
Rendering of Bézier Surfaces on Handheld Devices

Raquel Concheiro Margarita Amor Emilio J. Padrón
Universidade da Coruña
Facultade de Informática

Campus Elviña, S/N
15071, A Coruña, Spain

rconcheiro | margamor | emilioj @udc.es

Marisa Gil Xavier Martorell
Universitat Politècnica de Catalunya

Campus Nord, Mòdul D6
Jordi Girona, 1–3

08034 BARCELONA, Spain
marisa | xavim @ac.upc.edu

ABSTRACT
Bézier surfaces have been widely employed in the designing of complex scenes with high-quality results. Nev-
ertheless, parametric surfaces cannot be directly rendered in the current GPUs of modern handheld devices. This
work proposes a non-adaptive method for tessellating Bézier surfaces on a GPU without primitive generator, such
as the GPUs implemented in handled devices. Our technique is based on the utilization of a parametric map of
virtual vertices, and its operation can be adapted to the hardware resources available in the GPU by tuning a series
of parameters. Additionally, an analysis of the most relevant hardware constraints in the graphics hardware of the
current handheld devices has been carried out. As those constraints prevent interactive high-quality results from
being achieved, even with our proposal, we present an algorithmic approach focused on the real-time rendering on
future handheld devices.

Keywords
Bézier surfaces; GPUs; Handheld Devices; Tuning rendering

1 INTRODUCTION

The market of handheld devices, such as smartphones,
consoles or tablets, is nowadays one of the fastest grow-
ing technology markets. Graphics processing has be-
come a significant factor on these devices, as con-
sumers’ expectations have increased, demanding high
quality visual contents and complex render capabili-
ties. Consequently, a new GPU generation has been
specifically designed to fit in the constraints of hand-
held devices: size and power-consumption. Hence,
GPUs of these devices implement only a subset of the
features available in commodity desktop GPUs. Fur-
thermore, a stripped-down version of the well-known
graphics API OpenGL has been developed for these de-
vices: OpenGL ES [Khron10].

Although offline rendering is an important area in com-
puter graphics, especially as far as photorealism is con-
cern, real-time rendering is probably the traditional
mainstay of computer graphics. Since an efficiency-
quality trade-off is needed in this kind of rendering to
maintain interactive rendering rates, the design of an

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

efficient graphics pipeline arises as a key performance
factor. This is an issue especially in handheld devices.

Moreover, these rendering pipelines and their support-
ing graphics hardware are usually designed to work
with triangles and vertices. However, these geometric
primitives are not always the best option from a mod-
eling point of view. Thus, the use of parametric sur-
faces to design complex and detailed models has widely
spread in fields such as CAD/CAM, virtual reality, an-
imation and visualization. Specifically, the Bézier rep-
resentation has been widely employed in the design-
ing of high quality complex models [Roger01, Piegl97].
The excellent mathematical and algorithmic properties,
combined with successful industrial applications, have
contributed to the popularity of this representation.

Bézier surfaces have two significant features from the
point of view of a rendering pipeline: compactness,
which means low storage and transmission require-
ments of the resulting models; and scalability, so a sur-
face can be converted into a triangle mesh with few
triangles or with many triangles according to the re-
quired level of detail (LOD). There are two main ap-
proaches for rendering parametric surfaces: tessella-
tion on the CPU or on the GPU. In the first approach,
the Bézier surfaces are tessellated into triangles on the
CPU, so the resulting triangle mesh is sent down to the
GPU to be displayed. This strategy presents some dis-
advantages that could affect system performance: the
amount of information to be transferred from CPU to
GPU and the increment in the storage requirements in

the GPU associated with the triangle mesh. These is-
sues are fixed by performing the tessellation directly on
the GPU [Guthe05, Dyken09, Conch10, Conch11].

In the case of handheld devices, there are still few pro-
posals dealing with tessellation on the GPU. First works
were oriented toward graphics hardware with low pro-
grammability, so they were implemented in additional
and specific hardware units [Chung09, Chung08]. In
[Kim12] a hardware unit for an efficient tessellation in
handheld devices was also proposed, but this proposal
describes a tessellation procedures for subdivision sur-
faces.

In this work we present a novel approach to the tes-
sellation of Bézier surfaces on the GPU of handheld
devices. Our proposal tessellates parametric surfaces
into high-quality triangle meshes that accurately rep-
resent complex surfaces and do not contain artifacts
such as T-junctions or cracks. It is based on the utiliza-
tion of a parametric maps of virtual vertices [Boube05,
Conch10, Guthe05], what makes it possible to work on
GPUs with no primitive generator. More specifically,
the guidelines proposed in [Conch10] have had to be
adapted to fit the constraints of the graphics hardware
in mobile devices, leading us to a completely differ-
ent implementation, as described in Section 4. Our de-
sign allows the efficient exploitation of the information
stored in the GPU and the minimization of the CPU-
GPU communications. Three main parameters are ex-
posed to allow a fine tuning of the method to the hard-
ware resources available: maximum resolution level,
number of surfaces to be rendered per draw call and
number of draw calls per frame.

