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Figure 1. Local texture mapping with different sets of feature points. 

 
Abstract 
 
Decaling is an intuitive paradigm for texture mapping in an 
analogy of attaching stickers on an object in the real world. This 
paradigm enables an artist to put decals directly on a 3D model 
after interactive manipulations such as modifying their positions, 
scales and orientations. In this paper, we present a novel method 
for multiple-constrained decaling. Given a region inside a texture 
together with a set of feature points in the region and a 3D model, 
our problem is to map the texture region onto the surface of the 
model in an intuitive manner, while satisfying the constrained 
imposed by a user-specified correspondence between a set of 
feature points in the region and the surface. We propose a solution 
for this problem. Our approach iteratively determines a portion of 
the mesh representing the surface while accordingly refining its 
parameterization, guided by the feature point correspondence. 
 
Keywords: Texture Mapping, Parameterization, Polygonal 
Modeling. 
 
1 Introduction 
 
Texture mapping is a well-known technique for mapping an 
image onto the surface of a 3D model to enhance its visual 
appearance. This technique has been adopted for a broad range of 
applications such as special effects for the film industry that 
requires highly realistic models as well as the game industry for 
efficiently creating 3D models and virtual characters. The 
essential step of texture mapping is the surface parameterization 
of a 3D model, i.e. finding a one-to-one correspondence between 
the entire surface of the model and a texture. 

A 3D model can also be decorating with several textures, that is, 
different images of arbitrary shapes are placed on the 3D model, 
each image covering a portion of the surface by locally 
parameterizing the region on the 3D surface that corresponds to 
each image. The metaphor can regarded as affixing stickers or 
decals [Pedersen 1996] to the surface of the model. This technique 
shows the possibility of texturing models by compositing images 
directly on the 3D surface, which is analogous to 2D image 
compositing that creates a new image by combining images from 
different sources by alpha blending. The texture mapping with 
local parameterization usually produces higher quality results than 
texture mapping with global parameterization, since local 
parameterization for a smaller number of triangles results in lower 

distortion compared to global parameterization for the entire 
surface. 

The latest work related to local parameterization uses a discrete 
approximation to the exponential map [Schmidt et al. 2006] that 
parameterizes a circular region around a center point provided by 
the artist. As pointed by the authors, a disadvantage of their 
technique is that the distortion of mapping increases significantly 
as the textured region is becoming larger, especially on surfaces 
with high frequency features. In addition, their technique offers 
limited control, that is, only the position of the center point, the 
scaling and the orientation of local parameterization can be 
specified by the artist. This method cannot be used for constrained 
texture mapping where we need to define a correspondence 
between multiple feature on the image and the 3D surface. 

We present a method which is a generalization of the work of 
Schmidt et al., that is, the mapping of an image of an arbitrary 
shape onto the 3D surface given multiple corresponding pairs of 
feature points on the image and the surface. The input of our 
approach is a region of the 2D image that is bounded by a simple 
closed curve, and a set of feature points in the region and their 
counterparts on the 3D model. Our method computes 
automatically the region for texturing on the 3D model and its 
parameterization in an intuitive manner. Compared to the work of 
Schmidt et al., our approach offers two important advantages. 
First, the artist can use as many feature points as needed; our 
method ensures the exact matching of the features between the 
image and the 3D model guided by the feature point 
correspondence. Second, our method does not impose any 
limitations on the size and shape of the textured region on the 
model surface. Our method provides valid parameterization even 
when the textured region is very large and the surface of the 
model contains sharp features. For efficient texture mapping, we 
introduce a novel two-step parameterization that supports multiple 
feature correspondence and automatic computation of the 3D 
region for texturing. We show how to use this method to texture-
map parts of the surface of a 3D model. 
 
2 Related Work 
 
A variety of techniques have been proposed to help artists to 
decorate 3D models. We give a brief description of these 
techniques. 
Surface Painting: Surface painting is one of the most common 
techniques for decorating 3D models; the artist creates a texture 
from scratch by drawing directly on a 3D model using painting 



tools such as a brush or an eraser. This technique has been well 
studied [Igarashi and Cosgrove 2001], [Carr and Hart 2004] and 
many commercial tools for 3D painting are available [Maya 
2004]. However, surface painting is tedious and requires artistic 
skills to create a complete texture. 
Texture Tiling: Another technique for creating textures on 3D 
model is to cover its surface with partially overlapping images 
[Praun et al. 2000] [Turk 2001] [Wei and Levoy 2001] [Soler et 
al. 2002]. This technique is useful for completely covering a 
surface with repetitive applications of a pattern image. However, 
the use of this method is limited since it can only be applied for 
texture tiling. 
Global Planar Parameterization: A large body of work on 
texture mapping has been devoted to global parameterization of 
surfaces, i.e. finding a bijective function between the entire 
surface of a model and a planar texture space. If the surface is 
topologically equivalent to a disk, then a planar parameterization 
is computed through an optimization that finds the position of 
vertices in the texture space such that distortion of the triangles is 
minimized [Maillot et al. 1993], [Hormann and Greiner 1999], 
[Sander et al. 2001], [Levy et al. 2002], [Desbrun et al. 2002], 
[Floater and Hormann 2003] [Floater 2003] [Khodakovsky et al. 
2003] [Meyer at al. 2002].  

