
Texture Mapping of Images with Arbitrary Contours
Nicolas Cherin, Frederic Cordier, Mahmoud Melkemi
LMIA, Université de Haute Alsace (LMIA, EA 3993)

Mulhouse, France

Figure 1. Local texture mapping with different sets of feature points.

Abstract

Decaling is an intuitive paradigm for texture mapping in an
analogy of attaching stickers on an object in the real world. This
paradigm enables an artist to put decals directly on a 3D model
after interactive manipulations such as modifying their positions,
scales and orientations. In this paper, we present a novel method
for multiple-constrained decaling. Given a region inside a texture
together with a set of feature points in the region and a 3D model,
our problem is to map the texture region onto the surface of the
model in an intuitive manner, while satisfying the constrained
imposed by a user-specified correspondence between a set of
feature points in the region and the surface. We propose a solution
for this problem. Our approach iteratively determines a portion of
the mesh representing the surface while accordingly refining its
parameterization, guided by the feature point correspondence.

Keywords: Texture Mapping, Parameterization, Polygonal
Modeling.

1 Introduction

Texture mapping is a well-known technique for mapping an
image onto the surface of a 3D model to enhance its visual
appearance. This technique has been adopted for a broad range of
applications such as special effects for the film industry that
requires highly realistic models as well as the game industry for
efficiently creating 3D models and virtual characters. The
essential step of texture mapping is the surface parameterization
of a 3D model, i.e. finding a one-to-one correspondence between
the entire surface of the model and a texture.

A 3D model can also be decorating with several textures, that is,
different images of arbitrary shapes are placed on the 3D model,
each image covering a portion of the surface by locally
parameterizing the region on the 3D surface that corresponds to
each image. The metaphor can regarded as affixing stickers or
decals [Pedersen 1996] to the surface of the model. This technique
shows the possibility of texturing models by compositing images
directly on the 3D surface, which is analogous to 2D image
compositing that creates a new image by combining images from
different sources by alpha blending. The texture mapping with
local parameterization usually produces higher quality results than
texture mapping with global parameterization, since local
parameterization for a smaller number of triangles results in lower

distortion compared to global parameterization for the entire
surface.

The latest work related to local parameterization uses a discrete
approximation to the exponential map [Schmidt et al. 2006] that
parameterizes a circular region around a center point provided by
the artist. As pointed by the authors, a disadvantage of their
technique is that the distortion of mapping increases significantly
as the textured region is becoming larger, especially on surfaces
with high frequency features. In addition, their technique offers
limited control, that is, only the position of the center point, the
scaling and the orientation of local parameterization can be
specified by the artist. This method cannot be used for constrained
texture mapping where we need to define a correspondence
between multiple feature on the image and the 3D surface.

We present a method which is a generalization of the work of
Schmidt et al., that is, the mapping of an image of an arbitrary
shape onto the 3D surface given multiple corresponding pairs of
feature points on the image and the surface. The input of our
approach is a region of the 2D image that is bounded by a simple
closed curve, and a set of feature points in the region and their
counterparts on the 3D model. Our method computes
automatically the region for texturing on the 3D model and its
parameterization in an intuitive manner. Compared to the work of
Schmidt et al., our approach offers two important advantages.
First, the artist can use as many feature points as needed; our
method ensures the exact matching of the features between the
image and the 3D model guided by the feature point
correspondence. Second, our method does not impose any
limitations on the size and shape of the textured region on the
model surface. Our method provides valid parameterization even
when the textured region is very large and the surface of the
model contains sharp features. For efficient texture mapping, we
introduce a novel two-step parameterization that supports multiple
feature correspondence and automatic computation of the 3D
region for texturing. We show how to use this method to texture-
map parts of the surface of a 3D model.

2 Related Work

A variety of techniques have been proposed to help artists to
decorate 3D models. We give a brief description of these
techniques.
Surface Painting: Surface painting is one of the most common
techniques for decorating 3D models; the artist creates a texture
from scratch by drawing directly on a 3D model using painting

tools such as a brush or an eraser. This technique has been well
studied [Igarashi and Cosgrove 2001], [Carr and Hart 2004] and
many commercial tools for 3D painting are available [Maya
2004]. However, surface painting is tedious and requires artistic
skills to create a complete texture.
Texture Tiling: Another technique for creating textures on 3D
model is to cover its surface with partially overlapping images
[Praun et al. 2000] [Turk 2001] [Wei and Levoy 2001] [Soler et
al. 2002]. This technique is useful for completely covering a
surface with repetitive applications of a pattern image. However,
the use of this method is limited since it can only be applied for
texture tiling.
Global Planar Parameterization: A large body of work on
texture mapping has been devoted to global parameterization of
surfaces, i.e. finding a bijective function between the entire
surface of a model and a planar texture space. If the surface is
topologically equivalent to a disk, then a planar parameterization
is computed through an optimization that finds the position of
vertices in the texture space such that distortion of the triangles is
minimized [Maillot et al. 1993], [Hormann and Greiner 1999],
[Sander et al. 2001], [Levy et al. 2002], [Desbrun et al. 2002],
[Floater and Hormann 2003] [Floater 2003] [Khodakovsky et al.
2003] [Meyer at al. 2002].

If the surface of the model is not topologically equivalent to a
disk, the surface is segmented into a set of disjoint charts, each of
which is homeomorphic to a disc and parameterized
independently of each other [Sheffer and Hart 2002], [Gu and Yau
2003] [Grimm and Hughes 1995], [Maillot et al. 1993], [Eck et al.
1995; Lee et al. 1998], [Levy et al. 2002], [Zhou et al. 2004],
[Zhang et al. 2005]. These parameterized charts are then packed
into the texture space to collectively form a texture atlas.