In order to test our approach, we have made an OpenGL
ES implementation of the method for Android sys-
tems [Goo] and we have designed a full set of exper-
iments to analyze the reasons why Bézier surfaces can
not be real-time rendered with good quality by current
handheld GPUs. The tests were focused on locating
the main performance bottlenecks and identifying pos-
sible enhancements and tuning opportunities. Thus, the
results obtained could be a useful tool to introduce ar-
chitecture improvements. Let us emphasize that nowa-
days, complex triangle meshes can not be rendered in
real-time in these devices either [Sarmi12].

This rest of the paper is organized as follows: Section 2
briefly goes over the basics of Bézier surfaces, Section 3
presents our approach to tessellate Bézier surfaces on
handheld devices, Section 4 describes the implemen-
tation on Android smartphones with OpenGL ES and
Section 5 presents the experimental results obtained in
our tests. Finally, in Section 6 the main conclusions are
highlighted.

2 BÉZIER SURFACES
In this section a brief introduction to the Bézier para-
metric representation is presented. For reasons of clar-
ity, Bézier curves are first introduced and, after this, the
description is extended to Bézier surfaces. An in-depth
description can be found in [Piegl97, Roger01].

A Bézier curve is specified by giving a set of coordi-
nate positions, called control points, which indicate the
general shape of the curve. These control points are
then fitted with piecewise continuous parametric poly-
nomial functions. Mathematically, a parametric n de-
gree Bézier curve is defined by:

P(t) =
n

∑
i=0

BiJn,i(t), 0≤ t ≤ 1 (1)

where Bi are the control points and Jn,i are the classical
n-degree Bernstein polynomials defined by:

Jn,i(t) =
(

n
i

)
(1− t)(n−i)t i (2)

where n is the degree of the Bézier basis functions.
These functions decide the extent to which a partic-
ular control point controls the surface at a particular
parametric value t. Only n+ 1 control points and the
n-degree Bernstein polynomials are required for the
computation of each point of the curve. Note that the
first and last control points are coincident with the end
points of the curve, that is, P(0) = B0 and P(1) = Bn.

The equation for a Bézier curve can be also expressed
in matrix form:

P(t) = [T][N][G] (3)

where [T] = [tn tn−1 . . . t1 t0], the geometry of the
curve is represented as [G]T = [B0 B1 . . .Bn], and the
[N] matrix is defined by:
(n

0
)(n

n
)
(−1)n (n

1
)(n−1

n−1
)
(−1)n−1 . . .

(n
n
)(n−n

n−n
)
(−1)0

.(n
0
)(n

1
)
(−1)1 (n

1
)(n−1

0
)
(−1)0 . . . 0(n

0
)(n

0
)
(−1)0 0 . . . 0

Thus, the matrix form for a cubic Bézier (n = 3) is:

P(t) = [T][N][G] =

= [t3 t2 t1 1]

−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

B0
B1
B2
B3

 (4)

Likewise, the shape of a (n,m)-degree Bézier surface is
controlled by a set of control points through the equa-
tion:

Q(u,v) =
n

∑
i=0

m

∑
j=0

Bi, jJn,i(u)Km, j(v), 0≤ u,v≤ 1 (5)

where Jn,i(u) and Km, j(v) are the Bézier basis functions
in the u and v parametric directions and Bi, j are the ver-
tices of a polygonal control net. Again the number of
control points in the u and v directions are n+ 1 and
m+ 1 respectively. In matrix form, a Bézier surface is
given by:

Q(u,v) = [U][N][B][M]T [V] (6)

For the specific case of a bicubic Bézier surface, the
matrix form is given by:

Q(u,v) = [u3 u2 u 1]

−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

B0,0 B0,1 B0,2 B0,3
B1,0 B1,1 B1,2 B1,3
B2,0 B2,1 B2,2 B2,3
B3,0 B3,1 B3,2 B3,3

−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

v3

v2

v
1

(7)

3 BÉZIER TESSELLATION BASED ON
PARAMETRIC MAPS OF VIRTUAL
VERTICES

The tessellation of a parametric surface involves the
computation of a set of surface points that correspond
to the vertices of the triangular mesh, and the identifica-
tion of the connectivity among them. Since the GPU of
current handheld devices do not generate any new ge-
ometry, the design of our tessellation proposal is based
on virtual vertices [Boube05, Conch10, Guthe05]. This
technique uses a parametric map as vertex shader input,
with as many positions in the parametric domain as out-
put vertices are needed for the desired resolution of the
triangle mesh. Then, by accessing the control points on
the Bézier surface to be tessellated, these virtual ver-
tices are evaluated on the vertex shader, generating the
resulting triangle mesh. Hence, the resolution of the tri-
angle mesh is chosen by the parametric map being used.
Since this approach was initially designed for commod-
ity GPUs, we propose a tuning technique for the effec-
tive utilization of the scarce resources available in the
GPUs of handheld devices.

