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ABSTRACT
Modeling a physically plausible deformation of a flexible object from its naturally planar (curved) state is a fun-
damental and challenging topic in digital surface processing with applications to computer animation and game
design. We propose a new variational model for detail preserving surface-based deformation of a body based on
total curvature energy. We demonstrate the efficacy of the model with several examples which enhance the realism
of the deformation.
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1 INTRODUCTION
The great interest in computer animation and game de-
sign has led over time to the development of a large
amount of deformation and editing methodologies for
discrete models [12]. Surface based-deformation meth-
ods have been recently widely investigated and repre-
sent an emerging alternative both to rigging (i.e., adding
a skeleton to control and animate a mesh) which is
the classical way in the graphics industry to efficiently
design poses and deformation, and caging which uses
control structure like lattices to immerse the object and
propagate the deformation.

In this paper we propose a new variational surface-
based deformation formulation which improves tradi-
tional Laplacian surface editing by using the total cur-
vature as a better aesthetic measure for deformation of
elastic bodies.

The basic idea of the variational design approach is to
measure the quality of a surface in terms of a certain
curvature-based energy. In general, a curvature energy
may be expressed in terms of principal curvatures of a
surface: mean (H = k1 + k2), Gaussian (K = k1k2), and
total (k2

1 + k2
2) curvature. The relationship between cur-

vature and bending energy first appeared in an explicit
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form in Euler’s elastica, curves minimizing the integral
of squared curvature.

Let us denote by M a two-manifold surface, parame-
terized by a function X : Ω ⊂ R2 → M ⊂ R3, where Ω
is an open reference domain.

Thin flexible structures are governed by a surface bend-
ing energy of the form

E(M ) :=
∫

M
α +β (H −H0)

2 − γKdM , (1)

the so-called Canham-Helfrich model [14], where H0
denotes the spontaneous curvature which plays an im-
portant role in thin-shell. For α = H0 = 0 and β =
1,γ = 2, the Canham-Helfrich model reduces to the to-
tal curvature energy

ET (M ) :=
∫

M
(H2 −2K)dM =

∫
M
(k2

1 + k2
2)dM ,

(2)
which approximates the bending energy of a thin plate
manifold. In (2) the principal curvatures k1 and k2 de-
pend non-linearly on the surface M . Let us call the
surfaces minimizing (1) elastica surfaces because they
generalize the famous Euler’s elastica curves. This en-
ergy is invariant under rigid motions and uniform scal-
ing of the surface M , that is, it is invariant under Möbi-
ous transformations.

In (2) the first term (EB(M ) :=
∫
M H2) represents the

well-known Willmore energy [33], successfully used in
surface fairing and restorations [9].

According to the Gauss-Bonnet Theorem from differ-
ential geometry [11], the integral over a disk region



M ⊂ M̃ can be expressed as an arclength integral over
the boundary ∂M as follows∫

M
KdM = 2π −

∮
∂M

kgds, (3)

where kg is the geodesic curvature of the boundary
curve ∂M . This implies that the Gaussian curvature of
M depends only on a collar neighborhood of ∂M : if
we make any modification to M away from the bound-
ary, the total curvature is unchanged (as long as M re-
mains topologically a disk).

That is, the second term in (2) remains constant on sur-
faces with fixed boundaries and fixed normals on the
boundary. This is the main reason why the surface-
based deformation strategies proposed so far limit the
deformation model to the Willmore energy.

However, when the deformation acts on some interior
region of a closed compact manifold M̃ , then M has
fixed boundaries but changing normals, and for an open
manifold the deformation region can even have free
boundaries and normals. Moreover, a deformation can
easily change even the topology of the surface, thus
changing the Gaussian curvature of it. These observa-
tions are the major motivations for the work presented
here.

Therefore, the second term in (2) cannot be neglected
in the energy optimization process, and only including
it in the deformation process will allow us to handle a
wider class of free-form deformations.

Moreover, both the energy ET (M ) and EB(M ) are in-
variants under all Möbious transformations (in particu-
lar, rigid motions and uniform scaling of the surfaces).
In extending the energies from smooth surfaces to the
discrete case (polyhedral surfaces) we will require this
property to remain true.

