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ABSTRACT 
Optical parameter assignment via Transfer Functions (TF) is the sole interactive part in medical visualization via 

volume rendering. Being an interactive element of the rendering pipeline, TF specification has very important 

effects on the quality of volume-rendered medical images. However, TF specification should be supported by 

informative search spaces, interactive data exploration tools and intuitive user interfaces. Due to the trade-off 

between user control and TF domain complexity, integrating different features into the TF without losing user 

interaction is a challenging task since both are needed to fulfill the expectations of a physician. By addressing 

this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method extends 

the concept of recently introduced Volume Histogram Stack (VHS), which is a new domain constructed by 

aligning the histograms of the image slices of a CT and/or MR series. In this study, the VHS concept is extended 

by allowing the user to define an alignment axis using orthogonal multi planar reconstructions via simple, yet 

effective, interaction mechanisms. The construction of VHS according to the slices generated specifically for 

user defined search space allows the more informative integration of local intensity distribution, and better 

spatial positioning of the organ of interest into the TF. For testing, the proposed strategy is applied to kidney 

visualization from CT and MRI series. The performance of extended VHS domain is evaluated via intensity 

based TF design. Volumetric histogram based manual TF specifications are quantitatively compared to VHS 

based manual tweaking of original slices, and to extended-VHS based automatic TF design. The results show 

both quantitatively and qualitatively enhanced rendering quality for kidney visualization. 
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INTRODUCTION 
Visualization aims to produce clear and informative 

pictures of the important structures in a data set. 

Depending on the application, this requires 

interactive determination of visual parameters such 

as opacity and color. In volume rendering technique 

[Dre98], combinations of these visual parameters can 

be determined during the rendering pipeline. During 

the generation of volume rendered images, Transfer 

Function (TF) specification is the step where these 

adjustments can be done. Therefore, it is crucial and 

important to design accurate TFs to produce 

meaningful and intelligible 3-D images. However, 

TF design is a very difficult task because of the 

availability of various possibilities in extensive 

search spaces of TFs [Pfi00]. Since this flexibility of 

search space cannot be kept in strict bounds, 

specification of an appropriate TF is a challenging 

problem, where effective initial TF designs should be 

generated prior to the optimization part, which is 

controlled by the user. Moreover, advanced user 

interaction interfaces [Rez06] and data exploration 

tools [Sel07] should be provided for fulfilling user 

expectations. 

To overcome the difficulty of initial TF generation 

generally a number of predefined TF presets are used 

as starting point (so called initial TF design). The 

main idea behind this approach is that certain types 

of volume data are standardized in the range of data 

values and special sub-ranges are assigned to the 

same type of structure (thus, predefined TFs are 

adjusted due to these ranges). However, volumetric 

data usually have varying characteristics even in 

different samples of the same application. For 

instance, in medical imaging, depending on different 

modality settings, injection of a contrast media or 

environmental circumstances, the sub-ranges of the 

tissues may vary significantly. For these reasons, a 

limited number of TF presets cannot be enough to 

cover all possible cases and to provide useful initial 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission 

and/or a fee. 



TFs. In order to create a useful initial TF that 

provides a good basis prior to optimization, an 

automatic sub-range detection method that finds the 

intensity range for each structure of interest is 

needed. Moreover, it is necessary to integrate the 

developed method into the TF design procedure 

without losing user control and interaction over the 

search space. 

TF specification methods can roughly be divided into 

two groups as data-centric [Kin98] and image-centric 

[Shi98]. In both of them, finding the contours that are 

hidden behind another is an important aspect of 

useful TF generation [Baj97]. To achieve this goal, 

effective use of spatial information is necessary 

[Roe05]. In [Roe05], spatial TFs are introduced as 

1D or multidimensional TFs, where spatial 

information has been used to derive the color, 

whereas statistical (and/or spatial information) is 

used to set up the opacity. Local properties are used 

to increase the performance of topological 

approaches. In [Sat00], 3D filters, based on gradient 

vector and Hessian matrix, are used to enhance 

specific 3D local intensity structures. In [Lun06a], 

histogram contents for local neighborhoods are used 

to detect and separate tissues with similar intensities. 

In [Lun06b], an enhancement that amplifies ranges 

corresponding to spatially coherent materials by 

using alpha-histograms, which are individually 

retrieved by dividing the data set into local regions, is 

implemented. These studies show the importance of 

local information in solving major problems in TF 

generation such as the classification of overlapping 

tissues. Recent studies also focus on size [Wes10], 

shape, appearance [Saa10] and visibility [Car11] of 

anatomical structures for constructing effective TFs. 