The surface parameterization technique has been further
extended to incorporate a feature correspondence between points
in the texture space and vertices on the surface of the model. The
feature correspondence is integrated in parameterization either as
soft constraints [Levy 2001] [Desbrun et al. 2002] or hard
constraints [Eckstein et al. 2001] [Kraevoy et al. 2003]. [Zhou et
al. 2005] further extend the constrained parameterization to allow
the artist to generate a texture atlas from multiple images.

Since global parameterization is targeted for mapping the entire
surface, distortion due to parameterization usually increases with
greater surface complexity. Our approach is based on local
parameterization, which aims at lowering the distortion by
restrictively parameterizing the portion of the surface that is
actually textured.
Local Parameterization: Unlike global parameterization, local
parameterization is computed only for the region of the 3D
surface that is to be textured. This technique is known as decal
mapping, in reference to the metaphor of a decal (or sticker)
affixed to the surface of an object. Decal mapping was first
introduced by [Pedersen 1996]; the local parameterization is
computed with an iterative mass-spring mesh optimization. One
drawback of this method is the instability of the mass-spring
system; if the surface contains sharp features, the mass-spring
mesh folds onto itself and the computation of parameterization
fails. [Lefebvre et al 2005] have proposed a system supporting the
interactive manipulation and composition of decals. The
parameterization of decals is obtained with a planar projection of
the 3D surface to be textured. While this method is simple and
shows good computational efficiency, the planar projection of
highly-curved surfaces results in significant distortion. [Schmidt
et al. 2006] have computed the parameterization with discrete
exponential maps, which significantly improves the quality of the
parameterization compared to the planar projection. Still, the

quality of the parameterization with this method is sensitive to
high frequency features of the 3D surface to be parameterized.
Our system combines conformal mapping and 2D warping to
robustly handle the parameterization of surfaces with high
frequency features. Besides, our method allows users to introduce
multiple feature constraints, which facilitates precise alignment
between texture and surface features.
Recently, some researchers [Sun et al. 2013] have proposed an
interactive interface for texturing 3D surfaces. With this system,
the user specifies a local parameterization with a free-form curve
drawn on the surface. Compared to their method, our approach
offers higher level of user interaction. In their system, the texture
image should have the shape of a strip and its mapping is achieved
through the manipulation of a surface curve. In our system, the
texture image can be of any shape and the mapping is controllable
with an arbitrary set of feature points.

3 Overview

We provide a novel texturing technique that is powerful, yet easy-
to-use for decorating 3D models with one or more textures. Basic
operations for mapping a texture on a 3D model are cutting an
image with a simple closed curve and pasting the result onto the
surface of 3D model guided by a set of corresponding pairs of
feature points, each constraining a vertex of the 3D model to a
position in the image.

+

(a) Input image region

(f) Final result

(b) Input 3D model

(c) Construction
of the seed patch

(d) Growing of the patch

(e) Image region transferred into
the texture of the 3D model

Figure 2. Overview of the texturing method.

For the remainder of the paper, we refer by the texture space to
the 2D space where the image and the simple closed curve are
located. The object space is the 3D space containing the triangular
mesh of the model (Figure 2(b)). An image region is a part of the
image that is surrounded by the closed curve (Figure 2(a)) and a
patch is a subset of triangles of the triangular mesh, each triangle
corresponding to a triangle in the 3D model to be textured. The
position of the patch vertices in the texture space is computed
through the parameterization of the patch.

Our texturing method is comprised of three steps. We first find
a set of connected triangles on the 3D surface that contains all the
feature points and that region containing the triangles is
homeomorphic to a disc. We place these triangles inside the
closed curve in the image (Figure 2(c)). The patch is then grown
iteratively by adding a number of triangles at a time. At each
iteration, we reparameterize the modified patch to minimize the
texture distortion while satisfying the feature point constraints.
This process is repeated until the patch completely covers the
image region bounded by the closed curve (Figure 2(d)). Finally,
we transfer the image region onto the 3D surface exploiting the
patch and the parameterization (Figure 2(e)).

These three steps are described in details in the Sections 4, 5
and 6 respectively. Several examples of models textured with our
tool are shown in Section 7. We discuss about the limitations and
the future work in Section 8.

4 Building a seed patch

The objective is to create a seed patch satisfying the feature
constraints to bootstrap the patch growing. Specifically, the seed
patch must be composed of a set of connected triangles containing
the feature points; the position of feature points should be located
at the given position and the vertices of each triangle in the patch
should be inside the image region. In addition, since the image
region is bounded by a simple closed curve, the patch should be
homeomorphic to a disc.

In order to find the triangles on the 3D surface to build the
patch, we first construct a 2D planar feature-point graph GI in the
image region; this graph has a set of vertices corresponding to
feature points and a set of edges that are straight-lines joining a
pair of feature points (see Figure 3(b)). Note that edges
intersecting the boundary of the image region are not included in
GI (Figure 3(c)); the outline of GI provides a rough approximation
of the shape of the image region. We construct another graph GS
with the same connectivity as GI, on the 3D surface to obtain a
rough approximation of the location of the patch on the 3D
surface. Each edge of the 3D graph GS corresponds to an edge of
the 2D graph GI. Unlike a 2D edge, 3D edge represents the
shortest Euclidean path in the triangular mesh that connects a pair
of 3D feature points. Finally we use such path to find the triangles
to construct the 3D patch.