In this paper we are interested in modeling a physically
plausible deformation of a flexible object from its nat-
urally planar (curved) state to an equilibrium configu-
ration due to external localized forces interactively ap-
plied by the user (by imposing geometrical constraints).
As energy of deformation associated with the elastically
deformable object we consider the total curvature func-
tional for the justification given above. This energy
is employed to define the internal elastic force of the
object, expressed as δE, a first variational derivative
of the potential energy of deformation. To deal effec-
tively with boundaries we introduce appropriate bound-
ary conditions which guarantee, when it is possible, to
satisfy G1 continuity conditions at the boundary of the
domain.

The rest of the paper is organized as follows: in section
2, some related work on mesh deformation is presented
and in section 3, we discuss some potential energies of
deformations and a new variational deformation model

which includes the effect of the total curvature. Lin-
ear and nonlinear deformation constraints are described
in section 4. In section 5, the details on the discretiza-
tion are given, and we present the deformation algo-
rithm based on the iterative alternating strategy. The
effect of the total curvature energy and other examples
are discussed in section 6. Some limits and concluding
remarks are made in section 7.

2 RELATED WORKS
Deformable curve, surface, and solid models gained
popularity in computer vision and computer graphics
after they were proposed in the mid 1980s by Terzopou-
los et al. [30]. Terzopoulos introduced the theory of
continuous (multidimensional) deformable models in a
Lagrangian dynamics setting, based on deformation en-
ergies in the form of (controlled-continuity) generalized
splines [31]. Since then, many results have been pre-
sented in that direction. Nowadays, most existing shape
deformation approaches can be classified as space de-
formation and surface deformation according to the
way in which they act on the object to be deformed
[4]. Space deformation techniques modify objects by
deforming their embedded space, while surface-based
methods define the deformation directly on the surface
of the object.

All space deformation methods use some form of con-
trol structure like a lattice to immerse the object then
every structure deformation is propagated to the object
itself. The robustness and the efficiency of these meth-
ods are strongly affected by the control structure com-
plexity even if they are less affected by the complex-
ity or the triangles’ quality of the original surface [27].
In Free-Form Space Deformation points of the object
are expressed as a linear combination of the structure
control points and blended with some different bases
functions: Bézier [23], B-spline [13] [17], T-splines
[27] and many others. The unnaturalness of the deform
through a control structure has led to the development
of the Direct Manipulation FFD [15]: the user directly
moves the object points and the system computes the
control point displacements. The Radial Basis Func-
tions-based approach proposed in [3] is equally inno-
vative, it improves upon FFD and DMFFD due to its
handle point nature and the deformation function phys-
ically used.
Nonlinear methods are presented in [28], where an en-
ergy functional optimizes the local deformation gradi-
ents, and in [6], where the object is voxelized and the
deformation is driven by a nonlinear elastic energy.

There are a plenty of different surface deformation
methods, well summarized in the detailed survey [7].
The Transformation Propagation linearly propagates
the deformation within a region and the main challenge
is how to define the propagation function (e.g. using



geodesic distances [2] or Euclidean distances [22]).
The Shell-Based Deformation techniques minimize two
physically-inspired deformation energies: stretching
and bending [32]. The Multi-scale Deformation [8]
mainly decomposes the object into two frequency
bands: high frequency for details and low frequency
for global shape. Two detail-preserving techniques
have been proposed as surface deformation methods
based on differential coordinates: the Gradient-Based
Deformation [35] and the Laplacian-Based Deforma-
tion [26],[18]. The former uses the original surface
gradients as target in the least-squares sense for the
deformed surface, the latter is similar but it uses the
Laplacian operator on vertices.
The linear methodologies can be solved very efficiently
but can lead to counterintuitive results for large-scale
deformations, they have obvious limitations and in
some circumstances they even fail. Nonlinear defor-
mation techniques overcome these limitations, but they
require more complex numerical schemes [4].
Typically, some constraints are added to improve qual-
ity results: Pyramid coordinates [24], handle-aware
isoline technique [1], volumetric graph Laplacian [16],
skeleton-based inverse kinematics [25] and shell-based
minimization coupled by a nonlinear elastic energy [5].