By addressing this problem, we introduce a semi-

automatic method for initial generation of TFs. The 

proposed method extends the concept of Volume 

Histogram Stack (VHS). VHS is recently introduced 

in [Sel09] as a new domain which is created by 

aligning the histograms of the image slices of a 

CT/MR series. Histograms were generated from 

orthogonal directions of slice planes, namely, axial, 

coronal and sagittal. Thus, VHS can represent the 

intensity values of the tissues as well as their spatial 

information and local distributions (via lobes in 

VHS) which are not available in conventional 

volume histograms. The tissues which are at different 

slices but with similar gray level distributions can 

clearly be distinguished by using this spatial 

information. Then, a tissue (a structure of interest) 

can effectively be visualized by determining its 

corresponding lobe(s) in VHS, which represents that 

structure of interest, and by assigning a color-opacity 

value to that lobe. 

In this study, the VHS concept is extended by 

allowing user to define an alignment axis using 

orthogonal multi planar reconstructions via simple, 

yet effective, interaction mechanisms. The 

construction of VHS according to aligning the slices 

generated specifically for user defined search space 

allows the integration of local intensity distribution, 

and spatial positioning of the organ of interest into 

the TF. For testing, the proposed strategy is applied 

to kidney visualization from CT and MRI series. The 

performance of extended VHS domain is evaluated 

via intensity based TF design. Volumetric histogram 

based manual TF specifications are quantitatively 

compared to VHS based manual tweaking of original 

slices, and extended VHS based automatic TF design. 

The results show both quantitatively and qualitatively 

enhanced rendering quality for kidney visualization. 

With the help of this expansion, the VHS becomes an 

effective new domain as a search space for TF 

specification on any kind of 3D data. 

DATA SETS 
The first application is an abdominal CT series taken 

at the venous phase for the evaluation of a liver 

transplantation donor [Sel07] (Figure 1). Images 

were acquired after contrast agent injection at portal 

phase using a Philips Secura CT with two detectors 

equipped with the spiral CTA option and located in 

Dokuz Eylül University Radiology Department. The 

second data set is acquired using a 1,5T MRI system 

located in the same department. Both scanners 

produce 12 bit DICOM images with a resolution of 

512 × 512 for CT and 256 x 256 for MR. The data 

sets were collected from the Picture Archiving and 

Communication System of the same department. 

 

(a) 

   

               (b)             

Figure 1. a) An original CT image slice (direction 

of acquisition), (b) Left kidneys at different slices 

(left to right order is from beginning to the end of 

the series). Note that, kidney start to occur 

smaller, becomes larger and gets smaller again.   



METHODOLOGY 

In CT and/or MR data sets, the kidneys may have 

different gray value distributions according to 

environmental circumstances, injection of a contrast 

media, and certain modality parameters. Moreover, 

their location, orientation and size may differ due to 

patient anatomy (Figure 1). Although, there is a 

calibrated intensity scale in CT (i.e. Hounsfield Units 

– HU), the above mentioned diversity still exists. 

Moreover, volume rendering is not commonly used 

for MR data sets since there is no calibrated intensity 

scale. In conventional approach, both for CT and MR 

data sets, the volume histogram is the main guide to 

find the tissues of interest. 

On the other hand, these kidneys do not always 

correspond to visible peaks as reported in [Lun06a].  

The reason behind this is the existence of dominant 

peaks which occur due to unified intensity range of 

overlapping tissues such as liver and spleen. 

Especially in CT, these abdominal organs occur in a 

very narrow range of HU values. This overlap 

hardens the usage of TFs in the visualization of 

kidneys. 

 

(a) 

 

(b) 

Figure 2. Left kidney analysis from CT (a) VHS 

for cropped axial slices (top view), red rectangle 

shows the intensity range of left kidney (b) VHS 

for axial slices (rear view). 

Through a series of abdominal image slices, kidneys 

begin to occur as small objects at first, expand in the 

successive slices, and finally disappear by becoming 

smaller objects as slices proceed (Figure 1.b). This 

causes a lobe-like histogram distribution for kidneys. 

The peaks of the lobes are at the slices in which 

kidneys appear biggest in size (Figure 2). This 

additional information is available only if the z-

dimension (orthogonal to the slices) is used as 

exploited in the VHS concept. 