If the surface of the model is not topologically equivalent to a 
disk, the surface is segmented into a set of disjoint charts, each of 
which is homeomorphic to a disc and parameterized 
independently of each other [Sheffer and Hart 2002], [Gu and Yau 
2003] [Grimm and Hughes 1995], [Maillot et al. 1993], [Eck et al. 
1995; Lee et al. 1998], [Levy et al. 2002], [Zhou et al. 2004], 
[Zhang et al. 2005]. These parameterized charts are then packed 
into the texture space to collectively form a texture atlas.  

The surface parameterization technique has been further 
extended to incorporate a feature correspondence between points 
in the texture space and vertices on the surface of the model. The 
feature correspondence is integrated in parameterization either as 
soft constraints [Levy 2001] [Desbrun et al. 2002] or hard 
constraints [Eckstein et al. 2001] [Kraevoy et al. 2003]. [Zhou et 
al. 2005] further extend the constrained parameterization to allow 
the artist to generate a texture atlas from multiple images. 

Since global parameterization is targeted for mapping the entire 
surface, distortion due to parameterization usually increases with 
greater surface complexity. Our approach is based on local 
parameterization, which aims at lowering the distortion by 
restrictively parameterizing the portion of the surface that is 
actually textured. 
Local Parameterization: Unlike global parameterization, local 
parameterization is computed only for the region of the 3D 
surface that is to be textured. This technique is known as decal 
mapping, in reference to the metaphor of a decal (or sticker) 
affixed to the surface of an object. Decal mapping was first 
introduced by [Pedersen 1996]; the local parameterization is 
computed with an iterative mass-spring mesh optimization. One 
drawback of this method is the instability of the mass-spring 
system; if the surface contains sharp features, the mass-spring 
mesh folds onto itself and the computation of parameterization 
fails. [Lefebvre et al 2005] have proposed a system supporting the 
interactive manipulation and composition of decals. The 
parameterization of decals is obtained with a planar projection of 
the 3D surface to be textured. While this method is simple and 
shows good computational efficiency, the planar projection of 
highly-curved surfaces results in significant distortion. [Schmidt 
et al. 2006] have computed the parameterization with discrete 
exponential maps, which significantly improves the quality of the 
parameterization compared to the planar projection. Still, the 

quality of the parameterization with this method is sensitive to 
high frequency features of the 3D surface to be parameterized. 
Our system combines conformal mapping and 2D warping to 
robustly handle the parameterization of surfaces with high 
frequency features. Besides, our method allows users to introduce 
multiple feature constraints, which facilitates precise alignment 
between texture and surface features. 
Recently, some researchers [Sun et al. 2013] have proposed an 
interactive interface for texturing 3D surfaces. With this system, 
the user specifies a local parameterization with a free-form curve 
drawn on the surface. Compared to their method, our approach 
offers higher level of user interaction. In their system, the texture 
image should have the shape of a strip and its mapping is achieved 
through the manipulation of a surface curve. In our system, the 
texture image can be of any shape and the mapping is controllable 
with an arbitrary set of feature points. 
 
3 Overview 
 
We provide a novel texturing technique that is powerful, yet easy-
to-use for decorating 3D models with one or more textures. Basic 
operations for mapping a texture on a 3D model are cutting an 
image with a simple closed curve and pasting the result onto the 
surface of 3D model guided by a set of corresponding pairs of 
feature points, each constraining a vertex of the 3D model to a 
position in the image. 
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(a) Input image region 

(f) Final result 

(b) Input 3D model

(c) Construction 
of the seed patch

(d) Growing of the patch 

(e) Image region transferred into 
the texture of the 3D model 

 
Figure 2. Overview of the texturing method. 

For the remainder of the paper, we refer by the texture space to 
the 2D space where the image and the simple closed curve are 
located. The object space is the 3D space containing the triangular 
mesh of the model (Figure 2(b)). An image region is a part of the 
image that is surrounded by the closed curve (Figure 2(a)) and a 
patch is a subset of triangles of the triangular mesh, each triangle 
corresponding to a triangle in the 3D model to be textured. The 
position of the patch vertices in the texture space is computed 
through the parameterization of the patch. 