Our approach subdivides the parametric domain into
uniform squares, where the granularity is selected in
function of the desired resolution. More specifically,
it tessellates the surface in the parametric space (u,v)
in 2l × 2l squares of size 1

2l × 1
2l , for a resolution level

l that is previously selected by the application taking
into account different factors, such as computational
power, screen space error or model complexity. There-
fore, the Bézier surface is evaluated for each one of the
2l+1×2l+1 to obtain the corresponding Euclidean space
points (see Equation 5). The resulting vertices are con-
veniently arranged to output a triangle strip.

Thus, the grid of parametric values Pl for a resolution
level l would be:

Pl =

(u1,v1) (u2,v1) · · · (u2l+1 ,v1)
(u1,v2) (u2,v2) · · · (u2l+1 ,v2)

...
...

. . .
...

(u1,v2l+1) (u2,v2l+1) · · · (u2l+1 ,v2l+1)

 (8)

where

ui,vi =
i−1

2l+1−1
, i ∈ {1, · · · ,2l+1}

The base case, l = 1, directly projects the control points
into the surface to obtain the vertices of the triangle
strip.

Before starting, a set of L grids of parametric maps is
precomputed on the CPU, where L is the highest reso-
lution level needed: {P1,P2, · · · ,PL}. These grids are
stored in the GPU to be selected and employed as ver-
tex shader input for the different surfaces of the model.
The parametric grids are stored in a convenient pattern
that implicitly contains connectivity information, pre-
venting the need for any additional indices.

Obviously, the other essential data that need to be ac-
cessed by the vertex shader during surface evaluation
are the control points. Since memory is a scarce re-
source in this kind of GPU (the next section explains
how and where the Bézier surfaces are stored in the
GPU), the surface’s data is transferred to the GPU in
chunks of Nd Bézier surfaces (of the total NS surfaces
to be rendered for each frame). Therefore, each Draw
Primitive call processes a chunk of Nd surfaces, result-
ing in a total of NDP drawing call for each frame:

NDP =
NS

Nd

with 1≤ Nd ≤ NS.

Thus, if Nd surfaces are processed in each draw call, a
total of Nsamples = 2l+1× 2l+1×Nd samples could be
concurrently evaluated (assuming a fixed resolution l
for all the surfaces in the chunk). This means an input of
Nsamples virtual vertices is needed in the vertex shader,
which is provided by Nd copies of the Pl parametric
map as vertex shader input (stored in the vertex buffer).
Regarding the GPU memory needed for the storage of
the Nd Bézier surfaces, the required amount of memory
is

M = M[Bs]×Nd (9)

where M[Bs] is the storage needed for the control points
of each surface and Nd � NS in current handheld de-
vices. Since in most of these devices GPU computation
and CPU-GPU transfers do not overlap, each draw call
implies a synchronization point, as new M data is sent
down to the GPU. The worst case would be a sequential

Sampling Grids

23 x 23

samples

Control points Tessellated and
evaluated meshP2

Texture Memory Input Primitives Rasterizer Input

Figure 1: Example of parametric maps for l = 2

process of as many draw call as surfaces to render (NS),
with only one surface processed by draw call.

Figure 1 depicts an example of our approach for a reso-
lution level of 2 (l = 2) and a couple of Bézier surfaces
to be processed concurrently (Nd = 2). The parametric
map for l = 2 is replicated and the resulting samples are
the input primitives for the vertex shader (middle box
in the figure). The control points of the two surfaces
are transferred to the GPU (left box, texture memory is
used in this example) and a draw call causes the eval-
uation of the samples that results in the meshes of the
right box.

In summary, GPU performance depends on the right
balance between: the number of simultaneous samples
Nsamples that may be concurrently processed, which is a
function of Nd and L; the amount of memory needed to
storage the Nd Bézier surfaces of a chunk, M; and the
number of synchronizations between CPU-GPU, NDP.
Therefore, an optimal balance can be expressed by three
factors, {L,Nd ,NDP}. Even though two of these three
factors are mutually dependent, the analysis is more
clear considering the all three.

The number of samples to be processed in parallel may
be restricted by the low computational power of the
shaders in this kind of GPUs, the size of the vertex
buffer or the storage capacity (this is dealt with in the
next section). Regarding the influence of each draw call
on the performance, it is important to bear in mind that
they introduce a certain amount of processing overhead.
For each draw call in a OpenGL ES compliant GPU,
the graphics driver also collects all current OpenGL ES
states, textures and vertex attribute data. The driver pro-
cesses all this information to generate appropriate com-
mands for the graphics hardware to perform the spec-
ified draw operation. This process can take a signifi-
cant amount of time, and it is even more significant in
the case of embedded systems. Finally, to evaluate the
number of surfaces that can be processed per draw call,
our proposal requires that the control points [BS] of Nd
surfaces be stored in the GPU. Nevertheless, the scarce
memory of current handheld devices makes it impossi-
ble to store large amount of surfaces.