This provides the advantage of discriminating 

kidneys from other organs that are spatially separated 

in the direction of acquisition even if the intensity 

range of these organs/tissues completely overlap with 

kidneys. Traditional volume histograms cannot take 

this advantage as they represent cumulative gray-

level distribution over all data set. On the other hand, 

in practice, kidneys do not get completely separate 

lobes. Instead, the lobes have intersecting regions if 

kidneys and similar intensity organs are partially 

spatially non-separated. 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. (a) Reconstruction strategy inside the 

volume, (b) circular area selection from axial, (c) 

vertical height selection from sagittal (left kidney) 



To take advantage of spatial knowledge more, VHS 

approach has been extended to produce alignments 

through x and y-dimensions. For instance, in the 

above mentioned case, if the major slicing axis is z-

dimension, VHS which can be generated using the 

histograms calculated for axial images (x-y 

dimensions) and aligned through z-dimension to 

construct VHS. Moreover, with the help of spatial 

extension, VHS can also be generated by using the 

histograms of coronal images (y-z dimensions) and 

aligning them through x-dimension or the histograms 

of sagittal images (x-z dimensions) aligning them 

through y-dimension. This enables organ based 

selection for the VHS which can be generated based 

on the organ to be visualized and independent of 

slicing axis without an additional scanning 

procedure. With this opportunity, VHS can 

distinguish structures which are separated in any of x, 

y, and z-dimensions. 

In this study, this approach is further extended for 

kidney visualization by allowing the user to select a 

cylindrical tube using a Multi Planar Reconstruction 

(MPR) interface (Figure 3.a). The interaction 

mechanism enables user to select a circular Region of 

Interest (ROI) first (Figure 3.b), in any one of three 

MPR reconstructions (i.e. axial, sagittal, and 

coronal). This step determines the center and radius 

of the 3-D cylinder. Then, using an MPR image, 

which is orthogonal to the MPR image used in the 

first step, the height of the cylinder is determined 

(Figure 3.c). Finally, based on a defined thickness, 

new image slices, all of which have same center 

position and size of (2 x radius) x height, are 

generated (Figure 4.a). The VHS generated using 

these user defined slices by aligning their histograms 

exploits more a priori information as providing 

kidney specific inter-slice spatial domain knowledge 

(Figure 4.b-c). Thus, the information on local 

histogram distributions of organ of interest is more 

evident (Figure 5-6). The tissues which are at 

different slices but with similar gray-level 

distributions can clearly be distinguished by using 

this spatial information. 

The VHS data exploits more a priori information as 

saving inter-slice spatial domain knowledge since 

each slice histogram is represented separately. It 

demonstrates changes in the gray values through the 

series of slices, thus includes information on local 

histogram distributions of tissues. For example, when 

a tissue appears larger in an image, the number of 

pixels representing this tissue also increases and vice 

versa. The VHS demonstrates these changes much 

better than the volume histogram since the data 

distribution is shown in a continuous way through the 

series. Thus, it can represent the intensity values of 

the tissues as well as their spatial information and 

local distributions which are not available in 

conventional volume histograms.  

        

(a) 

 

(b) 

 

(c) 

Figure 4. (a) Left kidneys at reconstructed slices 

(b) VHS for reconstructed slices (top view), red 

rectangle shows the intensity range of left kidney 

(c) VHS for reconstructed slices (rear view). 

     

           (a)  (b)                      (c) 

Figure 5. Axial CT Left Kidney (LK), (a) result of 

thresholding 185<T<250, (b) result of post-

processing, (c) difference with reference. 

 



     

           (a)  (b)                      (c) 

Figure 6. Reconstructed CT Left Kidney (LK), (a) 

result of thresholding 200<T<250, (b) result of 

post-processing, (c) difference with reference. 

RESULTS 
We have tested our algorithm on both MR and CT 

data sets. Four data sets (i.e. 2 MR and 2 CT) consist 

of axial DICOM slices from abdomen, thus include 

both left and right kidneys. First, we obtained the 

VHS of both axial and reconstructed images of left 

and right kidneys. Then, for both VHS, a threshold 

range is determined manually. According to the 

indicated threshold range, an intensity based TF is 

designed and pixels are classified. A simple post-

processing part has been used which uses “connected 

component” analysis. With the help of post- 

processing, small misclassifications (Figure 10. b, f, 

j, n, s, w) are eliminated by selecting largest 

connected component (Figure 10. c, g, k, o, t, y).  

Accuracy of classifications is compared with 

reference data sets, which were manually segmented. 

The same procedure is also applied to axial data sets 

and results are compared. Considering each pixel is 

either assigned to kidney (i.e. Positive - 1) or not 

(Negative - 0), the comparisons are made by counting 

True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) instances. 