Another important issue is the deformation metaphor
which concerns the manner in which the user defines
the deformation: by handle point deformation the user
moves some “handle” points of the object, by curve-
based deformation the user imposes deformation by
sketching curves and by control point deformation the
user manages the object in an indirect way [12].

3 ENERGIES OF DEFORMATION
The deformation of a nonrigid body is a change in shape
or size of an object due to applied forces: pulling or
pushing (compressive) forces, shear, bending or torsion
(twisting). A deformation is termed elastic if the un-
deformed or reference shape restores itself completely,
upon removal of all external forces, inelastic otherwise.
A pioneer work in modeling inelastic deformations sim-
ulating behaviors such as viscoelasticity, plasticity, and
fracture, has been proposed in [30] for use in computer
graphics animation of nonrigid objects. More advanced
physically-based PDE models are considered in [21].

In this work, we focus on elastic deformations of a
non-rigid model during the deformation phase neglect-
ing the phase responsible for recovering the reference
shape.

Let M be a fixed reference surface, parameterized by
a function X : Ω ⊂ R2 → M ⊂ R3. A deformation is
a function d that maps M to a certain deformed model
M ′, by adding to each point X(u,v) ∈ M a displace-
ment vector d(u,v), such that M ′ = X ′(Ω), X ′ = X +d.

A reasonable approximation for elastic thin-shell en-
ergy which measures stretching and bending is the fol-
lowing (see [4] for details)∫

Ω
ks∥I′− I∥2 + kb∥II′− II∥2dudv, (4)

where I (I′) and II (II′) represent the first and second
fundamental forms for M (M ′), ks and kb weight the
matrix norms and determine resistance to stretching and
bending, respectively. The matrix norms in this func-
tion make it highly nonlinear, leading to a difficult non-
linear optimization problem. It is therefore common to
simplify (linearize) this objective function by replacing
the change of the first and second fundamental forms
by the first-order and second-order partial derivatives
of the displacement function d [7].

The (simplified) thin plate energy is given by:

EB(d) =
1
2

∫
Ω

kb(∥duu∥2 +2∥duv∥2 +∥dvv∥2)dudv.

(5)

The stretching or membrane energy is defined by the
functional

EM(d) =
1
2

∫
Ω

ks(∥du∥2 +∥dv∥2)dudv. (6)

Deformations of non-rigid surfaces (so called thin-
shells) require both energies, while for a deformable
solid only the local stretching within the object is
considered.

In order to keep the parametrization of the surface M as
close to isometric as possible, Ω is typically chosen to
be equal to the initial surface M , such that d : M →R3

is defined on the manifold M itself. As a consequence,
the Laplace operator △ w.r.t. the parametrization X
turns into the Laplace-Beltrami operator △M w.r.t. the
manifold M . Therefore when the parametrization is
isometric,

EB(d)≃
1
2

∫
M

kb(△M d)2dM , (7)

and
EM(d)≃ 1

2

∫
M

ks∥∇M d∥2dM . (8)

The minimization of these functionals, performed effi-
ciently by applying variational calculus, yields to their
Euler-Lagrange equations which are

△2
M d = 0, (9)

for (7), and
−△M d = 0, (10)

for (8), subject to suitable boundary constraints. We de-
note by EC the variational deformation proposed in [7]



where stretching and bending are combined together,
given by

−ks△M d + kb△2
M d = 0. (11)

We observe that in surface smoothing similar function-
als are applied to X itself instead of their displacements
[10].

Note that the linearization in (7) and (8) causes artifacts
for large deformations, as we will verify in the result
section 6.

We propose instead to minimize the total curvature en-
ergy (2), which leads to the Euler-Lagrange equation

△M H(d)−2H(d)(H2(d)−K(d)) = 0, (12)

subject to natural boundary conditions. Equation (12)
is a fourth-order partial differential equation, (the term
△M H(X) involves fourth-order surface derivatives)
satisfied for an elastica surface. To be well posed it
requires two independent boundary conditions. By nat-
ural boundary conditions we mean that no continuity
conditions are specified at the boundary points, but
the continuity is implied by the "outer" part incident
to the boundary of M . The elastica flow has been
proposed for surface fairing and repairing in [34]. Note
that

√
H2 −K is the half-difference of the principal

curvatures and also in the discrete setting the property
H2 −K ≥ 0 has to be guaranteed.