Our texturing method is comprised of three steps. We first find 
a set of connected triangles on the 3D surface that contains all the 
feature points and that region containing the triangles is 
homeomorphic to a disc. We place these triangles inside the 
closed curve in the image (Figure 2(c)). The patch is then grown 
iteratively by adding a number of triangles at a time. At each 
iteration, we reparameterize the modified patch to minimize the 
texture distortion while satisfying the feature point constraints. 
This process is repeated until the patch completely covers the 
image region bounded by the closed curve (Figure 2(d)). Finally, 
we transfer the image region onto the 3D surface exploiting the 
patch and the parameterization (Figure 2(e)). 

These three steps are described in details in the Sections 4, 5 
and 6 respectively. Several examples of models textured with our 
tool are shown in Section 7. We discuss about the limitations and 
the future work in Section 8. 
 
4 Building a seed patch 
 
The objective is to create a seed patch satisfying the feature 
constraints to bootstrap the patch growing. Specifically, the seed 
patch must be composed of a set of connected triangles containing 
the feature points; the position of feature points should be located 
at the given position and the vertices of each triangle in the patch 
should be inside the image region. In addition, since the image 
region is bounded by a simple closed curve, the patch should be 
homeomorphic to a disc.  

In order to find the triangles on the 3D surface to build the 
patch, we first construct a 2D planar feature-point graph GI in the 
image region; this graph has a set of vertices corresponding to 
feature points and a set of edges that are straight-lines joining a 
pair of feature points (see Figure 3(b)). Note that edges 
intersecting the boundary of the image region are not included in 
GI (Figure 3(c)); the outline of GI provides a rough approximation 
of the shape of the image region. We construct another graph GS 
with the same connectivity as GI, on the 3D surface to obtain a 
rough approximation of the location of the patch on the 3D 
surface. Each edge of the 3D graph GS corresponds to an edge of 
the 2D graph GI. Unlike a 2D edge, 3D edge represents the 
shortest Euclidean path in the triangular mesh that connects a pair 
of 3D feature points. Finally we use such path to find the triangles 
to construct the 3D patch. 
 
4.1 Construction of the planar feature-points graph in 
the image region 
 
We first compute a triangulation of the feature points in the image 
region, employing a method which is essentially the same as the 
incremental Delaunay triangulation except that each edge of the 
triangulation lies completely in the image region. In order to 
identify the edges, we initially find all line segments, each 
connecting a pair of feature points and which do not intersect the 
boundary of the image region. These line segments are put in a 
priority queue ordered by their length. The line segments are then 
chosen one by one in sequence, starting from the shortest one, 
such that the line segments already chosen do not intersect each 
other. After adding an edge, we use edge-flipping algorithm 
[Hurtado et al. 1999], to flip edges which violate the local 
Delaunay criterion and do not intersect the boundary of the image 
region after the flip. 

The resulting triangulation may be composed of several 
disconnected components due to the lack of line segments 
satisfying the non-intersecting requirement with the boundary. In 

this case, the artist is required to place additional feature points to 
obtain the triangulation. 

Next, we build a feature-point graph GI by deleting all internal 
edges from the above triangulation (Figure 3(c)). Note that this 
may create feature points with no edges incident to it; these 
isolated feature points are always located inside a face. In order to 
simplify the computation of the initial parameterization of the 
seed patch (see section 4.3), we decompose every concave faces 
of GI (regions bounded by edges) into convex ones by inserting 
additional edges (Figure 3(d)).  
 

 

(a) (b) (c) (d)  
Figure 3. Construction of the feature point graph GI: image 

region with the feature points (a), a triangulation of the 
feature points (b), removal of internal edges (c), 

decomposition into convex faces (d) 

4.2 Selecting triangles to construct the seed patch 
 
In this step, we identify the part of the surface of the 3D model to 
be textured. We first construct the graph GS by embedding the 
edges of GI onto the 3D surface. Given the 2D feature points FI,j 
and FI,k and their corresponding 3D feature points FS,j and FS,k, the 
embedding of the edge (FI,j,FI,k) is obtained by finding the shortest 
path on the mesh connecting FS,j to FS,k. 
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Figure 4. The paths of the face (FS,1,FS,2,FS,3,FS,4) intersect each 
other (a); two feature points FS,5 and FS,6 are placed such that 
the paths of the face (FS,1,FS,2,FS,5,FS,3,FS,4,FS,6) do not intersect 

each other (b). 
 

