronoi-based approach allows
to uniquely decompose even complex junctions into a
set of simple, triangular surfaces and linear parts.
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