In a modeling application, one can be interested ei-
ther to a dynamic time dependent simulation, or di-
rectly to solve the rest state of the deformation process.
For the former, one typically deals with the associated
geometric flow ∂M /∂ t = −∇(E(d)) by the steepest
descent method. The latter means solving the Euler-
Lagrange formulation subject to user-defined boundary
constraints, which will be discussed in section 4. This
typically means to fix certain surface regions F ⊂ M ,
and to define displacements for the so-called handle
(target) regions H ⊂ M . In an interactive application
M has to be recomputed by solving the PDE each time
the user manipulates the boundary constraints, for in-
stance by moving the handle region H .

Considering the deformation energy together with lin-
ear or nonlinear constraints represented by a generic
Φ(·), the constrained deformation can be formulated by

minX ′E(X ′−X) subject to Φ(X ′). (13)

4 LINEAR AND NONLINEAR DEFOR-
MATION CONSTRAINTS

First we consider positional constraints that can be ei-
ther incorporated as hard or soft constraints. The hard
positional constraints are preferred in classical edit-
ing tools where the exact position should be achieved,

while in a sketch-based system soft constraints are actu-
ally advantageous, since they allow the user to place im-
precise locations to hint the desire shape, without spec-
ifying it exactly.
Representing the coordinate map X by real-valued
functions (x,y,z), defined on M , the prescribed target
positions C are imposed by the following constraints:

1
2

∫
M
(X ′−C)2dM . (14)

Intuitive, detail-preserving constraints can be obtained
by preserving local differential properties under defor-
mation.
Let δ = △M (X), the surface deformation is obtained
by

1
2

∫
M
(△M X ′−δ )2dM . (15)

Eq. (15) forces the new position to resemble its un-
deformed Laplacian as closely as possible, that is, in
view of the fact that △M X =−Hn, with n outward sur-
face normals, it preserves the local curvatures of the un-
deformed surface. Laplacian deformation methods are
mainly based on the minimization of (15), see [26],[7].
This deformation constraint tries to preserve the orien-
tation of the normals w.r.t. the global coordinate sys-
tem, whereas in reality they should rotate with the de-
formed surface. This technique as well as the gradient-
based deformation [35] fail to yield intuitive results for
translational deformations as it clearly shown in section
6, since a translation does not cause a change in surface
gradients, or normal vectors. This translation insensi-
tivity is an inherent limitation of most approaches based
on differential coordinates.
A correct deformation should retain the local surface
features, that is their relative orientation and possibly
their size. Therefore, several variants to the linear
model (15) have been proposed for finding local rota-
tions of the geometric details: some require additional
input of the rotation of the handle, others use implicit
optimizations, and multiresolution approaches estimate
the local transformation from the deformation of the
base surface.
Introducing the local transformations T , which can be
restricted to rotation and isotropic scaling, the differ-
ential representations δ of the rest mesh X are trans-
formed into the deformed pose: δ̂ = T δ , The deformed
positions X ′ are then obtained by replacing (15) with
the following nonlinear term

1
2

∫
M
(△M X ′− δ̂ (X ′))2dM . (16)

The term δ̂ (X ′) is a nonlinear function because it in-
cludes the effects of local rotations, thus (16) leads to
a nonlinear least-squares problem, while (15) leads to a
linear least-squares problem. We impose the nonlinear
constraints on the set M \ (F ∪H ).



5 MODEL DISCRETIZATION
We are interested in evaluating the constrained varia-
tional problem involving the curvature energy (2) for
discrete surfaces, i.e., triangular meshes M which rep-
resent a piecewise-linear approximation of the smooth
surfaces M . Let M be defined by a set T of trian-
gles Ti, i = 1, . . . ,Nt , that cover M, and a set X of ver-
tices Xi, i = 1, . . . ,Nv, where Xi ∈ R3 is the ith vertex,
Xi = (xi,yi,zi) ∈ R3, with associated normal vector ni.