Next, we test whether the paths belonging to the same face of 
GS intersect each other (Figure 4(a)). If so, the artist inserts one or 
more feature points to avoid intersections between the paths as 
shown in Figure 4(b). 

 

(b)(a) (c)  
Figure 5. Construction of the seed patch: the graph GI in the 
image region (a), the graph GS on 3D surface (b), selection of 

triangles using GS (c). 



After constructing GS, we partition the mesh into regions along 
the paths of GS, each region corresponding to a face of GS (Figure 
5(b)). Next, the seed patch is constructed by merging (1) triangles 
of inner regions and (2) triangles encountered along the bridging 
paths (Figure 5(c)). 

Finally, we need to test if the acquired seed patch contains all 
the feature points. As previously stated, the graph may contain 
isolated feature points. Consider a 2D feature point FI,4 and its 
corresponding 3D feature point FS,4 as shown in Figure 6. Since 
FI,4 is located inside a face, FS,4 should be located inside the 
corresponding mesh region. If not, the artist is required to insert 
additional feature points as shown in Figure 6(b) so that both FI,4 
and FS,4 are inside the face and the mesh region, respectively. 
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(a) (b)  
Figure 6. The feature point FS,4 is outside the region bounded 
by (FS,1,FS,2,FS,3) (a); FS,5 is added such that FS,4 is inside (FS,1, 

FS,2,FS,3,FS,5) (b) 

It is worth noting that a set of edges that do not form any face 
may self-intersect when embedded onto the 3D surface. This is 
useful for creating a self-overlapping texture on the mesh of the 
3D model as shown in Figure 7. Mesh vertices located where the 
texture self-overlaps have several texture coordinates, each of 
which corresponding to a vertex in the patch. 
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Figure 7. Self-intersecting paths on the 3D model: the vertex 
V1 located at the crossing of the paths (FS,1,FS,2) and (FS,3,FS,4) 
on the 3D model has two corresponding vertices V1,1 and V1,2 

in the patch. 

 
4.3 Initial parameterization of the seed patch 
 
Now that the seed patch has been created, we compute the texture 
coordinates of every vertex (Figure 8). Texture coordinates are 
computed with different methods, depending on whether the 
vertex is a feature point, belonging to a path connecting a pair of 
feature points or inside a face of the feature-point graph. Vertices 
corresponding to feature points are placed at the user-specified 
positions in the texture space (shown by the arrow (a) in Figure 
8). Next, the vertices belonging to the paths of GS are uniformly 
distributed along the corresponding edges of GI (arrow (b) in 

Figure 8). Finally, other vertices belonging to a face of GS are 
placed in the interior of the corresponding face of GI (arrow (c) in 
Figure 8). Since the faces of GI are convex, a simple 
parameterization method [Floater 2003] can be used, which 
assumes the boundary of the parameterization to be fixed and 
convex. 

The initial parameterization of the seed patch may exhibit a 
high degree of distortion, but a precise parameterization is not 
critical to the final map, since the mapping will be modified in the 
subsequent steps. 
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Figure 8. Initial parameterization of the seed patch 

5 Growing the patch 
 
Our goal now is to find the complete set of triangles to be texture-
mapped, along with their parameterization. These are achieved by 
growing the seed patch with its neighboring triangles and 
computing its parameterization in the texture space (see Figure 9). 
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Figure 9. Warping of the image region: image region with the 
feature points (a); growing of the patch (b), the final model (c). 

Note that the structure of the patch and its parameterization are 
inter-dependent: modifying the structure of the patch requires re-
computing its parameterization. Likewise, if the parameterization 
changes, one needs to modify the structure. For instance, if any of 
the triangles lie outside the image region after re-computing the 
parameterization, they must be removed from the patch. Our 
proposed method adopts an incremental approach: At each 
iteration, the current patch is recomputed for its parameterization 



(Section 5.1), followed by an update of its structure (Section 5.2). 
This is repeated until the patch completely covers the given image 
region. 
 
5.1 Parameterization of the patch 
 
An unconstrained planar embedding of the patch is first computed 
using a conventional method. The boundary of the texture region 
may have any shape; therefore, we use the free-boundary 
conformal parameterization proposed by [Levy et al. 2003], 
because of its low computation time. Since the patch is grown 
incrementally, we compute the conformal parameterization using 
an iterative solver. Such an approach enables us compute the final 
parameterization with successive approximations starting from an 
initial parameterization of the patch; in addition, the iterations can 
be stopped whenever necessary. These features are required for 
the algorithm to grow the patch (see subsection 5.2.1) 

Next we align the feature points of the patch with those of the 
image region, which can be achieved by warping either the planar 
embedding of the patch or the image region. In our work, we have 
chosen to warp the image region whose boundary polygon usually 
contains many less vertices than the patch (Figure 9).  