The error measures calculated between classification 

results and reference data using above variables are:  

1) False Positive Ratio (FPR =100*FP / (TN+TP)),  

2) False Negative Ratio (FNR =100*FN / (TP+FN)),  

3) Sensitivity, which gives the percentage of positive 

labeled instances that were predicted as positive, and 

calculated as (SE =100*TP / (TP+FN)), 

4) Specificity, which gives the percentage of negative 

labeled instances that were predicted as negative and 

calculated as (SP =100*TN / (TN+FP)), 

5) Positive Predictive Value (i.e. Precision), which 

gives the percentage of positive predictions that are 

correct and calculated as (PPV =100*TP / (TP+FP)), 

6) Negative Predictive Value, which gives the 

percentage of negative predictions that are correct 

and calculated as (NPV =100*TN / (TN+FN)). 

The values of these measures are given in Tables 1-3. 

 

 Organ Data Type FPR FNR SE SP PPV NPV 

C
T

 D
a

ta
 s

et
 

LK 
Axial 0.17 14.65 85.35 99.72 99.58 89.82 

Reconst. 0.23 15.86 84.14 99.70 99.13 93.80 

RK 
Axial 0.52 13.27 86.73 99.27 97.96 95.05 

Reconst. 0.49 12.56 87.44 99.28 98.50 93.76 

M
R

 D
a

ta
 s

et
 

LK 
Axial 10.29 28.03 71.97 91.21 85.15 88.29 

Reconst. 2.51 18.98 81.02 96.36 93.69 89.44 

RK 
Axial 0.08 20.46 79.54 99.89 99.71 91.52 

Reconst. 0.53 9.50 90.50 99.06 98.81 92.40 

Table 1. Kidneys Results for Axial and Reconstructed CT and MR Data set without post-processing 

 

 Organ Data Type FPR FNR SE SP PPV NPV 

C
T

 D
a

ta
 s

et
 

LK 
Axial 6.63 25.97 74.03 90.47 85.70 81.80 

Reconst. 1.57 15.76 84.24 97.92 91.73 93.75 

RK 
Axial 4.60 13.08 86.92 94.56 85.54 94.89 

Reconst. 5.13 11.64 88.36 93.23 88.01 93.74 

M
R

 D
a

ta
 s

et
 

LK 
Axial 13.15 27.81 72.19 87.32 79.83 87.97 

Reconst. 14.63 18.96 81.04 81.31 73.89 88.01 

RK 
Axial 1.55 19.63 80.37 97.85 94.79 91.63 

Reconst. 0.74 9.38 90.62 98.71 98.32 92.46 

Table 2. Kidneys Results for Axial and Reconstructed CT and MR Data set with post-processing 



 

In Table 1-2, the results of first CT - MR data set 

pair are given for axial and reconstructed images. 

These data sets differ from the second CT - MR 

data set pair in terms of image contrast. In other 

words, histogram of first CT-MR data set pair is 

narrower than the histogram of second CT-MR data 

set pair. 

In Table 1, application of proposed algorithm 

without post-processing is given, while Table 2 

covers results with post-processing.  

The results show comparable performance for left 

kidney (LK) of axial and reconstructed VHS for CT 

data. On the other hand, results for MR data show 

improved performance especially when no post-

processing is done. This is an important result since 

it shows better data classification on reconstructed 

TF domain than axial TF domain. 

Considering right kidney (RK) (i.e. 3
rd

 and 4
th

 

rows), the results show that FPR values are 

comparable but FNR measures are significantly 

better using reconstructed VHS for CT data. The 

results for MR data set (i.e. 7
th

 and 8
th

 rows) are. 

Similar to the results in CT, error measures show 

significantly improved FP and FN rates using 

reconstructed VHS domain.  

The selection of the orientation and size of radial 

reconstruction for VHS is shown in Figure 8. In 

Figure 9, VHS for both axial and reconstructed data 

and manually determined threshold ranges are 

shown. Figure 10 shows slice-by-slice results for a 

set of selected images. 

Table 3 shows the results of error measures for 

second CT - MR data set pair. For CT data, FNR 

rate is significantly reduced for bot LK and RK 

using reconstructed VHS domain. Moreover, for 

MR data set, both FPR and FNR are lower when 

reconstructed VHS is used. Other measures also 

reflect the superior performance of proposed 

domain compared to the original domain. Figure 11 

shows slice-by-slice results for a set of selected 

images for these data sets. Two exemplary 3D 

reconstructions are given in Figure 7 (note that no-

post processing filters are used to increase 

rendering quality to sow FP and FN voxels clearly). 