Let us briefly introduce the key ingredients for the dis-
cretization on M of the proposed variational deforma-
tion formulation. Since for a smooth surface ∆M =
2Hn, see [11], a discrete approximation of the mean
curvature vector Hini associated to the vertex Xi can be
derived using the following discrete form

Hini = L(Xi) =
1

2Ai
∑

j∈N(i)
wi j(X j −Xi), (17)

where L represents the discretization of the local
Laplace-Beltrami operator ∆M on M, N(i) is the set of
1-ring neighbor vertices of vertex Xi, Ai is the Voronoi
area surrounding Xi, and the weights wi j are positive
numbers which satisfy the normalization condition
∑ j∈N(i) wi j = 1. Different geometric discretizations of
the Laplacian can be obtained for different choices of
the weights in (17), the most common and used in our
discretization, introduced by Meyer et al. in [19], is

wi j = (cotαi j + cotβi j), (18)

where αi j and βi j are the two angles opposite to the
edge in the two triangles sharing the edge (X j,Xi).

The notion of Gaussian curvature extends to such dis-
crete surface M and is supported on the vertices Xi ∈ X .
In fact, to keep the Gauss-Bonnet theorem true, we must
take∫

M
KdM := ∑

i
Ki, Ki =

1
Ai
(2π − ∑

j∈N(i)
θ j), (19)

where θi are the incident internal angles at Xi. The
simple formula (19) is a standard for triangular meshes
[29].

Considering that the displacement vector is d = X ′−X ,
then the deformation energy models on the surface rep-
resented by the mesh M can be discretized as follows:

EM (10) Ld = 0 LX ′ = LX
EB (9) L2d = 0 LT LX ′ = LT LX
EC (11) ksLd + kbL2d = 0 (ksL+ kbL2)X ′ = (ksL+ kbL2)X
ET (12) L2d −2LGd = 0 (L2 −2LG)X ′ = (L2 −2LG)X

G = H2 −K

Each of these models leads to a generic linear system
AX = b with a sparse Nv ×Nv coefficient matrix. Note

that, in general, the evaluation of ∆M H at Xi (for Xi
either being an inner, that is Xi ∈ X\(F

∪
H ), or an

outer vertex, that is Xi ∈ ∂M ) involves 2-ring neighbor
vertices of Xi. Some of them may be inner vertices, and
the remaining are outer vertices. The inner vertices are
treated as unknowns in the discretized equations and the
outers are incorporated into the right-hand side.

A way to enforce soft positional constraints, is to in-
corporate them in a penalty formulation of the discrete
energy functional

min
X ′

E(X ′−X)+
λ
2
∥X ′−C∥2 (20)

where λ > 0 ∈ Rn is the penalty coefficient, and C is
the vector of prescribed vertex positions.

In order to approach the interpolation of the constraints
C, the parameter λ has to be chosen sufficiently large.
However, the condition number of the matrix grows
with λ , then a higher weight can cause numerical prob-
lems.

Considering the discretization of (13) with total
curvature energy (2), positional constraints (20) and
detail-preserving constraints (16), and using the
fact that δ̂ (X ′) are unknowns in the deformation
process, we propose the following energy functional
minimization to solve the mesh deformation problem:

minX ′,δ̂ L (X ′, δ̂ ),
L (X ′, δ̂ ) := E(X ′−X)+ λ1

2 ∥X ′−C∥2 + λ2
2 ∥LX ′− δ̂∥2.

(21)
The minimum of (21) can be determined by the alter-
nating minimization procedure, namely, for k = 0,1, . . .,
we solve successively

δ̂ (k+1) = argminδ̂ L (X ′(k), δ̂ )
X ′(k+1) = argminX ′ L (X ′, δ̂ (k+1)).

(22)

Since L (X ′, δ̂ (k+1)) is continuous differentiable in X ′,
the solution X ′(k+1) of the second minimization in (22)
is obtained by imposing

0 = ∇X ′L (X ′, δ̂ (k+1)) =

(L2 −2LG)(X ′−X)+λ1(X ′−C)+λ2(LT (LX ′− δ̂ (k+1))),
(23)

where G = H2 −K.