4 IMPLEMENTATION DETAILS
In this section, we summarize the details of our imple-
mentation. The kernel implemented processes bicubic
Bézier surfaces and exploits the capabilities of OpenGL
ES 2.0. The structure of our algorithm is shown in Fig-
ure 2. In the preprocessing stage the grids of virtual ver-
tices Pl , 1 ≤ l ≤ L are transferred from CPU to GPU.
During the synthesis process the level of resolution per
surface is selected and the control points of Nd surfaces
are sent down from CPU to GPU.
As mentioned in the previous section, Nsamples samples
or virtual vertices are sent down to GPU and stored
in the vertex buffer to compose the input primitives
for each vertex shader execution. The control points
of each surface [Bs] are stored in a 4×4 float3 arrays
[Bs

x,B
s
y,B

s
z].

All draw calls use the same parametric maps, while
the resolution level is unchanged, reducing CPU-GPU
transfers (i.e. synchronization points). Then, these vir-
tual vertices are evaluated in the vertex shader of the
GPU for all the Nd surfaces of a chunk.
Instead of applying the de Casteljau algo-
rithm [Shirl03], in our kernel a direct evaluation
strategy is used to compute the tessellation, as it results
in a more efficient GPU implementation, avoiding
recursion. Figure 3 shows the simple vertex shader
pseudocode used for the bicubic surfaces evaluation.
The input parameters of the vertex shader (line 1) are
the grid parametric values Pl , which are employed
in the evaluation of the Nd surfaces of a chunk. The
(u,v) parametric values are stored in Pl coordinates x
and y whereas the z coordinate stores a surface index
{0, · · · ,Nd−1}. Thus, each surface within a chunk can
be directly indexed (line 8). To evaluate Equation 6
(line 12) [U] and [V] are calculated (lines 9 and 10),
the control points of the surface are read from memory
(line 11), and the basis functions coefficients (lines 3
to 6) are employed. As a result, the vertices of the final
tessellated mesh are obtained.
As will be shown in the results section, the simplic-
ity of this strategy and the efficient management of the
data storage are key points, together with the CPU-GPU
transfers, for the real time rendering of high quality
models.
According to the vertex shader structure of OpenGL
ES, this work proposes two different approaches to
store Bézier’s data in the GPU. The first option, Uni-
form method, is based on storing the control points of
the surfaces in uniform variables, whereas the second
one, Texture method, stores them in the texture mem-
ory. Both alternatives are described below.

4.1 Uniform method
Uniform variables memory is one type of variable mod-
ifiers in the OpenGL ES Shading Language (it has

Sampling
grids

Bézier
patches

evaluation

VertexShader

Rasterizer

A

frame

Draw
call

CPU

Tessellated and
evaluated mesh

Control
Points

GPU

Figure 2: Structure of the method

1 VS_OUTPUT DefaultVS(VS_INPUT Pl)
2 {
3 float4x4 [N]= { -1, 3, -3, 1,
4 3, -6, 3, 0,
5 -3, 3, 0, 0,
6 3, 0, 0, 0, }
7 u = Pl .x; v = Pl .y;
8 s = Pl .z×d p×Nd ;
9 float1x4 [U]=(u3, u2, u, 1);
10 float1x4 [V]=(v3, v2, v, 1);
11 float4x4 {[Bs

x],[Bs
y],[Bs

z]} = read from memory (s);
12 float3 vertex = mul([U], [N],[Bs], [N], [V]);
13 return vertex;
14 }

Figure 3: Vertex shader pseudocode

evolved in modern desktop GPUs into what is now
known as constant memory). These uniform variables
are useful for storing all kinds of constant data that
shaders can need. Basically, any parameter provided
to a shader that is constant across either all vertices
or fragments, but that is known before executing the
shader should be passed in as a uniform variable. This
is the case of the control points of the Bézier surfaces
to be tessellated.

From a performance point of view, and according to
hardware manufacturers [Mali09, NVIDI11], any ac-
cess to uniform variable memory is simple and fast and
it has a low impact on execution speed. Moreover, this
access overhead is similar to an arithmetic operation
such as addition or subtraction, and considerably faster
than other operation, such as division or square root.

Regarding the capacity of this constant storage, and
according to the standard, any implementation of
OpenGL ES 2.0 must provide at least uniform memory
in the vertex shader, Muv, to store 128 4-float vectors
and uniform memory in the fragment shader, Mu f , to

store 16 4-float vectors. Hence, the maximum number
of surfaces per chunk would be

Nd =
Muv

M[BS]

(10)

In the case of bicubic Bézier surfaces, 16 vectors of
points are needed to store the control points of each
surface, so Nd = 128

16 = 8 is the maximum number of
surfaces that can be evaluated in the same draw call, as-
suming the minimum of uniform variables defined by
OpenGL ES 2.0. There are commercial devices that
provides a higher number of vertex uniform vectors; for
instance Mali 400 provides 256 vertex uniform vectors,
Nd = 256

16 = 16.