4.1 Construction of the planar feature-points graph in
the image region

We first compute a triangulation of the feature points in the image
region, employing a method which is essentially the same as the
incremental Delaunay triangulation except that each edge of the
triangulation lies completely in the image region. In order to
identify the edges, we initially find all line segments, each
connecting a pair of feature points and which do not intersect the
boundary of the image region. These line segments are put in a
priority queue ordered by their length. The line segments are then
chosen one by one in sequence, starting from the shortest one,
such that the line segments already chosen do not intersect each
other. After adding an edge, we use edge-flipping algorithm
[Hurtado et al. 1999], to flip edges which violate the local
Delaunay criterion and do not intersect the boundary of the image
region after the flip.

The resulting triangulation may be composed of several
disconnected components due to the lack of line segments
satisfying the non-intersecting requirement with the boundary. In

this case, the artist is required to place additional feature points to
obtain the triangulation.

Next, we build a feature-point graph GI by deleting all internal
edges from the above triangulation (Figure 3(c)). Note that this
may create feature points with no edges incident to it; these
isolated feature points are always located inside a face. In order to
simplify the computation of the initial parameterization of the
seed patch (see section 4.3), we decompose every concave faces
of GI (regions bounded by edges) into convex ones by inserting
additional edges (Figure 3(d)).

(a) (b) (c) (d)
Figure 3. Construction of the feature point graph GI: image

region with the feature points (a), a triangulation of the
feature points (b), removal of internal edges (c),

decomposition into convex faces (d)

4.2 Selecting triangles to construct the seed patch

In this step, we identify the part of the surface of the 3D model to
be textured. We first construct the graph GS by embedding the
edges of GI onto the 3D surface. Given the 2D feature points FI,j
and FI,k and their corresponding 3D feature points FS,j and FS,k, the
embedding of the edge (FI,j,FI,k) is obtained by finding the shortest
path on the mesh connecting FS,j to FS,k.

(a) (b)

FI,1
FI,2

FI,3FI,4

FS,1

FS,2

FS,4

FS,3

FI,1 FI,2

FI,3 FI,4

FI,5 FI,6

FS,1

FS,2

FS,4

FS,3

FS,5

FS,6

Figure 4. The paths of the face (FS,1,FS,2,FS,3,FS,4) intersect each
other (a); two feature points FS,5 and FS,6 are placed such that
the paths of the face (FS,1,FS,2,FS,5,FS,3,FS,4,FS,6) do not intersect

each other (b).

Next, we test whether the paths belonging to the same face of
GS intersect each other (Figure 4(a)). If so, the artist inserts one or
more feature points to avoid intersections between the paths as
shown in Figure 4(b).

(b)(a) (c)
Figure 5. Construction of the seed patch: the graph GI in the
image region (a), the graph GS on 3D surface (b), selection of

triangles using GS (c).

After constructing GS, we partition the mesh into regions along
the paths of GS, each region corresponding to a face of GS (Figure
5(b)). Next, the seed patch is constructed by merging (1) triangles
of inner regions and (2) triangles encountered along the bridging
paths (Figure 5(c)).

Finally, we need to test if the acquired seed patch contains all
the feature points. As previously stated, the graph may contain
isolated feature points. Consider a 2D feature point FI,4 and its
corresponding 3D feature point FS,4 as shown in Figure 6. Since
FI,4 is located inside a face, FS,4 should be located inside the
corresponding mesh region. If not, the artist is required to insert
additional feature points as shown in Figure 6(b) so that both FI,4
and FS,4 are inside the face and the mesh region, respectively.

FI,1

FI,2 FI,3

FI,4 FS,3 FS,2

FS,4

FS,1

FS,3 FS,2

FS,4

FS,1 FS,5FI,1

FI,2 FI,3

FI,4

FI,5

(a) (b)
Figure 6. The feature point FS,4 is outside the region bounded
by (FS,1,FS,2,FS,3) (a); FS,5 is added such that FS,4 is inside (FS,1,

FS,2,FS,3,FS,5) (b)

It is worth noting that a set of edges that do not form any face
may self-intersect when embedded onto the 3D surface. This is
useful for creating a self-overlapping texture on the mesh of the
3D model as shown in Figure 7. Mesh vertices located where the
texture self-overlaps have several texture coordinates, each of
which corresponding to a vertex in the patch.

3D Model
Texture
Space

FS,1

FS,2
FS,3

FS,4

V1

FI,4

FI,3

FI,2

FI,1

V1,1

V1,2

FS,1

FS,2
FS,3

FS,4

Overlapping Texture on the
3D Model

Figure 7. Self-intersecting paths on the 3D model: the vertex
V1 located at the crossing of the paths (FS,1,FS,2) and (FS,3,FS,4)
on the 3D model has two corresponding vertices V1,1 and V1,2

in the patch.

4.3 Initial parameterization of the seed patch

Now that the seed patch has been created, we compute the texture
coordinates of every vertex (Figure 8). Texture coordinates are
computed with different methods, depending on whether the
vertex is a feature point, belonging to a path connecting a pair of
feature points or inside a face of the feature-point graph. Vertices
corresponding to feature points are placed at the user-specified
positions in the texture space (shown by the arrow (a) in Figure
8). Next, the vertices belonging to the paths of GS are uniformly
distributed along the corresponding edges of GI (arrow (b) in

Figure 8). Finally, other vertices belonging to a face of GS are
placed in the interior of the corresponding face of GI (arrow (c) in
Figure 8). Since the faces of GI are convex, a simple
parameterization method [Floater 2003] can be used, which
assumes the boundary of the parameterization to be fixed and
convex.