In matrix-vector form, the solution of (23) for the new
mesh vertices X ′, is given by solving the overdeter-
mined system (L2 −2LG)

0
√

λ1In
0

√
λ2LT L

X ′ =

 (L2 −2LG)X√
λ1C√

λ2LT δ̂ (k+1)

 (24)

where the block A = (L2 −2LG) represents the internal
energy, In ∈ Rn×n is the identity matrix which requires



a resorting of the rows of L, and C ∈ Rn is a vector
of elements ci for each of the n positional constraint.
The system has dimension (Nv +2n)×Nv and it is full
rank, thus it has a unique solution in the least-squares
sense. The linear system of equation (24) is solved by
the conjugate gradient method where we terminate the
iterations as soon as the norm of the residual is less than
or equal to 10−4. The use of an iterative solver allows us
to avoid storing the large dimension matrices, the only
requirement is matrix-vector products.

The use of L = DL and K = DK with the area-scaling
matrix Dii = 1/Ai in (24) allows to extend the invari-
ance under rigid transformations and uniform scaling
property of the energy ET to the discrete setting.

To update δ̂ (k+1), the first minimization in (22) gives
δ̂ (k+1) = LX ′(k). In particular, following [16], at each
step we use the two-phase procedure:

• (STEP 1) For each vertex Xi with N(i) neighbors,
solve for µ i = (µ i

1,µ
i
2, . . . ,µ

i
N(i)):

∑
j∈N(i)

µ i
j((X j −Xi)⊗ (X j−1 −Xi)) = δi, (25)

where δi are the Laplacian coordinates before defor-
mation, and (X j − Xi)⊗ (X j−1 − Xi) is the normal
vector to the triangle Xi,X j,X j−1 on Xi. The overde-
termined linear system (25) can be represented in
matrix-vector form as

Aiµ i = δi (26)

where A has dimension 3×N(i) and solved by SVD
method.

• (STEP 2) Plug the computed µ i
j in

di(X ′) = ∑
j∈N(i)

µ i
j((X

′
j −X ′

i )⊗ (X ′
j−1 −X ′

i )), (27)

with X ′ vertices of the deformed mesh M′. Since
the µ i are the same before and after deformation,
di(X) = Tiδi for local rotations Ti. Finally the Lapla-
cian coordinates are normalized as follows:

δ̂ (Xi) =
di

∥di∥
∥δi∥. (28)

This means that we use the Laplacian coordinates of the
previous iterative step as the target direction, while tak-
ing the magnitude of the original Laplacian coordinates
as the target magnitude. Since the directions to be pre-
served are those at the rest position, then STEP1 can be
done as preliminary step, while STEP2 updates the new
Laplacian coordinates at each alternating step k.

In case we want to enforce hard positional constraints,
that is constrained vertices which lie in the exact pre-
scribed location, we set λ1 = 0 in the functional (21),

and solve (24) replacing the matrix block A with a re-
duced matrix An ∈ R(Nv−n)×(Nv−n) as follows. Forcing
n constraints leads to the elimination in A of the n rows
corresponding to the constrained vertices (Xi ∈F ∪H )
and moving the corresponding columns to the right-
hand side.

We should remark that the original mesh without the
constrained vertices F and H is a reduced mesh with,
in general, more than one connected components. The
associated connectivity matrix should be a reduced rank
matrix. However, the An matrix is not the connectivity
matrix of such a reduced mesh since the elements of An
are the same of the original connectivity matrix, that is
computed on the entire mesh.