CONCLUSIONS 
This study presents a new domain for TF 

specification by extending volume histogram 

stacks, which are constructed by aligning histogram 

of each slice in a medical image series. The 

extension is done by using multi planar 

reconstructions and a user-friendly interface to 

determine a radial reconstruction of the original 

data. Although four data sets are used, the intensity 

TF based classification using reconstructed VHS is 

shown to have higher performance than using VHS 

for axial images. Although, these results should be 

confirmed by increasing number of applications, 

some early conclusions can be made. First, the 

shape of kidneys show less variability in size at 

reconstructed images compared to axial slices, 

which is an important advantage for shape based 

approaches. Second, in this study, reconstructed 

VHS are created using interpolated images (i.e. 

Figure 4.a, 10.e, m, v, 11.f, p, aa). However, using 

data without interpolation might increase the 

performance. 

An automatic method finding appropriate intensity 

range of an organ of interest especially using local 

VHS information is a challenging future study. 

Also, a user interface, which can use different 

geometries for VHS generation, will be developed 

for allowing the use of VHS for other organs. 

          

        (a)           (b) 

Figure 7. 3D reconstruction of axial image of (a) MR right kidney, (b) CT left kidney. 



  

       

   (a)    (b)    (c) 

      

  (d)    (e)    (f) 

Figure 8. Circular area and vertical height selections (a, b) CT RK, (c, d) MR RK, (e, f) MR LK 

  

                             (a)    (b)    (c) 

 

                             (d)    (e)    (f) 

   

 (g)    (h)    (i) 

Figure 9. Right kidney analysis from CT (a) VHS for axial slices (top view), VHS for reconstructed 

slices,  (b) top view, (c) side view. Left kidney analysis from MR (d) VHS for axial slices (top view), 

VHS for reconstructed slices,  (e) top view, (f) side view. Right kidney analysis from MR (g) VHS for 

axial slices (top view), VHS for reconstructed slices,  (h) top view, (i) side view. (PS: red rectangles show 

the intensity ranges of kidneys). 



 

                  

    (a)             (b)   (c)      (d) 

                  

   (e)         (f)                   (g)             (h) 

                  

(i)                          (j)                    (k)             (l) 

                  

    (m)        (n)                    (o)               (p) 

                   

    (r)           (s)                   (t)                  (u) 

                    

       (v)             (w)         (y)                    (z) 

Figure 10. CT Right Kidney (RK) (a) cropped axial image, (b) result of thresholding 185<T<250, (c) 

result of post-processing, (d) difference with reference, (e) reconstructed image, (f) result of 

thresholding 185<T<250, (g) result of post-processing, (h) difference with reference. MR Left Kidney 

(LK) (i) cropped axial image, (j) result of thresholding 140<T<230, (k) result of post-processing, (l) 

difference with reference, (m) reconstructed image, (n) result of thresholding 100<T<150, (o) result of 

post-processing, (p) difference with reference, MR Right Kidney (RK) (r) cropped axial image, (s) 

result of thresholding 150<T<230, (t) result of post-processing, (u) difference with reference, (v) 

reconstructed image, (w) result of thresholding 100<T<180, (y) result of post-processing, (z) difference 

with reference. 



 

      

              (a)                           (b)              (c)         (d)                             (e) 

     

              (f)                            (g)              (h)         (i)                            (j) 

     

              (k)                           (l)              (m)         (n)                           (o)  

     

   (p)                           (r)              (s)         (t)                             (u)  

     

              (v)                           (w)              (x)         (y)                             (z)  

     

              (aa)                         (bb)              (cc)         (dd)                         (ee)  

Figure 11. For all rows of the figure, from left to right,  the images show: cropped axial or 

reconstructed image, result of post-processing, difference of result with reference, another example of 

difference image from the same data set, transparent illustration of FP and FN pixels on the image. The 

rows of the figure correspond to (a)-(e) axial CT Right Kidney, (f)-(j) reconstructed CT Right Kidney, 

(k)-(0) axial MR Left Kidney, (p)-(u) reconstructed MR Left Kidney, (v)-(z) axial MR Right 

Kidney,(aa)-(ee) reconstructed MR Right Kidney (FP pixels are shown in yellow while FN pixels are 

shown in red).  

 



Table 3. Kidneys Results for Axial and Reconstructed CT and MR Data set with post-processing 
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Reconst. 0.75 4.4 95.6 99.1 96.72 98.73 

RK 
Axial 0.86 8.13 91.87 98.9 96.7 97.83 

Reconst. 2.89 5.62 94.38 97.06 88.54 97.31 

M
R

  

D
a

ta
 s

et
 

LK 
Axial 1.05 22.32 77.68 98.99 93.06 96.31 

Reconst. 0.18 22.69 77.31 99.77 99.43 89.77 

RK 
Axial 0.78 10.78 89.22 99.02 96.83 97.51 

Reconst. 0.58 10.48 89.52 99.17 98.38 94.81 