The initial parameterization of the seed patch may exhibit a
high degree of distortion, but a precise parameterization is not
critical to the final map, since the mapping will be modified in the
subsequent steps.

Patch vertices coinciding with a feature
Patch vertices along the paths
Patch vertices inside the faces

3D Model Texture Space

(a)

(b)

(c)

Figure 8. Initial parameterization of the seed patch

5 Growing the patch

Our goal now is to find the complete set of triangles to be texture-
mapped, along with their parameterization. These are achieved by
growing the seed patch with its neighboring triangles and
computing its parameterization in the texture space (see Figure 9).

F I,1

F I,2

F I,3

FS,1
F S,2

FS,3

(a) (c)

(b)

Figure 9. Warping of the image region: image region with the
feature points (a); growing of the patch (b), the final model (c).

Note that the structure of the patch and its parameterization are
inter-dependent: modifying the structure of the patch requires re-
computing its parameterization. Likewise, if the parameterization
changes, one needs to modify the structure. For instance, if any of
the triangles lie outside the image region after re-computing the
parameterization, they must be removed from the patch. Our
proposed method adopts an incremental approach: At each
iteration, the current patch is recomputed for its parameterization

(Section 5.1), followed by an update of its structure (Section 5.2).
This is repeated until the patch completely covers the given image
region.

5.1 Parameterization of the patch

An unconstrained planar embedding of the patch is first computed
using a conventional method. The boundary of the texture region
may have any shape; therefore, we use the free-boundary
conformal parameterization proposed by [Levy et al. 2003],
because of its low computation time. Since the patch is grown
incrementally, we compute the conformal parameterization using
an iterative solver. Such an approach enables us compute the final
parameterization with successive approximations starting from an
initial parameterization of the patch; in addition, the iterations can
be stopped whenever necessary. These features are required for
the algorithm to grow the patch (see subsection 5.2.1)

Next we align the feature points of the patch with those of the
image region, which can be achieved by warping either the planar
embedding of the patch or the image region. In our work, we have
chosen to warp the image region whose boundary polygon usually
contains many less vertices than the patch (Figure 9).

We compute the warping using a method similar to the one
proposed by [Seo et al. 2010] We construct a continuous 2D time-
dependent vector field v(x,y,t) and obtain the new positions of a
vertex p of the image region by applying a pathline integration of
v(x,y,t) starting from p. Intuitively speaking, the vector field
v(x,y,t) defines a 2D time-varying velocity vector for all points of
the 2D space and for an interval of time. The new position of a
point is obtained by moving it according to the velocity specified
by the vector field at the position of the point during a time
interval.

This vector-field based deformation approach is motivated by
two observations: First, foldover-free warping is guaranteed, due
to the fact that pathlines of vector field do not intersect in the 4D
space-time domain, which is a well-known property of vector
fields [Von Funck et al. 2006]. Second, the deformation is
continuous. Since the vector field v(x,y,t) is continuous, so is its
integral.

(a) (b)
Figure 10. A patch (b) whose planar embedding self-overlaps

(a)

One limitation of this method is that it does not allow overlap
between different parts of the image region; instead, the method
produces highly distorted deformation as shown in Figure 10(b).
Allowing overlaps in the warping is necessary in case the planar
embedding contains overlapping parts as shown in Figure 10. We
show later in this section how to overcome this problem by
defining regions of influence for the feature points, allowing the
overlapping between different parts of the image region.

5.1.1 Vector Field Based Warping
We warp the image region such that its feature points are moved
from their original position (source position) to the position of the
corresponding feature points of the patch (target position). The
key idea is to relate the movement of the points of the image

region to the trajectory of the feature points moving from the
source to the target positions; We define a vector field function
v(x,y,t) that relates the instantaneous velocity of the points to
those of the feature points along their trajectory. Hereafter, we
denote Fi(t) and ΔFi(t) the position and velocity of the feature
point i respectively for t [0,1]; Fi(0) and Fi(1) represent the
source and target positions respectively. The position Fi(t) is
obtained from a linear interpolation of Fi(0) and Fi(1).

Given a pair of feature points i and j and a point p(t) in the
image region, we compute the relative coordinates xp,i,j and yp,i,j of
p(t) in the local coordinate frame defined by Fi(t) and Fj(t) (Figure
11):

           tFtFRytFtFxtFtp ijjipijjipi  90,,,,)((2)

with





 01

10
90R

Given the position change of the pair of feature points (i, j),

equation (2) provides the corresponding position change of the
point p(t). Note that this equation defines a transformation of p(t)
which includes rotation, translation and uniform scaling only.

Fi(t)

Fj(t)

p(t)

xp,i,j

yp,i,j

Figure 11. p(t) in the local coordinate frame defined by Fi(t)

and Fj(t).

Since the number of feature points in the image region is
usually more than two, the position of a point is affected by
multiple pairs of feature points. Rather than taking into account all
possible pairs of feature point, we use only those pairs whose line
segments are completely inside the image region. This guides the
deformation to better reflect the shape of the image region.