Clearly, the main drawback of this approach is the re-
duced number of surfaces that can be stored for each
draw call (a low Nd), which means the bottleneck lies
in the great number of draw calls needed (a high NDP).
This is especially a problem in devices that do not over-
lap GPU computation and transference.

4.2 Texture method
An alternative to the uniform variables is to store the
control points in texture memory, MT . As texture mem-
ory can store a higher number of surfaces than uniform
memory, this alternative prevents an important number
of draw calls per frame, NDP, one of the main draw-
backs of using uniform variables.

Nd =
MT

M[BS]

(11)

where MT is considerably larger than Muv and subse-
quently more primitives can be stored in texture mem-
ory than in the uniform variables memory simultane-
ously. Specifically, for one of our test devices, Mali
400, MT = 16MB, that is four times larger than Muv.

Although Bézier control points can be stored in the tex-
ture memory, this storage space has not been designed
for store floats. In OpenGL ES 2.0 texture memory for-
mats have been implemented to store color information

Attribute 4
Attribute 5
Attribute 6
Attribute 7

Uniform
Texture

Varying 6
Varying 7

Vertex shader

gl_Position
gl_PointSize

Attribute 3
Attribute 2
Attribute 1
Attribute 0 Varying 0

Varying 1
Varying 2
Varying 3
Varying 4
Varying 5

Figure 4: OpenGL ES 2.0 vertex shader

as a 4-byte vector. There are different formats in tex-
ture storage, but typically each color is 32 bit data and
they are split up into 4 groups of 8 bits: rgba [Foley90]
red, green and blue colors and the alpha channel. The
texture method defines a codification process to store
and recover float values from texture memory. This en-
coding process to pack a float into a rgba texture is a
simple process based on multiplications and divisions
by the largest number that can appear.

On the other hand, the texture method solves the main
disadvantages of the uniform approach for handheld de-
vices, however it has yet to be implemented on Android
platforms. As it is shown in Figure 4 with a dashed
line, access to texture memory from vertex shader is not
implemented in any commercial OpenGL 2.0 device at
this moment. First devices implementing this feature
are expected in lately 2013.

5 EXPERIMENTAL RESULTS
In this section, the results of the evaluation of our pro-
posal on different GPU architectures is analyzed. In
particular, the platforms we have used are a Samsung
Galaxy S2 (Mali), a Samsung Galaxy ACE (Adreno)
and a Asus Transformer TF 300 (Tegra 3).

Samsung Galaxy S2 has a 1.2 GHz dual core ARM
Cortex-A9 processor and uses ARM’s Mali-400 MP
GPU with a vertex shader and 4 fragment shaders.
Samsung Galaxy ACE features an 800 MHz Qual-
comm MSM7227 processor with the Adreno 200 GPU.
Adreno 200 GPU implements a unified architecture
where a core can dynamically allocate vertex or
fragment processing. Finally, Asus Transformer TF300
implements a Nvidia Tegra 3 Quad-core at 1.2GHz
and a ULP Geforce 12-core: 4 vertex shaders and 8
fragment shaders.

Different scenes, composed of replicas of a set of mod-
els, have been used in our tests. The models (Teacup
and Teapot) are depicted in Figure 5. The number of
primitives generated for the different resolution levels
is shown in Table 1. Column Ns presents the number

(a) Teacup (b) Teapot

Figure 5: Models employed in the test scenes

(a) L=1 (b) L=3 (c) L=5

Figure 6: Screenshots of the teacup model with differ-
ent levels of resolution

of Bézier surfaces whereas the rest of columns include
the number of triangles generated for the corresponding
level of detail with a uniform tessellation, i.e. all sur-
faces are tessellated with the same level of detail. Fig-
ure 6 depicts a screenshot of the teacup model rendered
with L = 1, L = 3 and L = 5 in Tegra 3. Obviously, a
higher level of detail results in a smoother render.

Our analysis is mainly focused on obtaining the op-
timal tuning factors for the three parameters used to
characterize the behavior of our method: {L,Nd ,NDP}.
As mention in the previous sections, we consider these
three factors in our analysis for clarity reasons, even
though two of them are mutually dependent. As the dif-
ferent graphs depict, the results obtained clearly show
that our proposal obtains a better performance than the
best CPU results: up to 3 fps in Mali and 5 fps in Tegra
for the scene S5pots with L = 1. In this CPU imple-
mentation each sample is evaluated in the CPU and the
whole vertex buffer is sent down to the GPU for each
frame.

The first factor we have analyzed in our method is the
resolution level, L. Specifically, each of the 2l+1 ×
2l+1 × Nd samples is evaluated in each GPU vertex
shader. The worst configuration was chosen for the
other two parameters: Nd = 1, so NDP = NS and there
are so many draw calls as surfaces. This configuration
is the closest to the CPU tessellation behavior, so the
pure computational power determines the difference in
performance.