We compute the warping using a method similar to the one 
proposed by [Seo et al. 2010] We construct a continuous 2D time-
dependent vector field v(x,y,t) and obtain the new positions of a 
vertex p of the image region by applying a pathline integration of 
v(x,y,t) starting from p. Intuitively speaking, the vector field 
v(x,y,t) defines a 2D time-varying velocity vector for all points of 
the 2D space and for an interval of time. The new position of a 
point is obtained by moving it according to the velocity specified 
by the vector field at the position of the point during a time 
interval. 

This vector-field based deformation approach is motivated by 
two observations: First, foldover-free warping is guaranteed, due 
to the fact that pathlines of vector field do not intersect in the 4D 
space-time domain, which is a well-known property of vector 
fields [Von Funck et al. 2006]. Second, the deformation is 
continuous. Since the vector field v(x,y,t) is continuous, so is its 
integral. 

(a) (b)  
Figure 10. A patch (b) whose planar embedding self-overlaps 

(a) 

One limitation of this method is that it does not allow overlap 
between different parts of the image region; instead, the method 
produces highly distorted deformation as shown in Figure 10(b). 
Allowing overlaps in the warping is necessary in case the planar 
embedding contains overlapping parts as shown in Figure 10. We 
show later in this section how to overcome this problem by 
defining regions of influence for the feature points, allowing the 
overlapping between different parts of the image region. 
 
5.1.1 Vector Field Based Warping 
We warp the image region such that its feature points are moved 
from their original position (source position) to the position of the 
corresponding feature points of the patch (target position). The 
key idea is to relate the movement of the points of the image 

region to the trajectory of the feature points moving from the 
source to the target positions; We define a vector field function 
v(x,y,t) that relates the instantaneous velocity of the points to 
those of the feature points along their trajectory. Hereafter, we 
denote Fi(t) and ΔFi(t) the position and velocity of the feature 
point i respectively for t [0,1]; Fi(0) and Fi(1) represent the 
source and target positions respectively. The position Fi(t) is 
obtained from a linear interpolation of Fi(0) and Fi(1). 

Given a pair of feature points i and j and a point p(t) in the 
image region, we compute the relative coordinates xp,i,j and yp,i,j of 
p(t) in the local coordinate frame defined by Fi(t) and Fj(t) (Figure 
11): 
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Given the position change of the pair of feature points (i, j), 

equation (2) provides the corresponding position change of the 
point p(t). Note that this equation defines a transformation of p(t) 
which includes rotation, translation and uniform scaling only. 

Fi(t)

Fj(t) 

p(t) 

xp,i,j

yp,i,j 

 
Figure 11. p(t) in the local coordinate frame defined by Fi(t) 

and Fj(t). 

Since the number of feature points in the image region is 
usually more than two, the position of a point is affected by 
multiple pairs of feature points. Rather than taking into account all 
possible pairs of feature point, we use only those pairs whose line 
segments are completely inside the image region. This guides the 
deformation to better reflect the shape of the image region. 

The total velocity of the point p(t) is expressed as a weighted 
combination of the velocities associated with each pair of feature 
points. We define a weight for each feature point pair (i,j) so that 
it increases as the point becomes closer to either of the feature 
points: 
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dp,i and dp, j are distances between p(t) and each of the feature 
points i and j. The exponent α determines the smoothness of the 
warping. We found that the value α=1 gives visually pleasing 
deformations. These weights are normalized such that their sum is 
unity for each point p(t). 

The function v(x,y,t) that relates the instantaneous velocity of 
point p(t) with those of the feature points is given by: 
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The purpose of weights αp,i,j is to allow overlaps in warping 

(see Section 5.1.2). The new position of a point p0 is obtained by 
applying a pathline integration of v(x,y,t) starting form p0: 
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In our current implementation, we use the explicit Euler 

integration with a constant step size ts. One integration step 
involves computing the intermediate solution p(t) and updating 
the values βp,i,j, yp,i,j, and xp,i,j of v(x,y,t) by using p(t) and the 
feature point positions Fi(t). 
 