The total velocity of the point p(t) is expressed as a weighted
combination of the velocities associated with each pair of feature
points. We define a weight for each feature point pair (i,j) so that
it increases as the point becomes closer to either of the feature
points:

  
2

,,

,,

1

jpip

jip
dd 



dp,i and dp, j are distances between p(t) and each of the feature
points i and j. The exponent α determines the smoothness of the
warping. We found that the value α=1 gives visually pleasing
deformations. These weights are normalized such that their sum is
unity for each point p(t).

The function v(x,y,t) that relates the instantaneous velocity of
point p(t) with those of the feature points is given by:

        , , , , , ,
,

p i j p i j i p i j j i
i j

d d d
p t ,t F t x F t F t

dt dt dt
 

          
v

   , , 90p i j j i

d d
y R F t F t

dt dt

    

(3)

The purpose of weights αp,i,j is to allow overlaps in warping

(see Section 5.1.2). The new position of a point p0 is obtained by
applying a pathline integration of v(x,y,t) starting form p0:

    ttpv
dt

tdp
,

  00 pp 

for  1,0t

In our current implementation, we use the explicit Euler

integration with a constant step size ts. One integration step
involves computing the intermediate solution p(t) and updating
the values βp,i,j, yp,i,j, and xp,i,j of v(x,y,t) by using p(t) and the
feature point positions Fi(t).

5.1.2 Allowing overlaps in the warping:
A distinctive feature of our vector-field based warping is that it
deforms the entire 2D space the image region lies in, without
regard to the shape of the image region. Consider two distinctive
points p1 and p2 inside an image region as shown in Figure 11(a).
As feature points F1 and F4 are designated to become close to each
other (Figure 11(b)), the warping produces a highly distorted
deformation, which is undesirable. The reason for such artifact is
that the positions of the points are affected by all the feature
points, regardless of the shape of image region. Allowing overlaps
in the image region would be a better alternative, since it reduces
such distortion as shown in Figure 12 (c).

 (b)

F2 F3

F4

F1

 p2

 p1
 p1

(a)

F1

F2 F3

F4

 p2

(c)

F2 F3

F4

F1

 p1
 p2

Figure 12. Overlapping of the image region: the image region
(a) is deformed such that feature points F1 and F2 come close

to each other; deformation produced by the vector-field based
warping (b); overlapping is acquired by reducing the

influence of F4 on p1 and F1 on p2, respectively.

Overlaps are implemented by restricting the influence of the
feature-point pairs to their neighboring area inside the image
region. We cluster feature points into groups and divide the image
region into segments, each associated with a group. Since the
influence of each group of feature points is restricted to a segment,
overlap can occur between different segments of the image region.
There are three steps involved in construct the feature-point
groups: (1) we first compute the constrained Delaunay
triangulation of the image region (Figure 13(c)). (2) We then
search for a triangle intersecting with the maximum number of
line segments connecting pairs of feature points (Figure 13(d)).
(3) The feature points whose line-segment intersects the triangle
and which are not already assigned to an existing group are added
to a new group. We repeat the process of finding the next triangle
with the largest number of intersecting line segments and making
a new feature-point group, until every feature point is assigned to
a group.

(a) (b) (c) (d) (e)
Figure 13. Clustering of the feature point: the boundary of the
image region along with feature points provided (a), segments

of feature points that do not intersect the boundary (b),
constrained Delaunay triangulation (c), clustering of feature

points (d), region segments (e).

Once all feature points have been assigned to a group, we
compute the influence area of each group. For each vertex p of the
image region, we define a weight αp,l associated with the influence
area group l on p. We compute these weights individually for each
group l by minimizing the following function:
 2

 ,
,,

,

min 



Eqp

lqlp
lp




 (2)

where E is the set of adjacent vertices of the constrained Delaunay
triangulation such that p,q E if either vertex p or vertex q (or
both) are not coincident with a feature point. Coefficient of a
feature point is set to either 1 or 0, depending on whether it
belongs to group l or not.

We use the above computed weights to segment the image
region as shown in Figure 13(e); the segmentation is required for
the triangulation of the image region (see Section 5.2.1).

Then, for each vertex p, we compute the influence weight αp,i,j
for each pair of feature points (i, j) by summing the weights αp,l of
all the groups that contain at least one of the feature points i or j of
the pair:
 




lji

lpjip
,

,,, 

These weights αp,i,j are then normalized such that their sum is
unity for each vertex p of image region. Once computed, these
weights are integrated into the equation (3) of the warping. The
values αp,i,j continuously change across the vertices of the
constrained Delaunay triangulation of the image region, yielding a
smooth-looking deformation.

5.1.3 Limitations of the vector field based warping
The warping method does not work in two cases. The first case
arises when two feature points belonging to the same pair have
same position at the same time during the warping of the image;
the local coordinate frame shown in Figure 11 cannot be defined
if Fi(t) and Fj(t) are coincident. The second case happens when a
pair of feature points (Fi,Fj) is moved inside the image region
close to a point p whose influence weight αp,i,j is very small.

Group A of feature-points
Group B of feature-pointsp

Fi

Fj

Figure 14. Case for which the warping produces a foldover: a
feature point Fi is moved inside the image region to a vertex p

whose weigh value αp,i,j is very small.

5.2 Updating the patch structure

As previously stated, we grow the patch iteratively until its planar
embedding covers the image region; one iteration consists of
computing a parameterization of the patch combined with the
warping of the image region, and updating the patch structure.
Hereafter, we denote PPrev and PCurr the position vectors of patch
vertices corresponding to the parameterization computed at the
previous and current iteration respectively. The patch structure is
updated as follows: (1) We remove patch triangles that are located
outside the image region. Note that although all triangles of the
seed patch are initially inside the image region, they may leave the
region as we continuously update their parameterization. This is
typically encountered when there is a high degree of distortion in
the initial mapping of the seed patch, due to the fact that we
roughly approximate the initial placement of the seed patch on the
surface using geodesic paths without considering its texture
mapping distortion. (2) We add triangles that are adjacent to the
patch boundary and inside the image region.