The final deformation algorithm simply iterates two
simple and efficient steps which are respectively
responsible for improving the estimation of the local
transformations, and vertex positions. At each iteration,
fixing X ′, δ̂ (k+1) are updated by using STEP2, then the
computed approximations for δ̂ (k+1) are used to solve
the linear least-squares problem (24). The algorithm
for nonlinear deformation is here summarized:

ALGORITHM
Discrete Elastica Nonlinear Deformation (DEND)
INPUT: undeformed vertex set X,
OUTPUT: deformed vertex set X ′

Set X (0) = X, δ̂ (X (0)) = L(X), k=0
STEP 1: Compute µ i, ∀Xi ∈ X by (25)
Repeat

STEP 2: Compute δ̂ (X ′(k+1)) by (27) and (28)
Solve the linear LS problem (24)
k=k+1

until ∥X ′(k)−X ′(k−1)∥< 1 ·10−3

6 DEFORMATION RESULTS
In this section we consider some examples to show
how the proposed DEND algorithm performs to deform
structured and unstructured polygonal meshes. All the
examples have been produced on a standard consumer-
level LINUX PC by using the Meshviz software, a
GUI application for geometric surface processing de-
veloped at the University of Bologna, Italy, based on
OpenGL graphics library and C language. The current
version of Meshviz offers interactive tools for experi-
mentation with the proposed deformation algorithm but
it does not provide any tangential remeshing feature.
This would prevent from degenerated meshes which
may adversely affect the deformation performance. A
preprocessing step of mesh optimization can alleviate
this problem [20]. Moreover, the DEND algorithm has
no collision detection which would allow for handling
collision occurring between deformed parts of a de-
formable body. Collision detection is a complex con-
straint which increases considerably the complexity of



the deformation model. The Meshviz editing tools are
easy and intuitive and allow the user to interactively se-
lect by mouse regular/irregular regions F that he/she
wants to keep fixed so as the areas H that he/she will
drag (rotating, translating) to a target position; the posi-
tions of the remaining vertices X \(F ∪H ) will be de-
termined by the DEND algorithm. The computational
time of the entire process to set up a new pose for an ob-
ject depends mainly on the dimension of the free vertex
set X \ (F ∪H ) which affects the solution of (24) in
DEND algorithm. Therefore, for medium size objects
like those used for the shown examples the deforma-
tions are achieved in real-time, while optimizations of
the linear solver will be needed to obtain real-time de-
formations of larger meshes.

We demonstrate that our approach enables to apply
small to large deformations on middle-large detailed
meshes while keeping the shape of the details in their
natural orientation.

Example 1. In this example we compare the surface-
based mesh deformation techniques described in sec-
tion 3. The DEND Algorithm presented in section 5
has been suitably modified to manage the different en-
ergy deformations by changing the block matrix A, and
hard/soft constraints, by setting λ1 = 0 or λ1 = 1, re-
spectively.

The deformations are performed on the original
undeformed bar mesh with 856 vertices (Fig.1(a))
and cylinder mesh with 1088 vertices, illustrated
in Fig.1 (b). Fig.1, first column, shows the results
of 135◦ twist of the bar mesh, and second column
reports the 120◦ bending of the cylinder mesh. In
particular, we apply (21) with the deformation energies
EB (9) (Fig.1(e)-(f)), EC (11) (Fig.1(g)-(h)), and ET
(12) (Fig.1(m)-(n)), with non-linear hard constraints
(λ1 = 0,λ2 = 1). For comparison, we also show in
Fig.1(i)-(l) the deformation obtained by the PRIMO
system [5], courtesy from the author’s web page, which
present different, but still physically plausible shape
deformations. However, the cylinder deformation
presents a more concentrate bending in the middle,
while using ET (12) (Fig.1(n)) we get a uniform
deformation along the shape. In each figure the red
vertices represent the vertices F that are fixed; the
blue vertices are the handle (target) constraints H ;
the green area contains the remaining unconstrained
vertices X \ (F ∪H ) whose position is computed by
the DEND algorithm. Fig.1(c)-(d) show the resulting
deformations by using the thin plate energy EB defined
in (9) applied together with linear constraints (15)
instead of nonlinear (16). The results clearly show the
weaknesses of the linear deformation approach.