5.1.2 Allowing overlaps in the warping: 
A distinctive feature of our vector-field based warping is that it 
deforms the entire 2D space the image region lies in, without 
regard to the shape of the image region. Consider two distinctive 
points p1 and p2 inside an image region as shown in Figure 11(a). 
As feature points F1 and F4 are designated to become close to each 
other (Figure 11(b)), the warping produces a highly distorted 
deformation, which is undesirable. The reason for such artifact is 
that the positions of the points are affected by all the feature 
points, regardless of the shape of image region. Allowing overlaps 
in the image region would be a better alternative, since it reduces 
such distortion as shown in Figure 12 (c). 
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Figure 12. Overlapping of the image region: the image region 
(a) is deformed such that feature points F1 and F2 come close 

to each other; deformation produced by the vector-field based 
warping (b); overlapping is acquired by reducing the 

influence of F4 on p1 and F1 on p2, respectively. 

Overlaps are implemented by restricting the influence of the 
feature-point pairs to their neighboring area inside the image 
region. We cluster feature points into groups and divide the image 
region into segments, each associated with a group. Since the 
influence of each group of feature points is restricted to a segment, 
overlap can occur between different segments of the image region. 
There are three steps involved in construct the feature-point 
groups: (1) we first compute the constrained Delaunay 
triangulation of the image region (Figure 13(c)). (2) We then 
search for a triangle intersecting with the maximum number of 
line segments connecting pairs of feature points (Figure 13(d)). 
(3) The feature points whose line-segment intersects the triangle 
and which are not already assigned to an existing group are added 
to a new group. We repeat the process of finding the next triangle 
with the largest number of intersecting line segments and making 
a new feature-point group, until every feature point is assigned to 
a group. 
 

 

(a) (b) (c) (d) (e)  
Figure 13. Clustering of the feature point: the boundary of the 
image region along with feature points provided (a), segments 

of feature points that do not intersect the boundary (b), 
constrained Delaunay triangulation (c), clustering of feature 

points (d), region segments (e). 

Once all feature points have been assigned to a group, we 
compute the influence area of each group. For each vertex p of the 
image region, we define a weight αp,l associated with the influence 
area group l on p. We compute these weights individually for each 
group l by minimizing the following function: 
 2

 ,
,,

,

min 



Eqp

lqlp
lp




                                    (2) 

where E is the set of adjacent vertices of the constrained Delaunay 
triangulation such that p,q E if either vertex p or vertex q (or 
both) are not coincident with a feature point. Coefficient of a 
feature point is set to either 1 or 0, depending on whether it 
belongs to group l or not. 

We use the above computed weights to segment the image 
region as shown in Figure 13(e); the segmentation is required for 
the triangulation of the image region (see Section 5.2.1).  

Then, for each vertex p, we compute the influence weight αp,i,j 
for each pair of feature points (i, j) by summing the weights αp,l of 
all the groups that contain at least one of the feature points i or j of 
the pair: 
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These weights αp,i,j are then normalized such that their sum is 
unity for each vertex p of image region. Once computed, these 
weights are integrated into the equation (3) of the warping. The 
values αp,i,j continuously change across the vertices of the 
constrained Delaunay triangulation of the image region, yielding a 
smooth-looking deformation. 
 
5.1.3 Limitations of the vector field based warping 
The warping method does not work in two cases. The first case 
arises when two feature points belonging to the same pair have 
same position at the same time during the warping of the image; 
the local coordinate frame shown in Figure 11 cannot be defined 
if Fi(t) and Fj(t) are coincident. The second case happens when a 
pair of feature points (Fi,Fj) is moved inside the image region 
close to a point p whose influence weight αp,i,j is very small. 
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Group B of feature-pointsp
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Figure 14. Case for which the warping produces a foldover: a 
feature point Fi is moved inside the image region to a vertex p 

whose weigh value αp,i,j is very small. 

 



5.2 Updating the patch structure 
 
As previously stated, we grow the patch iteratively until its planar 
embedding covers the image region; one iteration consists of 
computing a parameterization of the patch combined with the 
warping of the image region, and updating the patch structure. 
Hereafter, we denote PPrev and PCurr the position vectors of patch 
vertices corresponding to the parameterization computed at the 
previous and current iteration respectively. The patch structure is 
updated as follows: (1) We remove patch triangles that are located 
outside the image region. Note that although all triangles of the 
seed patch are initially inside the image region, they may leave the 
region as we continuously update their parameterization. This is 
typically encountered when there is a high degree of distortion in 
the initial mapping of the seed patch, due to the fact that we 
roughly approximate the initial placement of the seed patch on the 
surface using geodesic paths without considering its texture 
mapping distortion. (2) We add triangles that are adjacent to the 
patch boundary and inside the image region. 

In order to obtain a final patch whose surface is topologically 
equivalent to a disc, we maintain the disc-like topology of the 
seed patch through all the updates of the patch structure. In 
particular, we should avoid the patch splitting into more than one 
as we remove triangles from it. We describe how we avoid such 
topological change in what follows. 
 