The graphs in Figures 7 and 8 show the frame rate on
two distinct platforms for 4 of the test scenes with the
different resolution levels. As can be observed, the per-
formance achieved is far better than the described for
the CPU, even in this unfavorable configuration. In
both devices, Mali and Tegra, the frame rate drop when
the resolution level increases, but some differences be-
tween the two platforms can be observed. Mali obtains
better results when the tessellation level is low (less

Scene Ns L = 1 L = 2 L = 3 L = 4 L = 5
S5cups 130 2.29 12.44 57.13 244.00 1007.75
S5pots 160 2.81 15.31 70.31 300.31 1240.31
S10ups 260 4.57 24.88 114.26 488.01 2015.51
S10pots 320 5.63 30.63 140.63 600.63 2480.63
S15cups 390 6.86 37.32 171.39 732.01 3023.26
S15pots 480 8.44 45.94 210.94 900.94 3720.94
S20cups 520 9.14 49,77 228.52 976.02 4031.02
S20pots 640 11.25 61.25 281.25 1201.25 4961.25

Table 1: Number of surfaces and triangles generated (in K) for each scene

0

10

20

30

1 2 3 4 5

FP
S

5pots 10pots 15pots 20pots

L

Figure 7: FPS of our implementation in Mali with dif-
ferent levels of resolution

1 2 3 4 5
0

10

20

30

FP
S

L

5pots 10pots 15pots 20pots

Figure 8: FPS of our implementation in Tegra with dif-
ferent levels of resolution

synchronization penalty) whereas Tegra performs bet-
ter when the resolution level increases (4 vertex shaders
vs. 1 vertex shader in Mali). In any case, frame rate dra-
matically drops for L = 5 in both cases, since a vertex
buffer size greater than 16 MB is needed. This infor-
mation is provided by Table 2, that shows the KBytes
stored in the vertex buffer for different scenes and dif-
ferent resolution levels.

In short, the main problems of current GPUs of hand-
held devices are the computing power and the low num-
ber of vertex shaders. This implies a limit on the resolu-
tion that can be achieved and the complexity of scenes
that can be rendered.

With respect to the rest of factors {Nd ,NDP} where
NDP = NS/Nd , four different scenes have been consid-
ered and their performance is depicted with different
resolution levels in Figure 9 on the Mali. This graph
analyzes how the number of surfaces that can be tes-
sellated by a single draw call affects the GPU perfor-
mance. Similar behavior is observed on Tegra and
Adreno and other scenes. Table3 presents the num-
ber of NDP for these scenes with different number of
draw calls. As can be observed, values lower than 40
reach maximum performance on Mali, that is 62 fps.

0

20

40

60

1 2 4 8 16
0

20

40

60

F
P
S

5 pots 10 pots 15 pots 20pots

Nd

(a) L=1

0

20

40

60

1 2 4 8 16
0

20

40

60

F
P
S

Nd

(b) L=3

Figure 9: Mali with different levels of resolution

Broadly speaking, if the complexity of the model in-
creases (more surfaces, Ns), maintaining a high perfor-
mance usually implies to try to reduce NDP. For exam-
ple, S5pots with NS = 160 for {L = 1,Nd = 4,NDP = 40}
achieves 60 fps, and S15pots with NS = 480 also achieves
60 fps for a configuration {L = 1,Nd = 16,NDP = 30}.
Thus, a trade off between the number of draw calls and
the primitives processed in parallel is needed to increase
the performance as much as possible.

Figure 10 and Figure 11 present a final comparison of
our best results in different platforms: Adreno, Mali
and Tegra. Different models such as S5pots, and S20pots
have been depicted because a wide range of rendered
primitives and vertex buffer size are considered. As has
previously been explained, the uniform method stores
Bézier control points in the vector uniform variables.
Hence, as there are only 128 vector uniform variables
in the Adreno 200 architecture, only 8 surfaces can be
stored for each draw call, Nd = 8, meanwhile up to 16
surfaces can be stored in Mali 400 or in a Tegra 3 in 256
vector uniform variables, Nd = 16.

For a low level of resolution, L = 1 or L = 2, Mali and
Adreno offer the best performance for Nd = 8, that is
62 and 35 fps, respectively. Tegra also has the best per-
formance, 58 fps, but scales perfectly as the level of
resolution increases, up to 55 fps for L = 3. Nonethe-

Scene L = 1 L = 2 L = 3 L = 4 L = 5
S5cups 60.94 255.94 1035.94 4155.93 16635.94
S5pots 75.00 315.00 1275.00 5115.00 20475.00
S10cups 121.88 511.88 2071.88 8311.88 33271.88
S10pots 150.00 630.00 2550.00 10230.00 40950.00
S15cups 182.81 767.81 3107.81 12467.81 49907.81
S15pots 225.00 945.00 3825.00 15345.00 61425.00
S20cups 243.75 1023.75 4143.75 16623.75 66543.75
S20pots 300.00 1260.00 5100.00 20460.00 81900.00