In linear theory the behaviour of the deformable model
is physically correct only for small displacements
(about 10% of the mesh size), it is less realistic for

larger deformations. It is the main disadvantage of
linear elasticity. In Fig.1 all the deformations are ob-
tained in a single step. Nevertheless, our deformation
procedure by using ET with non-linear constraints
(Fig.1(m)-(n)), provides well-shaped and aesthetically
pleasing results. Interactive deformation prevents large
deformations, since each step remain reasonably small.
Fig.2 illustrates two large deformations obtained by
interactively applying 5 steps for a total 135◦ twisting
on the bar model (Fig.2(a)), and 3 steps for a 180◦

bending on the cylinder mesh (Fig.2(b)). The other
considered energies were not been able to produce
similar good results.
Example 2. The example illustrated in Fig.3 shows
how to apply a simple deformation to transform a plane
into a bumpy plane. From an original plane model,
shown in Fig.3 (a), the bumpy plane (2115 vertices)
in Fig.3 (b) is achieved by anchoring the red vertices
and translating the blue vertices. The bumpy plane
is then deformed by bending the two sides of the mesh
using the DEND Algorithm with ET .
Example 3. In this example we show the flexibility
of our variational deformation model implemented with
DEND Algorithm on a range of examples, including
both open and closed surfaces representing elastically
deformable models.
Fig.4 shows the deformations of a thin plate model,
represented by the flag (289 vertices) mesh, whose
rest state is flat. Fig.4 illustrates a few snapshots of a
flag waving simulation, obtained by translating the
right side of the flag mesh and anchoring the left side.
The interactive deformation of a complex hand (1515
vertices) model is illustrated in Fig.5, and a torus
twist (576 vertices) is shown in Fig.6.
A sequence of deformations obtained by the DEND al-
gorithm using ET by free interactive shape-editing steps
is shown in Fig.7 on a free bending of dino (10098
vertices) mesh. When dragging the handle vertices, the
deformed surface should retain the look of the original
surface in a natural way. The smooth regions of the sur-
face should remain smooth, but if the surface contains
some geometric details, as in the dinosaur tail and body,
the shape and orientation of these details should be pre-
served. As shown from these preliminary examples, the
DEND algorithm allows for a natural detail-preserving
deformation.

7 LIMITS AND CONCLUSIONS
The main requirement for physically based surface de-
formation is an elastic energy that measures how much
an object has been deformed from its initial config-
uration. In this paper a new constrained variational
surface-based deformation model is proposed, by ex-
ploiting the total curvature as a better aesthetic measure
for deformation of elastic bodies.



There are a number of crucial requirements on a shape
deformation operation which make it a challenging
problem: (i) the operation should be efficient enough
for interactive work, (ii) it should provide local influ-
ence and detail preservation, (iii) the editing operation
should naturally change the shape and simultaneously
respect the structural detail, (iv) elastic bodies should
not self-intersect as they deform.

The proposed variational model satisfies the require-
ments (ii) and (iii). The current version of the DEND
algorithm in Meshviz does not allow for great perfor-
mance, which will require an optimized implementa-
tion. Therefore, deformation editing can be achieved in
real-time only for medium size objects like those used
for the shown examples. Moreover, self intersections
can be avoided by surrounding the surface of the ob-
ject with bounding boxes and using collision dynamics.
This is not yet available in our simple deformation soft-
ware.

Nevertheless, we demonstrated that our deformation
model yields realistic effects, while still maintaining
computational tractability. Many open directions will
be investigated, starting from considering total curva-
ture energies that are minimized by a non-flat rest sur-
face, following the more general energy in (1).
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Figure 1: Deformation of the bar (left column) and
cylinder (right column) meshes. The deformations
are achieved by anchoring the red vertices and twist-
ing/bending the blue vertices.
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(b)

Figure 2: (a) 300◦ twist of the barmesh; (b) 180◦ bend
of the cylinder mesh.

(a) (b)

(c) (d)

Figure 3: (a) Original plane model; (b) Bumpy
plane achieved by deforming (a) anchoring the red ver-
tices and translating the blue vertices; (c) undeformed
shaded model; (d) deformation by bending the two
sides of the mesh.

Figure 4: A sequence of flag deformations by trans-
lating the right side and anchoring the left side of the
mesh.

(a) (b)

(c) (d)

Figure 5: Interactive deformation of the hand mesh:
(a) undeformed mesh; (b)-(c)-(d) deformed mesh from
different points of view.

Figure 6: A twist of torus mesh.

Figure 7: A sequence of dino deformations by free
interactive shape-editing steps.