5.2.1 Removing triangles from the patch 
In order to maintain the topology of the patch, we test if the 
intersecting part of the patch with the image region is composed 
of several disconnected components as illustrated in Figure 15(b) 
(step (a) in the flowchart of Figure 19). If so, the vertex positions 
are rolled back to their positions at the previous iteration PPrev 
where the whole patch was inside the image region (Figure 15(a)). 
We then compute an approximated parameterization 
corresponding to the intermediate positions of the vertices 
between the previous positions PPrev and the positions 
corresponding to the final parameterization (step (b) in Figure 19). 
The approximated parameterization is computed such that the part 
of the patch intersecting the image region forms one component 
(Figure 15(c)).  
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Figure 15. Computing an approximated parameterization. 

Rather than computing the exact intersection of the patch with 
the image region, we find a set S of connected vertices from the 
patch, located inside the image region and containing at least one 
feature point. If S also contains all other feature points, the 
intersecting part of the patch with the image region can be 
considered as one component. 

In order to construct S, we first compute a triangulation of the 
image region by triangulating each of its segments (the algorithm 
to segment the image region is given in section 5.1.2). The 
algorithm to construct S works by keeping for each vertex vi of the 

set S, the triangle Ti of the image region that contains vi. Initially, 
S is composed of one feature point; feature points are always 
inside the image region and we can easily find the triangle of the 
image region that contains them. The set S is then enlarged 
iteratively by visiting the edges (vi,vj) whose vertex vi is in the set 
and vj outside. Since we know the triangle Ti of the image region 
that contains vi, we compute the intersections of (vi,vj) with Ti and 
its neighboring triangles until no more intersecting triangles are 
found or the edge (vi,vj) has crossed the boundary of the image 
region. If (vi,vj) does not intersect the boundary region, vj is added 
to S and the triangle Tj that contains vj is the last triangle 
intersecting the edge (vi,vj). Note that the algorithm to construct S 
works even when the image region self-overlaps because the test 
to determine if a patch vertex is inside/outside the image region 
only requires computing intersections locally with the triangles of 
the image region. 

Once S is constructed, we remove patch triangles whose three 
vertices do not belong to S (steps (c) and (d) in Figure 19). 
 

Image regionImage region  
Figure 16. Removing patch triangles whose three vertices are 

outside the image region. 

5.2.2 Insertion of triangles to the patch 
There are two different cases when adding triangles to the patch: 
In the first case, a final parameterization has been computed; we 
grow the patch by adding a triangle strip along its boundary and 
inside the image region as shown in Figure 17(a) (step (e) in 
Figure 19). In the second case, only an approximated 
parameterization has been calculated; triangles need to be added 
so that a final parameterization can be computed and the part of 
the patch intersecting the image region forms one component 
(step (f) in Figure 19). To achieve this, we find all edges that are 
shared by two triangles and whose two vertices are on the 
boundary of the patch (edge e in Figure 17(b)). We then add 
triangles to the endpoint of the edge which is inside the image 
region. 
 

Image region Image region

Image regionImage region

(a)

(b) e e 

 
Figure 17. Insertion of triangles. 

 
During the process of adding triangles, we must ensure that the 

local connectivity of the patch is kept consistent with that of the 
mesh; given a vertex p of the patch and its corresponding vertex m 
on the mesh, every vertex connected to p must have one 
corresponding vertex among those connected to m. The 
consistency of the local connectivity is broken when two patch 
vertices corresponding to the same mesh vertex, are adjacent to 
the same patch vertex (Figure 18(a)). As mentioned in Section 4.2, 
mesh vertices located inside a self-overlapping texture region 
(Figure 7) typically have several texture coordinates. To maintain 



the consistency between the patch and the mesh, we merge the 
patch vertices corresponding to the same mesh vertex whenever 
they become adjacent to the same patch vertex (Figure 18(b)). 
 

 
Structure of the Patch Structure of the 3D Model
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Figure 18. Consider two patch vertices p2,1 and p2,2 

corresponding to the same vertex m2, and their adjacent 
vertex p1 corresponding to m1. Clearly, the local connectivity 
around p1 shown in (a) and the one around m1 shown in (b) 

are inconsistent. We merge p2,1 and p2,2 into p2 to correct this 
problem. 

We give the flowchart of the algorithm to grow the patch. 
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Figure 19. A flowchart of the process of growing the patch. 

7 Updating the Texture of the 3D Model 
 
Once the construction of the patch has been completed, the pixels 
of image region are transferred into the texture of the 3D model; 
this implies that the 3D model has already a texture with a global 
parameterization. 