In order to obtain a final patch whose surface is topologically
equivalent to a disc, we maintain the disc-like topology of the
seed patch through all the updates of the patch structure. In
particular, we should avoid the patch splitting into more than one
as we remove triangles from it. We describe how we avoid such
topological change in what follows.

5.2.1 Removing triangles from the patch
In order to maintain the topology of the patch, we test if the
intersecting part of the patch with the image region is composed
of several disconnected components as illustrated in Figure 15(b)
(step (a) in the flowchart of Figure 19). If so, the vertex positions
are rolled back to their positions at the previous iteration PPrev
where the whole patch was inside the image region (Figure 15(a)).
We then compute an approximated parameterization
corresponding to the intermediate positions of the vertices
between the previous positions PPrev and the positions
corresponding to the final parameterization (step (b) in Figure 19).
The approximated parameterization is computed such that the part
of the patch intersecting the image region forms one component
(Figure 15(c)).

(c) Approximated parameterization(b) Optimal parameterization

(a) Parameterization at the previous iteration

Image region Image region

Image region

Patch triangles
located inside
the image
region

Figure 15. Computing an approximated parameterization.

Rather than computing the exact intersection of the patch with
the image region, we find a set S of connected vertices from the
patch, located inside the image region and containing at least one
feature point. If S also contains all other feature points, the
intersecting part of the patch with the image region can be
considered as one component.

In order to construct S, we first compute a triangulation of the
image region by triangulating each of its segments (the algorithm
to segment the image region is given in section 5.1.2). The
algorithm to construct S works by keeping for each vertex vi of the

set S, the triangle Ti of the image region that contains vi. Initially,
S is composed of one feature point; feature points are always
inside the image region and we can easily find the triangle of the
image region that contains them. The set S is then enlarged
iteratively by visiting the edges (vi,vj) whose vertex vi is in the set
and vj outside. Since we know the triangle Ti of the image region
that contains vi, we compute the intersections of (vi,vj) with Ti and
its neighboring triangles until no more intersecting triangles are
found or the edge (vi,vj) has crossed the boundary of the image
region. If (vi,vj) does not intersect the boundary region, vj is added
to S and the triangle Tj that contains vj is the last triangle
intersecting the edge (vi,vj). Note that the algorithm to construct S
works even when the image region self-overlaps because the test
to determine if a patch vertex is inside/outside the image region
only requires computing intersections locally with the triangles of
the image region.

Once S is constructed, we remove patch triangles whose three
vertices do not belong to S (steps (c) and (d) in Figure 19).

Image regionImage region
Figure 16. Removing patch triangles whose three vertices are

outside the image region.

5.2.2 Insertion of triangles to the patch
There are two different cases when adding triangles to the patch:
In the first case, a final parameterization has been computed; we
grow the patch by adding a triangle strip along its boundary and
inside the image region as shown in Figure 17(a) (step (e) in
Figure 19). In the second case, only an approximated
parameterization has been calculated; triangles need to be added
so that a final parameterization can be computed and the part of
the patch intersecting the image region forms one component
(step (f) in Figure 19). To achieve this, we find all edges that are
shared by two triangles and whose two vertices are on the
boundary of the patch (edge e in Figure 17(b)). We then add
triangles to the endpoint of the edge which is inside the image
region.

Image region Image region

Image regionImage region

(a)

(b) e e

Figure 17. Insertion of triangles.

During the process of adding triangles, we must ensure that the

local connectivity of the patch is kept consistent with that of the
mesh; given a vertex p of the patch and its corresponding vertex m
on the mesh, every vertex connected to p must have one
corresponding vertex among those connected to m. The
consistency of the local connectivity is broken when two patch
vertices corresponding to the same mesh vertex, are adjacent to
the same patch vertex (Figure 18(a)). As mentioned in Section 4.2,
mesh vertices located inside a self-overlapping texture region
(Figure 7) typically have several texture coordinates. To maintain

the consistency between the patch and the mesh, we merge the
patch vertices corresponding to the same mesh vertex whenever
they become adjacent to the same patch vertex (Figure 18(b)).

Structure of the Patch Structure of the 3D Model

Vertices corresponding to the
same vertex in the 3D model
Merged vertices

(a)

(b)

(c)

Triangles corresponding to the
same triangle in the 3D model
Merged Triangle

p3,1 p2,1 p1

p2,2

p4,2

p3,2
p4,1

p1 p2
p3

p4

m3
m1 m2

m4

Figure 18. Consider two patch vertices p2,1 and p2,2

corresponding to the same vertex m2, and their adjacent
vertex p1 corresponding to m1. Clearly, the local connectivity
around p1 shown in (a) and the one around m1 shown in (b)

are inconsistent. We merge p2,1 and p2,2 into p2 to correct this
problem.

We give the flowchart of the algorithm to grow the patch.

 Seed Patch

Current Patch

Compute the parameterization of the patch

(a) Is the intersecting part of the patch with the image
region composed of disconnected components?

Is any patch triangle
outside the image region?

(b) Compute an approximated
parameterization such that the

intersecting part forms one component

No

No

(c) Remove them

Does the patch
completely cover
the image region?