Table 2: Vertex Buffer size (in KB) for each scene

Nd S5pots S10pots S15pots S20pots

1 160 320 480 640
2 80 160 240 320
4 40 80 120 160
8 20 40 60 80
16 10 20 30 40

Table 3: NDP for each scene

1 2 4 8
0

20

40

60

FP
S

Nd

Adreno Mali Tegra

(a) L=1

1 2 4 8
0

20

40

60

FP
S

Nd

(b) L=2

1 2 4 8
0

20

40

60

FP
S

Nd

(c) L=3

1 2 4 8
0

20

40

60

FP
S

Nd

(d) L=4

Figure 10: Frame rate comparative in Adreno, Mali and
Tegra with S5pots and different resolution levels

1 2 4 8
0

20

40

60

FP
S

Nd

Adreno Mali Tegra

(a) L=1

1 2 4 8
0

20

40

60

FP
S

Nd

(b) L=2

1 2 4 8
0

20

40

60

FP
S

Nd

(c) L=3

1 2 4 8
0

20

40

60

FP
S

Nd

(d) L=4

Figure 11: Frame rate comparative in Adreno, Mali and
Tegra with S20pots and different resolution levels

less, in Mali and Adreno the performance drop for L≥ 3
(37 and 13 fps are achieved, respectively, for L = 3
and Nd = 8) confirms that the number of computational
cores (i.e. the computational power) becomes a limit-
ing factor and is noticeable in the performance. More
specifically, Mali 400 MP GPU has a vertex shader
meanwhile Tegra 3 has four. For larger levels of res-
olution, L = 4, the performance is below 20 fps for all
GPUs due to the low number of vertex shaders.

In conclusion, and taking into consideration, for ex-
ample, the scene S20pots with a setup of {L = 1,Nd =
16,NDP = 40} on Mali, we achieve only 37 fps, i.e.

a 60% of the maximum frame rate. This performance
could be improved with a higher Nd , but that means a
greater memory consumption. Besides, with the same
scene and platform, but a configuration of {L = 1,Nd =
16,NDP = 40}, we obtain a poor result of 3 fps due to
the lack of computational power. None of these cases
allows the use of a realistic illumination algorithm due
to the limit in the number of instructions to be executed
in the vertex shader [Munsh08]. The maximum number
of instructions of the vertex shader across all OpenGL
ES 2.0 implementations does not allow the computa-
tion of the normals, since most of the instructions are
needed to evaluate the surface. On the other hand, as it
is commented in [Munsh08], there is no way to query
the maximum number of instructions supported by a
specific vertex shader.

Nowadays, the Texture method cannot be tested on any
market devices, as the access to texture memory from
the vertex shader has yet to be implemented in Android
platform. This approach would solve the main problem
of the uniform method, since texture memory provides
a larger storage space than uniform variables. To test
how would this approach would be, we have designed
a group of tests to measure the texture access latency.
Although the evaluation of a Bézier surface cannot be
carried out in the fragment shader, the texture memory
accesses are processed in this stage to analyze the ac-
cess latency. Figure 12 shows the performance of a tex-
ture memory access from the fragment shader in Mali
and Adreno architectures. A simple model comprising
160 surfaces (S5pots) has been chosen for this test to re-
duce the impact of computational power and CPU-GPU
communication as much as possible. According to the
results, the overhead associated with the texture access
is about the 20% of the final performance in Mali archi-
tecture and under the 10% in an Adreno devices, as a
unified architecture as implemented in Adreno devices,
dynamically configuring its GPU cores to allocate ver-
tex or fragment processing.

As a result, we can conclude that the proposed texture
method could obtain a better performance, as the num-
ber of total draw calls could be significantly reduced.

In summary, our analysis shows the main problems of
current GPUs in handheld devices, in order to achieve
a rendering of Bézier surfaces. These drawbacks are
the computing power, the low storage capacity and the
low number of vertex shaders and their length. All
this implies an important limit on the complexity of
the scenes that can be managed, as well as on the re-
alism of the rendering. Thus, simply increasing the
device memory would solve the Nd/NDP bottleneck.
These constraints should be improved in the future de-
signs of GPUs for these devices. A possible evolu-
tion would be a geometry shader-based pipeline, more
similar to a DX10/OpenGL 3.2 architecture than to a

1 2 4 8 16
0

20

40

60

FP
S

Nd

l=1 l=2 l=3 l=4 l=5 l=6

(a) Mali

1 2 4 8
0

20

40

60

FP
S

Nd

(b) Adreno

Figure 12: Performance of scene S5pots with texture ac-
cess

DX11/OpenGL 4.0. This would allow the exploitation
of locality in the generation of new primitives and a
greater versatility, in addition to a lower power con-
sumption.

6 CONCLUSIONS

In this paper we have presented a proposal for the ren-
dering of Bézier surfaces on the GPU of handheld de-
vices. Parametric surfaces cannot be directly rendered
in the current GPUs of modern handheld devices, thus
our first contribution is to achieve a rendering of Bézier
surface. Another related contribution is to describe
some of the tuning techniques employed.