We first warp the image region using vector-field based 
warping (section 5.1.1) as shown in Figure 20(c). We then update 
the texture of the 3D model by transferring the image pixels inside 
the patch triangles into the texture (Figure 20(d)). Note that 

several images can be mapped successively on the same 3D model 
to create composition of textures.  
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Figure 20. Transferring the pixels of the image region into the 

texture of the 3D model: image region (a), final patch in the 
texture space (b), warped image region (c), and 3D model with 

the updated texture (d). 

Another interesting feature of our approach is to create self-
overlapping textures on the 3D model as illustrated in Figure 7. 
Triangles of the 3D model located in the overlapping parts are 
textured several times with different portions of the image, each 
portion corresponding to a triangle in the patch. To determine the 
hiding-and-hidden relations among the overlapping parts of the 
texture, we use a technique similar to the painter’s algorithm; we 
sort all the patch triangles by their depths and process them in this 
order.  

The depth value of the patch triangles connected to a feature 
point is set to an index provided by the artist. Depth values ωi of 
other triangles are then computed by minimizing the following 
function: 
 2
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where E is the set of adjacent triangles such that (i,j) E if either 
triangle i or j (or both) are not connected to a feature point. 
 
8 Results 
 
Our texturing tool has been implemented as a plug-in to Maya, 
with which the user can add and edit feature constraints 
interactively. The computation time for generating the texture 
mapping ranges from half a second to a few seconds depending on 
the complexity of the textured 3D models and the size of the 
image region. 

Our method is demonstrated with several examples 
corresponding to different cases of texture mapping, showing its 
versatility. The example shown in Figure 1 and the last one in 
Figure 23 demonstrate the texture mapping of surfaces with sharp 
features. The first example in Figure 23 shows how to create 
overlapping textures on 3D models. The two next examples show 
the texture mapping with large displacements of the feature points 
on the 3D model. 

 
8.1 Comparison with previous work  

We have compared our method with those proposed by [Sun et 
al. 2013] and [Schmidt et al. 2006]. In order to provide a 
qualitative comparison, we have mapped a same texture onto a 
same surface using the three different methods (Figure 21). The 
method by [Schmidt et al. 2006] is clearly the one generating a 
texture mapping with the highest distortion. [Sun et al.2013] had 
already mentioned that their method performs better than that of 
[Schmidt et al. 2006]. 



 

Our method [Sun et al. 2013] [Schmidt et al. 2006]  
Figure 21. Comparison of our method with the methods 

proposed by [Sun et al. 2013] and by [Schmidt et al. 2006] 

Figure 22 shows the texture coordinates generated by our 
method and by [Sun et al. 2013]. In case of [Sun et al. 2013], the 
mapping distortion is high for triangles along the boundary of the 
textured area. In case of our method, the mapping distortion is 
evenly distributed over the textured area. 

In order to make a quantitative comparison, we have computed 
the L2 stretch metric which measures the deformation of the 
mapping; the formula of the L2 stretch is given by [Sander et al. 
2001]. As shown in Figure 22, the value of the L2 metric for our 
method is significantly lower than that of the method by [Sun et al. 
2013]. 
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Figure 22. Comparison of the texture coordinates generated 

by our method with those generated by the method of [Sun et 
al. 2013]. These texture coordinates are those of the surface 

shown in Figure 21. 

 
8.2 Limitations 

Our method has several limitations. As mentioned in section 
5.1.3, the proposed warping method may not work when feature 
points in the warping have same position. Our method fails when 
the planar embedding of the patch contains triangle flips. 
However, in practice, we found that triangle flips rarely occur. 
Finally, since our method is based on conformal parameterization, 
the textured region tends to grow substantially on surfaces with 
sharp features; this is because the conformal parameterization 
minimizes the angular distortion and does not preserve the 
distances across the surface [Levy et al. 2002]. In some cases 
these undesirable artifacts can be avoided by providing additional 
feature points. The removal of these artifacts is not always 
possible. One example is shown in the third row of Figure 23; the 
level of distortion is so high that it cannot be reduced by placing 
more feature points. 

 
9 Conclusion 
 

We have proposed a method for local parameterization applied 
for the texture-mapping of images on triangular meshes. 

Compared to previous work on local parameterization, our 
method allows multiple feature constraints in the form of 
correspondence between points in the texture and vertices on the 
3D model. 

In addition, our framework provides an efficient, yet simple 
user interface, hiding the underlying complexity of the 
parameterization. In particular, the texture can be thought of as a 
flexible shape that adheres to the surface and can be arbitrarily 
moved and deformed by moving point constraints on the surface. 
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Figure 23. Textured models 