Final Patch

No

(d) Remove patch

triangles outside the
image region

(f) Add triangles

Yes (e) Grow the patch with
one strip of triangles

P
ar

am
e

te
ri

za
ti

o
n

R

e
m

o
vi

n
g

T

ri
a

n
g

le
s

fr
o

m

th
e

 P
at

ch

A
d

d
in

g
 T

ri
a

n
g

le
s

to

 t
h

e
P

at
ch

Yes

Yes

Figure 19. A flowchart of the process of growing the patch.

7 Updating the Texture of the 3D Model

Once the construction of the patch has been completed, the pixels
of image region are transferred into the texture of the 3D model;
this implies that the 3D model has already a texture with a global
parameterization.

We first warp the image region using vector-field based
warping (section 5.1.1) as shown in Figure 20(c). We then update
the texture of the 3D model by transferring the image pixels inside
the patch triangles into the texture (Figure 20(d)). Note that

several images can be mapped successively on the same 3D model
to create composition of textures.

FI,2

FS,1
FS,2

FS,3

(d)(a)

FI,2

FI,3

FI,1

(c) (b)

FI,1

FI,2

FI,3

FI,1

FI,3

Figure 20. Transferring the pixels of the image region into the

texture of the 3D model: image region (a), final patch in the
texture space (b), warped image region (c), and 3D model with

the updated texture (d).

Another interesting feature of our approach is to create self-
overlapping textures on the 3D model as illustrated in Figure 7.
Triangles of the 3D model located in the overlapping parts are
textured several times with different portions of the image, each
portion corresponding to a triangle in the patch. To determine the
hiding-and-hidden relations among the overlapping parts of the
texture, we use a technique similar to the painter’s algorithm; we
sort all the patch triangles by their depths and process them in this
order.

The depth value of the patch triangles connected to a feature
point is set to an index provided by the artist. Depth values ωi of
other triangles are then computed by minimizing the following
function:
 2

),(

min 



Eji

ji 


where E is the set of adjacent triangles such that (i,j) E if either
triangle i or j (or both) are not connected to a feature point.

8 Results

Our texturing tool has been implemented as a plug-in to Maya,
with which the user can add and edit feature constraints
interactively. The computation time for generating the texture
mapping ranges from half a second to a few seconds depending on
the complexity of the textured 3D models and the size of the
image region.

Our method is demonstrated with several examples
corresponding to different cases of texture mapping, showing its
versatility. The example shown in Figure 1 and the last one in
Figure 23 demonstrate the texture mapping of surfaces with sharp
features. The first example in Figure 23 shows how to create
overlapping textures on 3D models. The two next examples show
the texture mapping with large displacements of the feature points
on the 3D model.

8.1 Comparison with previous work

We have compared our method with those proposed by [Sun et
al. 2013] and [Schmidt et al. 2006]. In order to provide a
qualitative comparison, we have mapped a same texture onto a
same surface using the three different methods (Figure 21). The
method by [Schmidt et al. 2006] is clearly the one generating a
texture mapping with the highest distortion. [Sun et al.2013] had
already mentioned that their method performs better than that of
[Schmidt et al. 2006].

Our method [Sun et al. 2013] [Schmidt et al. 2006]
Figure 21. Comparison of our method with the methods

proposed by [Sun et al. 2013] and by [Schmidt et al. 2006]

Figure 22 shows the texture coordinates generated by our
method and by [Sun et al. 2013]. In case of [Sun et al. 2013], the
mapping distortion is high for triangles along the boundary of the
textured area. In case of our method, the mapping distortion is
evenly distributed over the textured area.

In order to make a quantitative comparison, we have computed
the L2 stretch metric which measures the deformation of the
mapping; the formula of the L2 stretch is given by [Sander et al.
2001]. As shown in Figure 22, the value of the L2 metric for our
method is significantly lower than that of the method by [Sun et al.
2013].

Our method
L2 stretch: 1.43

[Sun et al. 2013]
L2 stretch: 5.42

u

v

0

1

0 1

u

v

0

1

0 1
Figure 22. Comparison of the texture coordinates generated

by our method with those generated by the method of [Sun et
al. 2013]. These texture coordinates are those of the surface

shown in Figure 21.

8.2 Limitations

Our method has several limitations. As mentioned in section
5.1.3, the proposed warping method may not work when feature
points in the warping have same position. Our method fails when
the planar embedding of the patch contains triangle flips.
However, in practice, we found that triangle flips rarely occur.
Finally, since our method is based on conformal parameterization,
the textured region tends to grow substantially on surfaces with
sharp features; this is because the conformal parameterization
minimizes the angular distortion and does not preserve the
distances across the surface [Levy et al. 2002]. In some cases
these undesirable artifacts can be avoided by providing additional
feature points. The removal of these artifacts is not always
possible. One example is shown in the third row of Figure 23; the
level of distortion is so high that it cannot be reduced by placing
more feature points.

9 Conclusion

We have proposed a method for local parameterization applied
for the texture-mapping of images on triangular meshes.

Compared to previous work on local parameterization, our
method allows multiple feature constraints in the form of
correspondence between points in the texture and vertices on the
3D model.

In addition, our framework provides an efficient, yet simple
user interface, hiding the underlying complexity of the
parameterization. In particular, the texture can be thought of as a
flexible shape that adheres to the surface and can be arbitrarily
moved and deformed by moving point constraints on the surface.