Our proposal is based on parametric maps of virtual
vertices, and its operation can be adapted to the hard-
ware resources available in the GPU by tuning a series
of parameters.

Additionally, an analysis of the most relevant capabili-
ties and constraints in the graphics hardware of the cur-
rent handheld devices has been carried out by tuning the
main parameters of our method. This tuning permits the
optimization of the memory usage of the GPU and the
minimization of draw calls, that is, the CPU-GPU com-
munication and synchronization barriers.

As a result of our analysis, we can conclude that the cur-
rent graphics capabilities of these devices are far from
allowing the real-time tessellation of complex paramet-
ric models. We present our proposal on an algorith-
mic approach, we do so with an eye toward real-time
rendering on future GPUs in handheld devices. As fu-
ture work, an implementation in a suitable GPU would
be worthwhile. Additionally, an adaptive proposal that
uses small triangles only where they are needed would
better exploit our proposal on GPUs in handheld de-
vices.

ACKNOWLEDGMENTS
This work was carried out through a HIPEAC’s Collab-
oration grant, and all the research has been economi-
cally supported by Ministry of Education and Science
of Spain under the contracts MEC TIN 2010-16735 and
also by the Galician Government under the contracts
’Consolidation of Competitive Research Groups, Xunta
de Galicia ref. 2010/6’, and CN2012/211, partially sup-
ported by FEDER funds.

7 REFERENCES
[Boube05] T. Boubekeur and C. Schlick. Generic

Mesh Refinement on GPU. In Proc. HWWS’05:
ACM SIGGRAPH/EUROGRAPHICS Confer-
ence on Graphics Hardware, pages 99–104,
New York, NY, USA, 2005. ACM.

[Chung08] K. Chung, C. Yu, D. Kim, and L. Kim.
Tessellation-enabled shader for a bandwidth-
limited 3D graphics engine. In Proc. CICC’08:
Custom Integrated Circuits Conference, pages
367 –370, sept. 2008.

[Chung09] K. Chung, C. Yu, D. Kim, and L. Kim.
Shader-based tessellation to save memory band-
width in a mobile multimedia processor. Com-
puter and Graphics, 33(5):625–637, 2009.

[Conch10] R. Concheiro, M. Amor, and M. Bóo. Syn-
thesis of Bézier Surfaces on the GPU. In Paul
Richard, José; Braz, and Adrian Hilton, editors,
Proc. GRAPP’10: International Conference on
Computer Graphics Theory and Applications,
pages 110–115. INSTICC Press, 2010.

[Conch11] R. Concheiro, M. Amor, M. Bóo, and
D. Doggett. Dynamic and Adaptive Tessella-
tion of BÃ c©zier Surfaces. In Proc. GRAPP’11:
International Conference on Computer Graph-
ics Theory and Applications, pages 100–105,
2011.

[Dyken09] C. Dyken, M. Reimers, and J. Seland.
Semi-uniform Adaptive Patch Tessellation.
Computer Graphics Forum, 28(8):2255–2263,
2009.

[Foley90] J. D. Foley, A. van Dam, S. K. Feiner, and
J. F. Hughes. Computer graphics: principles
and practice. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, second
edition, 1990.

[Goo] Google. Android documentation.
[Guthe05] M. Guthe, A. Balázs, and R. Klein. GPU-

Based Trimming and Tessellation of NURBS
and T-Spline Surfaces. ACM Transations on
Graphics, 24(3):1016–1023, 2005.

[Khron10] Khronos group. OpenGL ES. Technical
report, 2010.

[Kim12] S. Kim, S. Yoon, S. Chung, Y. Kim, H. Kim,
K. Chung, and L. Kim. A mobile 3-D dis-
play processor with a bandwidth-saving sub-
divider. IEEE Trans. VLSI Syst., 20(6):1082–
1093, 2012.

[Mali09] Mali. Mali GPU OpenGL ES. Application
Development Guide. Technical report, 2009.

[Munsh08] A. Munshi, D. Ginsburg, and D. Shreiner.
OpenGL(R) ES 2.0 Programming Guide.
Addison-Wesley Professional, 1 edition, 2008.

[NVIDI11] NVIDIA. Technical Brief. Bringing High-
End Graphics to Handheld Devices. Technical
report, 2011.

[Piegl97] L. Piegl and W. Tiller. The NURBS Book.
Springer, 1997.

[Roger01] D. F. Rogers. An Introduction to NURBS
with Historical Perspective. Morgan Kaufmann,
2001.

[Sarmi12] Andrés L. Sarmiento, Margarita Amor,
Emilio J. Padrón, Carlos V. Regueiro, Raquel
Concheiro, and Pablo Quintía. Evaluating per-
formance of android systems as a platform for
augmented reality applications. International
Journal on Advances in Software, 5(3&4):335–
344, 2012.

[Shirl03] P. Shirley. Fundamentals of Computer
Graphics. Addison-Wesley, 2003.