References

BEIER, T. AND NEELY S., 1992. Feature-Based Image Metamorphosis,

Computer Graphics, 26(2): 35–42.

CARR, N. A., AND HART, J. C. 2004. Painting detail. In Proceedings of
SIGGRAPH 2004, 842–849.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic
parameterizations of surface meshes. In Proceedings of Eurographics,
2002.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. 1995. Multiresolution analysis of arbitrary meshes.
Proceedings of SIGGRAPH 1995, 3 (Sept), 173–182.

ECKSTEIN, I., SURAZHSKY, V., AND GOTSMAN, C. 2001. Texture mapping
with hard constraints. Computer Graphics Forum 20, 3.

FLOATER, M., AND HORMANN, K. 2003. Recent advances in surface
parameterization. Multiresolution in Geometric Modelling Workshop.

FLOATER, M. 2003. Mean value coordinates. CAGD 20, 1, 19–27.

GRIMM, C. M., AND HUGHES, J. F. 1995. Modeling surfaces of arbitrary
topology using manifolds. Computer Graphics 29, Annual Conference
Series, 359–368.

GU, X., AND YAU, S.-T. 2003. Global conformal surface parameterization.
In Proceedings of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing, 127–137.

HORMANN, K., AND GREINER, G. 1999. Mips: An efficient global
parameterization method. In Curve and Surface Design: Saint-Malo,
Vanderbilt University Press, 219–226.

HURTADO F., NOY M., AND URRUTIA J., Flipping edges in
triangulations. Discrete Comput. Geom.,22(3):333–346, 1999.

IGARASHI, T., AND COSGROVE, D. 2001. Adaptive unwrapping for
interactive texture painting. In ACM Symposium on Interactive 3D
Graphics, 209–216.

KHODAKOVSKY, A., LITKE, N., AND SCHRODER, P. 2003. Globally smooth
parameterizations with low distortion. In Proceedings of SIGGRAPH
2003, 350–357.

KRAEVOY, V., SHEFFER, A., AND GOTSMAN, C. 2003. Matchmaker:
constructing constrained texture maps. In Proceedings of SIGGRAPH
2003, 326–333.

LEE, A., SWELDENS, W., SCHRODER, P., COWSAR, L., AND DOBKIN, D.
1998. Maps: multi-resolution adaptive parameterization of surfaces. In
Proceedings of SIGGRAPH 1998, 95–104.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Texture sprites:
Texture elements splatted on surfaces. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics (I3D).

LEVY, B., PETITJEAN, S., RAY, N., AND MALLET, J.-L. 2002. Least squares
conformal maps for automatic texture atlas generation. In Proceedings
of SIGGRAPH 2002, 362–371.

LEVY, B. 2001. Constrained texture mapping for polygonal meshes. In
Proceedings of SIGGRAPH 2001, 417–424.

MAYA, 2005, HTTP://WWW.ALIAS.COM/ENG/INDEX.SHTML.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture
mapping. In Proceedings of SIGGRAPH 1993, 27–34.

MEYER, M., LEE, H., BARR, A., AND DESBRUN, M. 2002. Generalized
barycentric coordinates on irregular polygons. J. Graph. Tools 7, 1, 13–
22.

PEDERSEN, H. K. 1996. A framework for interactive texturing
operations on curved surfaces. In Proceedings of SIGGRAPH 96, 295–
302.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. In
Proceedings of SIGGRAPH 2000, 465–470.

SUN Q., ZHANG L., ZHANG M., YING X., XIN S.-Q., XIA J., AND HE Y.,
Texture brush: an interactive surface texturing interface. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D '13), Stephen N. Spencer (Ed.). ACM, New York, NY,
USA, 153-160

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H. 2001. Texture
mapping progressive meshes. In Proceedings of SIGGRAPH 2001,
409–416.

SHEFFER, A., AND HART, J. 2002. Seamster: inconspicuous low-distortion
texture seam layout. In Proceedings of IEEE Visualization 2002, 291–
298.

SCHMIDT R., GRIMM C., WYVILL B.: Interactive decal compositing with
discrete exponential maps. In Proceedings of SIGGRAPH 2006, 25(3):
605–613.

SEO, H., CORDIER F.: Constrained Texture Mapping using Image Warping.
Comput. Graph. Forum 29(1): 160-174 (2010)

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical pattern
mapping. In Proceedings of SIGGRAPH 2002, 673–680.

TURK, G. 2001. Texture synthesis on surfaces. In Proceedings of
SIGGRAPH 2001, 347–354.

VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector field based shape
deformations. ACM Trans. Graph. 25(3): 1118–1125 (2006)

WEI, L., AND LEVOY, M. 2001. Texture synthesis over arbitrary manifold
surfaces. In Proceedings of SIGGRAPH 2001, 355–360.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2005. Feature-based surface
parameterization and texture mapping. ACM Trans. Graphics 24, 1, 1–
27.

ZHOU, K., SNYDER, J., GUO, B., AND SHUM, H.-Y. 2004. Iso-charts:
Stretchdriven mesh parameterization using spectral analysis. In
Proceedings of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing, 47–56.

ZHOU, K., WANG, X., TONG, Y., DESBRUN, M., GUO, B., AND SHUM, H.-Y.
2005. TextureMontage: Seamless Texturing of Arbitrary Surfaces From
Multiple Images. In Proceedings of SIGGRAPH 2005, 1148–1155.

SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.: Texture mapping
progressive meshes. SIGGRAPH 2001: 409-416

Figure 23. Textured models

